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Abstract

The historical returns on equity index options are well known to be strikingly neg-

ative. That is typically explained either by investors having convex marginal utility

over stock returns (e.g. crash/variance aversion) or by intermediaries demanding a

premium for hedging risk. This paper examines the consistency of those explanations

with returns on dynamically replicated, or synthetic, options. Theoretically, it derives

conditions under which convex marginal utility leads synthetic options to also have

negative excess returns. Empirically, synthetic options have CAPM alphas near zero

over the period 1926—2022, in stark contrast to exchange-traded options. Over the last

15 years, returns on traded options have converged to those on synthetic options —with

the variance risk premium shrinking towards zero —while various drivers of the cost

and risk of hedging options exposures have declined, consistent with a model in which

intermediaries drive option prices.

1 Introduction

Background
A major empirical fact in financial markets is that equity index options have been over-

priced historically relative to simple benchmark models. Investors who purchase options

have, on average, earned significant negative returns and negative CAPM alphas.1 Bates

∗Dew-Becker: Northwestern University and NBER. Giglio: Yale University and NBER. We appreciate
helpful comments from Gurdip Bakshi, Mike Chernov, Itamar Drechsler, Bjorn Eraker, Niels Gormsen,
and seminar participants at ITAM, Yale, the University of Connecticut, Northwestern, Johns Hopkins, the
University of Miami, INSEAD, HEC Paris, Berkeley, the Canadian Derivatives Institute, Boston University,
the SFS Cavalcade, Booth, HBS, SAIF, Kansas University, CFIRM, Rice, SITE, FIU, the NBER, MIT, and
Georgetown.

1For analyses of returns, see Coval and Shumway (2001), Bakshi and Kapadia (2003), Broadie, Chernov,
and Johannes (2007), Constantinides, Jackwerth and Savov (2013), Chambers, Foy, Liebner, and Lu (2014)
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(2022) discusses two classes of explanations for that fact. The first is that marginal utility

for some hypothetical representative investor is convex in market returns. Periods with large

negative returns (and possibly also large positive returns) have state prices that are higher

than would be expected just based on a model like the CAPM in which marginal utility rises

linearly as the market drops. That can be due, for example, to aversion to crashes, aversion

to high volatility, time-varying risk aversion, or behavioral factors.2

It is well known, though, that option prices have puzzling implications that are diffi cult

to reconcile with standard utility theory, for example sometimes implying negative risk aver-

sion. The second class of explanations therefore focuses on intermediaries, explaining option

overpricing as the result of intermediaries being net short options and charging a premium

for their concentrated risk.3 In that case, option prices reveal the preferences and constraints

of the specialist investors that trade in options markets, and not necessarily those of the typ-

ical equity investor. The paper shows that in such a model, as segmentation declines over

time the returns on traded and synthetic options should converge.

Understanding which of the two explanations is correct is important because, in addi-

tion to being intrinsically interesting, option prices are used to measure many features of

financial markets, including investor expectations of various moments of the conditional dis-

tribution of returns, investor preferences across market return states, and the drivers of risk

premia.4 They can also reveal potential amplification mechanisms for macroeconomic shocks

(e.g., investors becoming more risk averse when the market drops),5 and are a key input in

understanding the importance of stabilization policy, as optimal policy depends on agents’

, Dew-Becker et al. (2017), and Muravyev and Ni (2020), among many others. For structural models,
see Backus, Chernov, and Martin (2011), Drechsler and Yaron (2011), Gabaix (2012), Drechsler (2013) ,
Seo and Wachter (2019), and Schreindorfer (2020). Note, though, that those models are almost exclusively
endowment economies.

2See Cuesdeanu and Jackwerth (2018) for an extensive review of such models and their empirical support,
along with a discussion of models of intermediary frictions. On risk aversion, see Ait-Sahalia and Lo (2000),
Jackwerth (2000), Rosenberg and Engle (2002), and Schreindorfer and Sichert (2022). On the variance
risk premium, see, in addition to work cited elsewhere here, see Lamoreaux and Lastrapes (1993), Coval
and Shumway (2001), Bakshi and Kapadia (2003), Du (2011), Dew-Becker et al. (2017), and Ait-Sahalia,
Karaman, and Mancini (2020).

3See Jackwerth (2000), Bollen and Whaley (2004), Bates (2008), Han (2008), Garleanu, Pedersen, and
Poteshman (2008), Jurek and Stafford (2015) , Haddad and Muir (2021), Frazzini and Pedersen (2022),
among many others

4On preferences over market states, see Ait-Sahalia and Lo (2000), Jackwerth (2000), and Rosenberg
and Engle (2002). For conditional moments, see the CBOE VIX index and, among many others, Carr and
Madan (1998), Carr and Wu (2009), and Martin (2017). Options have also been used to measure jump risk
(e.g. Bollerslev and Todorov (2014)), micro uncertainty (Dew-Becker and Giglio (2020)), and option implied
skewness (Kozhan, Neuberger, and Schneider (2013), Dew-Becker (2022). Bollerslev and Todorov (2011)
and Beason and Schreindorfer (2022) use option prices to measure the drivers of risk premia.

5E.g. He and Krishnamurthy (2013), Hall (2017) , and Muir (2017).
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subjective valuations of different possible states of the world.6

Contribution
This paper theoretically develops a novel approach to measuring the average investor’s

risk preferences by studying synthetic options —dynamic portfolios that attempt to replicate

returns on traded options by dynamically trading the underlying. Empirically, it measures

returns on synthetic options over nearly a century of data and compares them to traded

option returns. To interpret the results, the paper extends the intermediary-based asset

pricing model of Garleanu, Pedersen, and Poteshman (2009) to examine how the gap in

returns between true and synthetic options relates to the magnitude of trading and hedging

frictions.

Methods and results
The paper first provides a simple theoretical framework to ground the interpretation of

option returns. The results show how the CAPM alpha of a traded option on the stock

market measures curvature in marginal utility with respect to the market return.7 The

CAPM appears as a benchmark here not because we want to make any claim that marginal

utility is necessarily “truly”linear in any sense, but rather to take an empiricist’s approach

of starting with a linear null and then measuring the degree of nonlinearity.

Since options have payoffs that are convex in the market return, when marginal utility

is also convex options have relatively high prices and consequently low returns —negative

CAPM alphas. The paper’s more important theoretical contribution, though, is to give

circumstances under which convexity in marginal utility also implies negative CAPM alphas

for synthetic options. While the required conditions are strong, the paper provides some

empirical evidence in their favor and also gives bounds on the potential magnitude of the

bias due to their violation.

Empirically, the paper examines monthly returns on synthetic and traded options (moti-

vated by the fact that models are typically calibrated and estimated at a monthly or quarterly

frequency). The synthetic options are constructed back to 1926 using data on the CRSP

market return, while monthly traded option returns are available since August, 1987. The

first empirical question is how well replication works. The answer is quite well: synthetic op-

tions have returns that are over 90-percent correlated with traded option returns and hedge

realized crashes in the data effectively. That does not mean that options could have been

synthesized in real time historically, though —trading costs and other frictions would have

6Alvarez and Jermann (2004) is an example of how asset prices can be used to measure the cost of
fluctuations. De Paoli and Zabczyk (2013) study optimal policy under time-varying risk aversion.

7Importantly, this is a reduced-form statement. Option prices do not measure a structural effect of the
market return on marginal utility. They measure the average value of marginal utility conditional on a return
state.
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made that infeasible (and in fact replication frictions are central to our intermediary-based

explanation of the results).

The next question, and one of the paper’s two central results, is what alphas the syn-

thetic options earn. Whereas traded options have strongly negative CAPM alphas, synthetic

options have historical alphas that are zero or even positive, with confidence bands that

are economically narrow (and half the width of those for traded options). That result is

robust over time, across strikes, across maturities, and to modifying various details in the

construction.

That result is in fact consistent with the reduced-form option pricing literature — the

finding of a large negative return on delta-hedged returns going back to Bakshi and Kapadia

(2003) is equivalent to the statement that traded options have more negative returns than

synthetic options. The novelty in what has been described so far is in pointing out that the

small alpha for synthetic options extends back to 1926.

While synthetic options have consistently earned near-zero CAPM alphas, the alphas

of traded options have not been so consistent (see also Bates (2022)). The paper’s second

key empirical result is that according to various estimation methods, there is a break in the

returns somewhere around 2010. In the period since 2010, in fact, the alphas of the traded

options have converged to zero, consistent with the synthetic options. Since the gap between

traded and synthetic option returns is literally a delta-hedged return, another way to state

the result is that the alpha of delta-hedged options has gone to zero. The paper also shows

that the variance risk premium has shrunk towards zero, as has the gap between the VIX

and realized volatility.

The final section of the paper asks what might have caused such a shift. One might

take the view that synthetic options, because they were not really feasible to construct for

most of the sample (e.g. due to the lack of index futures), were not a good way to measure

investor preferences. In that case, as those frictions decline and daily rebalancing becomes

feasible, the returns on synthetic options would converge (down) to those on traded options.

But that is not what occurred empirically.

A similar problem arises if one takes the view that the synthetic and traded options hedge

different states. Synthetic option returns depend on the path the market takes, so the gap

between true and synthetic returns is a function of realized volatility and other higher-order

factors like jumps. If that gap is related to marginal utility, then it will be priced and drive

a wedge between the traded and synthetic returns.8 But those factors do not appear to have

shrunk over time. The volatility of the gap between traded and synthetic option returns

8No-arbitrage option prices typically rely on this type of mechanism, e.g. Pan (2002).
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has been stable, jump variation shows no trend, and skewness in market returns has become

significantly more negative.9

Based on the evidence, our preferred explanation of the results is that the stock and

options markets are segmented. We extend the segmented-markets model of Garleanu, Ped-

ersen, and Poteshman (2009) to allow for trading costs and an index-futures basis (i.e. im-

perfect tracking of the underlying index by the futures market). In the model, the difference

in alphas for synthetic and traded options depends on the magnitude of hedging frictions

that intermediaries face. When they shrink, the alpha on traded options converges to that

on synthetic options. Empirically, both trading costs and risk due to the index-futures basis

have declined over time. The index-futures basis is particularly notable. During the 1987

crash, S&P 500 futures were at times 20% underpriced relative to the level of the S&P 500

index, which would represent an enormous cost to a dealer with net short options positions

who must sell futures as the underlying falls. In the crash in the fall of 2008, though, the

basis was never more than about 5% and was centered on zero. One explanation for the

decline in the option premium soon after the crash, then, is that intermediaries learned that

they faced less hedging risk during crashes than they had thought based on past data. And

in fact the paper shows that the spread in returns between synthetic and traded options is

closely related to hedging risk.

Broader implications
The paper’s basic findings have three additional implications beyond what has been

discussed so far. First, significant care must be taken when using option prices or returns

to estimate or test models since equity and options are not frictionlessly integrated, which

is often assumed in structural models. Second, and relatedly, the paper’s results imply that

derivatives prices, up until relatively recently, were distorted away from those implied by the

preferences of whoever is the typical investor pricing equities. In thinking about calibration

and estimation of structural models, then, one must decide whose preferences exactly are

being modeled. As one alternative path forward, this paper’s results suggest the use of

synthetic options for calibration and estimation (e.g. ask whether a given model explains

prices of synthetic options, instead of traded options). And that can be done not only for

the overall equity market —synthetic options can be created on any underlying.

Finally, the analysis finds clear evidence of nonstationarity. So when studying traded

option returns, attention must be paid to the exact sample being used and how the results

may have changed over time. Financial markets have gone through many massive changes

over the past century. An interesting fact here is that through all of that, the returns

9Instability of parameters in no-arbitrage models is a well understood issue in the option pricing literature.
See, for example, Bollen and Whaley (2004) and Andersen, Fusari, and Todorov (2015).
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implied by option replication have been largely stable, while there are much larger changes

in derivatives markets.

While the paper’s analysis ultimately favors a frictional model, there are always friction-

less models that can rationalize any deviation in the pricing of traded and synthetic options.

At a high level, though, this paper’s contribution is simply to ask whether any conclusions

are changed if one focuses on synthetic options —whose pricing depends only on behavior of

equity prices —instead of traded options, whose pricing depends on a separate derivatives

market.

Outline
The remainder of the paper is organized as follows. Section 2 discusses the theoretical

framework and how it is applied to the data in practice. Section 3 describes the data and

empirical methods and section 4 reports our main empirical results on the returns of synthetic

and traded options and the shape of marginal utility. Finally, section 5 presents a model

of intermediary frictions that can explain theoretically and empirically both why there was

a gap between synthetic and traded option returns and why it has shrunk, and section 6

concludes.

2 Theory

This section provides some theoretical structure to help interpret average returns on traded

and synthetic options. Its key result is proposition 3, which yields three conditions needed

in order to use returns on synthetic options to estimate curvature in marginal utility with

respect to the market return.

2.1 Definitions and notation

The market return between periods t and t + j is Rm
t,t+j. The change in marginal utility is

Mt,t+j (i.e. u′t+j/u
′
t, where u is utility over consumption).

10 SinceMt,t+j is a ratio of marginal

utilities, we immediately have that Mt,t+2 = Mt,t+1Mt+1,t+2, etc. Since any deviations of

investors’subjective probability measure from the truth can also be incorporated intoMt,t+j,

we refer to it more generally as subjective marginal utility, or SMU.

Definition 1 We say that a return Rt,t+j is priced by subjective marginal utility, denoted

Mt,t+j , over t→ t+ j if

1 = Et [Mt,t+jRt,t+j] (1)

10If agents have biased probability measures, then the bias will also be part of Mt,t+j . We would in that
case just require that there are internally consistent in that Mt,t+2 = Mt,t+1Mt+1,t+2.
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where Et is the expectation operator under the physical probability measure conditional on

information available on date t.

Note that this definition may potentially only hold for certain t and j —i.e. only on some

dates or over just some horizons. The definition does not imply that markets are complete,

meaning that marginal utility need not be identical across agents. Rather, all agents must

just agree on equation (1) for whichever assets are (universally) priced by marginal utility. In

addition, it does not require rational expectations —irrational beliefs can be accommodated

by Mt,t+j as long as they satisfy basic axioms for probability measures.

For simplicity, the theoretical analysis takes the risk-free rate to be zero (equivalently, all

returns can be interpreted as on forward contracts). That implies that EtMt,t+j = 1 for all

t and j. The analysis is straightforward to recapitulate in the case where the risk-free rate

is nonzero, and the empirical analysis accounts for nonzero interest rates.

The paper’s goal is to understand how marginal utility varies with the state of the equity

market. To that end, define, for an arbitrary variable Xt,t+j, the nonlinear projection on the

market return,

X̄t,t+j ≡ E
[
Xt,t+j | Rm

t,t+j

]
, (2)

and X̂t,t+j = Xt,t+j − X̄t,t+j (3)

X̄t,t+j is the component of Xt,t+j that can be written as a function of the market return

and X̂t,t+j is the residual. We say X̄t,t+j is the (nonlinearly) spanned part and X̂t,t+j the

unspanned part.11

For Mt,t+j the decomposition is into a part related to the total market return and a

residual. M̂t,t+j does not affect the pricing of the market portfolio, and is not correlated

with any function of the market return, so it also cannot affect the pricing of traded options,

as shown in the next section. It can, though, affect the pricing of synthetic options and other

securities.

M̄t,t+j is the paper’s primary object of interest —how marginal utility varies with the

market return (again, not causally, just in a conditional expectation sense). It is what the

past literature on option-implied pricing kernels has focused on, since, as the next section

shows, it is what options carry information about.

11Throughout the paper, the term “span”is used in the Hilbert space sense of a conditional expectation.
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2.2 Interpreting traded option returns

Define the gross return on some arbitrary option on the market (or even a portfolio of

options) to be RO
t,t+j. The part of that return (linearly) correlated with the market can

always be subtracted, and we have

RO⊥
t,t+j ≡ RO

t,t+j −
covt

(
RO
t,t+j, R

m
t,t+j

)
vart

(
RO
t,t+j, R

m
t,t+j

) (Rm
t,t+j − 1

)
(4)

αOt,t+j = Et
[
RO⊥
t,t+j − 1

]
(5)

where αOt,t+j is the CAPM alpha of RO
t,t+j. It will become clear in a moment why we create

the objects. First, though, note that RO⊥
t,t+j is not a delta-hedged (i.e. a dynamically hedged)

return; rather, one might say it is beta-hedged, where the hedge is a fixed position in the

underlying. The hedge is conditional on date-t information. Since it just adds a static posi-

tion in the market, RO⊥
t,t+j has the usual kinked relationship with R

m
t,t+j, just tilted compared

to RO
t,t+j. Figure 1 gives example for an out-of-the-money and at-the-money put option.

Figure 1: Hypothetical option payoffs
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Note: Hypothetical net payoffs ROt,t+j and R
O⊥
t,t+j for two different strikes.

Proposition 2 If RO
t,t+j and R

m
t,t+j are priced over t→ t+ j, then M̄t,t+j has the represen-

tation,

M̄t,t+j = const.−
Et
[
Rm
t,t+j − 1

]
vart

[
Rm
t,t+j

] Rm
t,t+j −

αOt,t+j

vart
(
RO⊥
t,t+j

)RO⊥
t,t+j + resid. (6)

where the residual term is orthogonal to Rm
t,t+j and R

O⊥
t,t+j.
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Proposition 2 is important because it shows that the alpha of an option measures nonlin-

earity in marginal utility relative to the market return. Specifically, equation (6) is a regres-

sion of M̄t,t+j on two functions of the market return: a linear term (Rm
t,t+1) and a nonlinear

term (RO⊥
t,t+j, which is, conditionally, an exact nonlinear function of the market return). The

result comes from the fact that the covariances in the numerators of the regression coeffi cients

can be replaced here by the two risk premia —e.g. Et
[
Rm
t,t+j − 1

]
= − covt

(
Rm
t,t+j,Mt,t+j

)
.

−Et[Rmt,t+j−1]
vart[Rmt,t+j]

therefore measures the average slope of marginal utility with respect to the

market return. RO⊥
t,t+j is a piecewise linear function of the market return, so its coeffi cient,

−αOt,t+j
vart(RO⊥t,t+j)

, measures how the slope of M̄t,t+j changes across the strike.

Figure 2 illustrates that idea, plotting SMU, normalized to equal 1 for Rm
t,t+j = 1, relative

to the market return. Under the CAPM (the black line), SMU is linear in the market return,

all alphas are zero, there is no convexity, and the slope is recovered simply as
−Et[Rmt,t+j−1]
vart[Rmt,t+j]

.

Figure 2: SMU estimated using exchange-traded and synthetic puts
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Note: The figure shows estimated SMU under different models and estimated in different samples. The
solid black line reports the estimated SMU as a function of the market alone (as in the CAPM). The
other lines model SMU as a function of the market and the orthogonalized returns on traded and synthetic
options in various samples.

The dashed red line plots the SMU implied by the alphas observed for 5% out-of-the-

money listed S&P 500 puts between 1987 and 2022. Historical put returns imply that
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effective risk aversion —as measured by the slope of SMU —is significantly higher when the

market falls. The non-monotonicity here is a typical, if surprising, empirical finding.

2.3 Interpreting synthetic option returns

It is well known that option returns can be approximated through dynamic trading in the

underlying asset —the market return in this case. Do the approximated returns then also

(approximately, perhaps) measure nonlinearity in M̄t,t+j?

By synthetic option return, we simply mean a return that is replicated via dynamic trad-

ing in the underlying. Denote the weight on the underlying each day by δSt (which depends

only on information up to date t, ensuring feasibility, at least if trading is frictionless). In

the Black—Scholes (1973) replication, for example, δSt is exactly the delta of the option being

replicated, which depends on the level of the market index and its volatility.

The return on the synthetic option from t to t+ j is then

RS
t,t+j ≡

t+j−1∑
s=t

δSs
(
Rm
s,s+1 − 1

)
+ 1 (7)

Note that in general RS
t,t+j 6= RO

t,t+j and the replication will not be perfect (it is not hard to

construct examples in which the replication is, in fact, useless). Nevertheless, we have the

following result:

Proposition 3 If Rm
t,t+1 is priced by SMU for all s→ s+ 1 for t ≤ s < t+ j, then

M̄t,t+j = const.−
Et
[
Rm
t,t+j − 1

]
vart

[
Rm
t,t+j

] Rm
t,t+j −

(
αSt,t+j + covt

(
M̂t,t+j, R̂

S
t,t+j

))
vart

(
RS⊥
t,t+j

) R̄S⊥
t,t+j + resid. (8)

where αSt,t+j is the CAPM alpha of RS
t,t+j and the residual is orthogonal to R

m
t,t+j and R̄

S⊥
t,t+j.

12

There is again an expression for SMU in terms of two returns, with coeffi cients depending

on their risk premia. Proposition 3 gives three conditions under which αSt,t+j can be used to

measure convexity in SMU:

1. R̄S
t,t+j is a convex function of the market return

2. Rm
t,t+1 is priced by SMU for all t→ t+ 1

3. covt

(
M̂t,t+j, R̂

S
t,t+j

)
is zero

12Recall that overbars denote components spanned by the market return and hats the unspanned compo-
nents.
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The first condition just says that synthetic options have returns that are convex in the

market, which can be checked empirically. It will be violated if, for example, large declines

in the market are driven by intraday jumps.

The second and third conditions are harder to evaluate because they are statements about

SMU, which is not directly observable. The pricing condition might fail at the daily level if

there are frictions allowing market prices to deviate from their fundamental values at high

frequency (see section 4.4).

The third condition requires that the unspanned part of synthetic option returns not be

priced. Section 4.5 discusses it extensively, both looking at what variables R̂S
t,t+j is correlated

with and also using the method of Cochrane and Saa-Requejo (2000) to bound the covariance.

Condition 3 holds in any model where the stock market return Rm
t,t+j is a suffi cient statistic

for SMU (so that M̂t,t+j = 0).13 If the exact path of the market return matters (e.g. through

realized volatility) or if there are other state variables that affect marginal utility and are

independent of market returns (e.g. perhaps unspanned volatility), they will appear in M̂t,t+j.

Condition 3 also holds when nonlinear payoffs on the market can be replicated via dynamic

trading, e.g. when the market follows a binomial tree or in continuous time (with continuous

hedging) when the market is a single-dimensional diffusion, so that R̂S
t,t+j = 0. In reality

neither of those conditions holds literally, and the question becomes how large the bias from

cov
(
M̂t,t+j, R̂

S
t,t+j

)
is.

Those three conditions are the key point of the theoretical analysis. They show what is

required in order to use synthetic options to measure nonlinearity in marginal utility. More

generally, they show that what is needed is not necessarily a traded or synthetic option, but

just an investment whose payoff is a nonlinear function of the market return (ideally where

additionally covt

(
M̂t,t+j, R̂

S
t,t+j

)
= 0).

It may initially be puzzling that synthetic options could earn an alpha when they are

constructed from positions in the market itself. Section 4.2.3 shows that the alpha comes

from timing —the synthetic option has positions changing every day, while we are looking at

alpha over a longer horizon (monthly, in the data), and consequently measuring nonlinearity

in marginal utility over that horizon.

13As examples, this would hold if marginal utility is a function of current wealth and that wealth returns
are perfectly correlated with stock market returns, or if investors have Epstein—Zin preferences in the limit
where the intertemporal elasticity of substitution is infinite and the stock market is equivalent to a claim on
consumption (potentially levered).
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2.3.1 Feasibility

A surprising feature of the three conditions for interpreting synthetic option returns is that

none of them directly requires that options synthesis be feasible in practice. The requirement

that the market be priced correctly every day, for example, does not say that every investor

can trade every day. In many models, the market is correctly priced even though there is no

trade in equilibrium.

There is no question that for the vast majority of investors over the vast majority of

the empirical sample, replicating options dynamically would have been expensive and time-

consuming. And even for professionals it may not have worked at critical moments, like the

1987 crash. That in fact will be a critical part of the paper’s intermediary-based explanation

of the returns on traded and synthetic options in section 5. The model shows that it is in fact

precisely the diffi culty of replicating options via dynamic trading that leads intermediaries

to demand a premium.

Furthermore, in segmented-markets models, frictions lead there to be different SMU

for different agents, since they do not have access to the same investments. For example,

if the typical equity investor cannot freely trade options, then their SMU may not price

options, violating the requirement of proposition 2. And if hedging options is expensive for

intermediaries, that drives a wedge between traded option prices and the prices implied by

the marginal utility of equity investors —that are reflected in synthetic options.

Finally, just like there are frictions in trading equities, there are also frictions in trading

options, including very large ticks and bid/ask spreads, transaction fees, large amounts of

floor trading, market opacity, and the simple fact that options are more technically sophis-

ticated than simple equity investments.

3 Data and methods

3.1 Option synthesis

Throughout the analysis, t is taken to be a day. The weight δSt is equal to the delta of

the option —the partial derivative of the value with respect to the price of the underlying.

Different models give different exact expressions for delta. The main analysis uses a method

from Hull and White (2017) that corrects the Black—Scholes delta for the leverage effect,

but the unadjusted Black—Scholes delta delivers similar results (see section 4.7). There is

no single “true”or “correct” δSt for our purposes. Again, what is important is just that it

generates a nonlinear payoff with minimal unspanned variation.
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Section 4.4 discusses potential effects of market microstructure biases. There is evidence

that stale prices affect the results in the earlier part of the sample (see also Bates (2012)).

The bias can be reduced or eliminated by choosing the weights δSt based only on information

lagged by a day, and the main results use that method.14 That makes the estimates of mean

returns robust, but it is also conservative in terms of fit —delta hedging is less effective when

using stale information.

The return volatility needed to calculate delta is obtained from a heterogeneous autore-

gressive model (Corsi (2009)) that forecasts 1-month volatility as a function of past two-week

volatility and the past three months of volatility (with the lags chosen based on the Bayesian

information criterion). The model is estimated on an expanding window, so that when the

delta is computed only past information is used. Robustness to the various choices here is

examined in section 4.7.

The market return is measured as the (daily) CRSP value-weighted stock market return

and the risk-free rate is the one-month Treasury bill rate from Kenneth French’s website.

3.2 Traded options

The dataset for traded options splices together CME futures options for the period 1987—1995

with CBOE SPX options from Optionmetrics for 1996—2022. Following Broadie, Chernov,

and Johannes (2009), we study a monthly rolling strategy, where options are purchased on

the third Friday of every month and then held to their maturity on the following month’s

third Friday.

In parts of the analysis that involve direct comparisons of synthetic and traded options,

we align the returns —comparing returns over the same third-Friday-to-third-Friday period.

However, when looking at univariate statistics, the analysis uses 21-day overlapping windows

for the synthetic options to maximize statistical power (since there is no need to only use a

single return per month).

For both the synthetic and traded options, excess returns are scaled with the price of

the underlying in the denominator, rather than the price of the option, as in Büchner and

Kelly (2022). The scaling is the return perceived by an investor who is buying options in

proportion to the underlying. It is a payoff per unit of insurance, rather than per unit of the

insurance premium that is paid. See appendix B for further discussion.

14That is, in all of the benchmark results δSt — the investment in the market on day t + 1 (e.g. held
during the day on Wednesday)—is set based only on information available at the end of day t− 1 (Monday
afternoon).
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4 Empirical results

4.1 The relationship between RS
t,t+j and Rm

t,t+j

The top panel of Figure 3 plots RS
t,t+j for put options against R

m
t,t+j, where j = 21 days and

the strike used to construct δSt is 95% of the initial level of the market (corresponding to

approximately a unit standard deviation decline). The plot for call options with the same

strike is identical but rotated 45 degrees counterclockwise.

There is clearly significant nonlinearity —for values of the market return above the strike

the slope is near zero, while for values below it the slope is approximately -1, consistent with

the fact thatRS
t,t+j is constructed to mimic a put option. The red line plots the nonparametric

estimates of R̄S
t,t+j ≡ E

[
RS
t,t+j | Rm

t,t+j

]
.15 They formally quantify the relevant nonlinearity,

showing that R̄S
t,t+j is close to piecewise linear in the market return.

Importantly, R̄S
t,t+j rises with a consistent slope as R

m
t,t+j falls, regardless of how large

the decline is. If it was not possible to span large declines in the market with time-varying

weights, e.g. due to large jumps, R̄S
t,t+j would flatten out for the very negative values of

Rm
t,t+j. Figure A.1 replicates figure 3 across strikes and shows the results are highly similar.

The table below reports the most extreme 21-day returns in the five most extreme events

in the US stock market in the sample. As a benchmark, the 5% OTM synthetic puts would

ideally generate a return that is 5% lower than the negative of the market return, minus the

initial cost of the position. In all five cases, the synthetic puts have highly positive returns,

providing economically meaningful insurance against these crashes.

Returns on the market and synthetic puts, five most extreme events
Rm
t,t+j R̄S

t,t+j R̄S
t,t+j (no lag in δ

S
t ) Ideal return

Nov. 1929 -41% 31% 32% 35%

Mar. 2020 -33% 25% 25% 28%

Oct. 2008 -31% 22% 22% 24%

Oct. 1987 -30% 17% 23% 24%

Oct. 1931 -29% 22% 22% 24%

Recall that in the benchmark results, δSt depends on data only up to date t−1 in order to

avoid microstructure biases. The third column in the table shows that when δSt uses date-t

information, the hedge becomes noticeably better, particularly in 1987.16 This shows that

15Conditional expectations are calculated via a local linear regression on Rmt,t+j with a Gaussian kernel
and the bandwidth set to 0.01.
16Using date t information means that the investment held during day t + 1 (e.g. Wednesday) is chosen

based on information at the end of date t (Tuesday afternoon; as opposed to the benchmark using info from
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Figure 3: Synthetic put returns as a function of the market

(a) RS vs. Rm

(b) Local standard deviation of redsiduals (R̂St,t+j)

Note: Panel (a) plots returns on synthetic options, RS , against the returns of the market, Rm. The red
line is a kernel estimate of the local mean. Panel (b) plots the local standard deviation of the residuals.
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using lagged information for hedging is conservative for fit.

Even though the synthetic options fit well, the claim is not that the replication was

implementable. The results just show that the hypothetical returns are nonlinear in the

market, so that the first required condition from section 2.3 is satisfied empirically.

To begin to evaluate the third condition from section 2.3, that the residual risk is small,

the bottom panel of figure 3 plots the conditional standard deviation of the residuals R̂S
t,t+j ≡

RS
t,t+j − R̄S

t,t+j.
17 That standard deviation is always less than 3%, and in many cases less

than 1%. In addition, we have the following variance decomposition:

var
(
RS
t,t+j

)︸ ︷︷ ︸
3.1×10−4

= var
(
R̄S
t,t+j

)︸ ︷︷ ︸
2.5×10−4

+ var
(
R̂S
t,t+j

)
︸ ︷︷ ︸

0.6×10−4

(10)

21% of the variation in synthetic option returns in this case are unspanned by the market

return. The amount of residual risk measured here is again a conservative estimate due to

the fact that δSt is constructed using only lagged information. If δ
S
t uses date-t information,

the fraction of the variance of RS
t,t+j from R̂S

t,t+j falls to 15%. The more important question,

though, is whether that variation is priced, which we return to in section 4.5.

Finally, to directly compare synthetic and traded option returns, figure A.2 compares

standard deviations and betas for traded and synthetic options across strikes and finds they

are highly similar. Figure A.7 plots synthetic against traded option returns for different

strikes and reports pairwise correlations, which range between 0.89 and 1.00.

4.2 Risk premia

4.2.1 Varying strikes at the monthly maturity

Figure 4 reports the paper’s key results for long-run average option risk premia. It includes

results for three different periods: the full sample available for synthetic returns (1926—2022),

the full sample available for both synthetic and traded returns (1987—2022), and the 1987—

2005 sample used by Broadie, Chernov, and Johannes (BCJ; 2009), who report an extensive

analysis of the performance of traded options. In all cases, the figure gives results for put

options. For alphas and information ratios, results for puts and calls are guaranteed to be

Monday afternoon).
17The local volatility is estimated from a second kernel regression,

η2t,t+j = h
(
Rmt,t+j

)
+ residual (9)

where for the function h we set the bandwidth to 0.05 due to there being greater variation in the squared
residuals around the fitted value.
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identical for synthetic options at a given strike, and they are highly similar for traded options

(in both cases due to put-call parity).

The left column of Figure 4 plots average returns. In all three panels, returns decline as

the strike rises, which is to be expected as the betas also become more negative for higher

strikes. In the periods of overlap between synthetic and traded options, traded options

always have lower average returns than synthetic.

Figure 4: Average option returns across strikes
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Note: Means, CAPM alphas, and CAPM information ratios across various samples for traded and syn-
thetic put options. Shaded regions represent 95-percent confidence intervals. In the top panel, for the
full post-1926 period, only synthetic options are available. The overlapping sample in the middle row is
1987—2022.

The middle column reports CAPM alphas, which are the paper’s key object of interest

based on the theoretical analysis. The bottom two panels show that the estimated alphas of

traded options are negative across all strikes in both the 1987—2022 and BCJ samples. The

statistical evidence for the alphas being negative is stronger in the earlier BCJ sample, with

the magnitudes falling by half in the longer sample.
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In the same post-1987 period, though, and regardless of whether the post-2005 period

is included, synthetic options have estimated alphas very close to zero, with no evidence of

mispricing relative to the CAPM. The top panel shows that the same result holds in the

full sample and is if anything actually stronger — in that case the alphas are statistically

significantly positive for the middle strikes. The paper’s claim that synthetic options have

been fairly priced historically relative to the CAPM is based on the results reported here for

alphas.

The right-hand column of Figure 4 plots information ratios — the Sharpe ratio of the

part of option returns uncorrelated with the market. Again, they are if anything statistically

significantly positive in the full sample, peaking at values of about +0.2. The traded options,

on the other hand, have information ratios as negative as -0.75 in the BCJ sample, which is

larger than the Sharpe ratio of the overall stock market.

Figure A.3 replicates 4, but varying the maturity instead of the strike price, figure A.4

scales the moneyness in volatility units, and figure A.5 puts the price of the option in the

denominator instead of the level of the underlying. The results are similar to the baseline in

all three cases.

4.2.2 Cumulative alphas and variation in risk premia over time

The top panel of figure 5 plots cumulative CAPM alphas for synthetic 5% OTM options over

the period 1926—2022 and for traded put options over the period 1987—2022 (again, for alpha

the choice of put versus call is irrelevant for synthetic options; and it has only very minor

effects for traded options conditional on strike). For readability, the cumulative returns are

normalized to zero in July 1987 when the data for the traded options begins.

For synthetic options, the figure reinforces the result that over the full sample the alphas

have been slightly positive. Covid jumps out in 2020 as a large positive innovation, due to

the significant decline in the level of the stock market. The fact that the synthetic portfolio

captures that gives clear evidence that it is able to capture economically significant large

declines in the market. The bottom panel of figure 5 plots information ratios over rolling

10-year windows and again shows that the returns on synthetic options have been stable,

with a brief period in the 1930’s when the returns were statistically significantly positive. In

no period were they significantly negative.

Traded put returns have two striking features. On the one hand, the month-to-month

variation appears very similar to that for the synthetic options, consistent with the results

presented so far. On the other hand, the average return is drastically different. The returns

are highly negative, especially in the period up to 2010. The returns were roughly flat from
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Figure 5: Cumulative returns
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Note: The top panel plots cumulative CAPM alphas for traded and synthetic -5% put options. The lines
are constructed to equal zero in July, 1987, when the true put options become available. The bottom panel
plots 10-year rolling CAPM information ratios, with the shaded regions representing 95-percent confidence
intervals.
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then until the large market decline with Covid. In fact, the overall cumulative return on

traded puts is zero between March, 2009 and the end of the sample in December, 2022.

The bottom panel of figure 5 shows how, over ten-year windows, the return on traded puts

actually turned positive at the end of the sample.

Since a synthetic put is essentially a delta hedge, the difference between the returns on

the traded and synthetic put returns is the return on a delta-hedged put, which is a measure

of the variance risk premium (Bakshi and Kapadia (2003)). To see that, figure A.9 in the

appendix plots cumulative alphas for delta-hedged puts and straddles. They have been

approximately zero since 2010. Section 5.1 revisits this point in more detail and reports

formal tests for a structural break.

4.2.3 A conditional CAPM interpretation

Since synthetic options are created by trading the market dynamically, any monthly CAPM

alpha they earn has to come from timing the market risk premium at the daily level —their

daily alpha is identically zero. For both synthetic puts and calls, the investment in the

market, δSt , declines —becoming more negative for a put and less positive for a call —when

the market declines and rises when the market rises. Synthetic options are therefore bets on

momentum. To get a negative alpha (which would be consistent with traded option returns)

would require mean reversion in returns.

Formally, one can derive from results in Lewellen and Nagel (2006) that

αSt,t+j ≈ cov

(
δSt ,
[
Et
[
Rm
t,t+1

]
− E

[
Rm
t,t+1

]]
−
E
[
Rm
t,t+1 − 1

]
var
(
Rm
t,t+1

) [
vart

(
Rm
t,t+1

)
− var

(
Rm
t,t+1

)])
(11)

The first part of the covariance is the usual conditional CAPM intuition, which says that if

δSt covaries positively with the market risk premium, then α
S
t,t+j will be positive. The second

part is a contribution from the comovement of δSt with conditional volatility —the movement

of deltas with volatility is second-order (and its sign is ambiguous), so this term is relatively

small quantitatively. The equation can also be interpreted in the opposite direction: if

synthetic puts earn a negative alpha then (holding volatility fixed) expected returns must

be countercyclical. That is, convexity in SMU implies countercyclical risk premia.18

18How does time-varying volatility affect this analysis? If the CAPM holds period-by-period with constant
risk aversion (in the sense of the pricing kernel being linear in Rmt,t+1), then Et

[
Rmt,t+1 − 1

]
∝ vart

(
Rmt,t+1

)
,

which would imply that the covariance in (11) is identically zero. If risk aversion is countercyclical, as with a
convex pricing kernel, then even if volatility rises when the market falls, Et

[
Rmt,t+1 − 1

]
will rise by enough

to offset that effect, so that the covariance term is negative and αSt,t+j < 0. In other words, if both volatility
and risk aversion are countercyclical, equation (11) implies that αSt,t+j is negative.
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One intuition for these results is the following. If marginal utility is convex, then a drop in

the market moves the representative investor to a steeper part of the SMU function, causing

them to demand higher expected returns. Returns then mean-revert somewhat on average,

inducing a negative alpha for synthetic puts.

4.3 Effects of conditioning on betas

In the theoretical analysis, all alphas and betas are conditional, and hence potentially time-

varying. Since option returns are non-linear functions of the market return, conditional

betas of both true and synthetic options will necessarily change over time as the conditional

distribution of the market return varies. That naturally then affects estimation of alphas.19

Figure A.6 examines possible ways of accounting for time-variation in conditional betas.

The left-hand column of panels plots the baseline results. In the middle column, betas are

estimated from a rolling three-month window. The right-hand panels model conditional beta

as a function of lagged (i.e., end of previous month) variables: the market return volatility

forecast (which is most important), the market return itself, industrial production growth,

and the corporate bond default spread. In both cases, the results are highly similar to the

benchmark qualitatively and quantitatively.

4.4 Effects of daily mispricing

Recall the second condition for using synthetic options to measure curvature in marginal

utility from section 2.3 that the market is priced correctly every day. Obviously no such

condition is literally true, so the question is how pricing errors might bias the results.

Suppose that the “true”market return that satisfies 1 = Et
[
Mt,t+1R

m
t,t+1

]
every day,

Rm
t,t+1, is unobservable and instead we can only see some contaminated return R

m∗
t,t+1, with

Rm∗
t,t+1 = Rm

t,t+1 + εt+1 (12)

where εt+1 is the contamination. Depending on the properties of εt+1, it may be that 1 6=
Et
[
Mt,t+1R

m∗
t,t+1

]
even if Rm

t,t+1 is in fact priced each day.

If we define RS∗
t,t+j to be the return on an option synthesized from the contaminated

19Note that in the theoretical analysis, all conditioning for an option return between dates t and t + j is
taken as of date t. That is, for monthly returns, we must condition on information available at the beginning
of the month, not over the course of the month (if we did the latter, then the alphas of synthetic options
would be identically equal to zero).
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market return, Rm∗
t,t+1, then

E
[
RS∗
t,t+j

]
= E

[
RS
t,t+j

]
+

j−1∑
s=0

E
[
δSt+sεt+s+1

]
(13)

In order for the contamination, εt+1, to not affect measured risk premia, it must have zero

mean and be uncorrelated with past values of the weights δSt . On the other hand, the errors

need not be i.i.d., for example, or necessarily independent of anything else.

Recall that in the analysis above δSt is set based on information about returns only up

to date t− 1. That choice is made to address the potential bias identified in this section. In

particular, if εt is an MA(1) process, so that E [εtεt−k] = 0 ∀ k > 1, then choosing δSt based

on information from date t− 1 is enough to ensure that E
[
δSt εt+1

]
= 0.

As discussed in Bates (2012), observed positive serial correlation in daily market index

returns is evidence of stale prices.20 ,21 When there is a positive return in the underlying, the

hedge weight δSt rises, both for puts and calls. That leads to the result that cov
(
εt+1, δ

S
t

)
> 0

when εt is positively serially correlated, which would lead to a positive bias, E
[
RS
t,t+j

]
>

E
[
RS∗
t,t+j

]
. That is why the main results use lagged information, so that δSt does not depend

on Rm∗
t .

22

To examine this effect in the data, the top panel of figure 6 reports the autocorrelations

of daily returns in the full sample and pre- and post-1973 separately. In the pre-1973 sample,

there is clear evidence of one-day positive serial correlation, consistent with the presence of

stale prices. The two-day autocorrelation, on the other hand, is negative, which is one reason

why the analysis only uses a single-day lag in constructing the weights.

To see the effects of different choices for the information set for δSt , the bottom panel of

figure 6 plots three versions of the cumulative alphas for synthetic options: with the baseline

one-day lag, with no lag, and with a two-day lag. Switching from the baseline to no lag

causes a large increase in alphas, entirely due to the positive autocorrelation, which is why

20For example, suppose on each day 50% of stock prices are updated. If there is good news on date t, that
will be impounded into half of stock prices on date t, 1/4 on t+1, 1/8 on t+2, etc., inducing positive serial
correlation in the “errors”εt relative to the “true”market return that would be observed if all stock prices
were updated every day.
21Another type of error that can arise is bid-ask bounce, which, as discussed in Jegadeesh and Titman

(1995), creates negative serial correlation in returns. In contrast to stale prices, that would bias the estimate
of synthetic option returns downward, implying the true alphas for synthetic options are even more positive
and in even stronger conflict with the alphas on traded options than is suggested by the baseline results.
22One might also ask about the effect of mispricing on estimated betas. First, as an empirical matter,

recall that the data shows that the betas of synthetic and traded options are highly similar, implying that
there is not a severe bias. Second, while stale prices and bid-ask bounce can affect betas at high frequencies,
those effects tend to shrink at lower frequencies, hence the more common focus on, say, monthly data in
studies of equity returns.
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Figure 6: Daily autocorrelation of returns
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Note: Panel (a) plots the autocorrelations of daily returns up to 21 lags, using the full sample (1926-
2022), and using the pre- and post-1973 data separately. Panel (b) plots cumulative CAPM alphas on
the synthetic puts built using one-day lagged weights (the benchmark case), no lag, and two-day lagged
weights.
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it shows up only in the first half of the sample. Going from a one-day to a two-day lag also

increases the alphas (by a lower amount). None of the lag choices leads to negative average

alphas.

4.5 The effect of unspanned variation —R̂S
t,t+j and M̂t,t+j

Recall from section 2.3 that the curvature of marginal utility is determined by αSt +covt

(
M̂t,t+j, R̂

S
t,t+j

)
where the variables with hats are the components unexplained by any nonlinear function of

the market return. So far the analysis has ignored the covariance term. The questions

are whether that covariance is zero and if not, how large it might be. This section exam-

ines what risk factors R̂S
t,t+j might be correlated with and then bounds the magnitude of

covt

(
M̂t,t+j, R̂

S
t,t+j

)
using the method of Cochrane and Saa-Requejo (2000).

4.5.1 Relationship of R̂S
t,t+j with risk factors

Table 1 reports correlations between the unspanned part of synthetic option returns, R̂S
t,t+j,

and statistical innovations in prominent macro and financial variables.23 Since R̂S
t,t+j is

orthogonal to the market return by construction, we also orthogonalize the innovations in

all of the other macro and financial time series with respect to the market return.

Among the macro time series, the correlations are all economically small and statistically

insignificant. The only notable correlations are for financial series: the excess bond premium

(EBP), the VIX, and realized volatility. In months in which shocks to these financial series,

after orthogonalizing with respect to the market return, are unexpectedly high, R̂S
t,t+j tends

to be low.24 If those are bad states of the world, that would make R̂S
t,t+j risky, which

proposition 3 shows would imply more convexity in SMU than implied by αSt,t+j.

The results suggest that options do not look risky to an investor whose marginal utility

depends on either the level of the stock market or to macroeconomic variables. They do

look risky, though, to an investor who cares about the path that the market return takes,

suggesting that intermediaries might be relevant for pricing.

The bottom row of table 1 reports the maximum correlation of R̂S
t,t+j with any linear

23For R̂St,t+j we take the return from the beginning to the end of a month. For the variables that are
measured at a fixed point in time, we take the statistical innovation in the value at the end of the month
relative to the lags of the variable (information available at the beginning of the month). For the other
variables, we take the statistical innovation in the monthly value relative to data available in the previous
month. The different time series are available for different time periods and each correlation is computed
using the longest period available for that variable.
24The correlations of the unspanned option returns with the SMB and HML factors are also very small —

0.02 and -0.05, respectively.
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Table 1: Correlation of residuals with macro variables

All data Excluding 2020
Unemployment -0.08 -0.06
Ind. Pro. Growth 0.06 0.07
Employment growth 0.07 0.06
FFR -0.01 -0.01
Term Spread 0.02 0.02
Default Spread -0.01 -0.01
EBP -0.11 -0.14
VIX -0.21 -0.21
VXO -0.14 -0.12
rv -0.35 -0.38
Maximal corr 0.35 0.41

Note: Table reports the correlations between the residuals of the nonlinear fit of RS onto the market and
various macroeconomic variables: unemployment, industrial production growth, employment growth, the
federal funds rate, the term spread (10 year minus 1 year), the default spread (BAA-AAA spread), the
excess bond premium (EBP) from Gilchrist et al. (2021), the VIX, the VXO, and realized volatility. All
variables are orthogonalized to the market. The last row reports the maximal correlation between any
linear combination of these variables and the residuals. The second column replicates the results excluding
2020.

combination of the innovations. It is less than 0.5, so we take that as an upper end for a

reasonable estimate of the correlation of R̂S
t,t+j with M̂t,t+j, but we also examine results with

the correlation set to 1.

4.5.2 Robust uncertainty bands

If covt

(
M̂t,t+j, R̂

S
t,t+j

)
is not equal to zero, how large of a bias does it create in measuring

curvature in marginal utility? To bound the magnitude of covt

(
M̂t,t+j, R̂

S
t,t+j

)
, following

Cochrane and Saa-Requejo (2000), start from the identity,∣∣∣covt

(
R̂S
t,t+j, M̂t,t+j

)∣∣∣ =
∣∣∣corrt (R̂S

t,t+j, M̂t,t+j

)∣∣∣ stdt (R̂S
t,t+j

)
stdt

(
M̂t,t+j

)
(14)

std
(
R̂S
t,t+j

)
can be estimated based on the empirical time-series of R̂S

t,t+j.
∣∣∣corr (R̂S

t,t+j, M̂t,t+j

)∣∣∣
is not observable, but the results in the previous section imply 0.5 as an estimate, and the

upper bound is 1. Finally, to get std
(
M̂t,t+j

)
we assume that the volatility of the unspanned

part of SMU, M̂t,t+j, is no greater than that from the part of SMU spanned by the market,
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M̄t,t+j. That implies that

std
(
M̂t,t+j

)
≤ E

[
Rm
t,t+j − 1

]
/std

(
Rm
t,t+j

)
(15)

Intuitively, that restriction says that the Sharpe ratio available from any investment inde-

pendent of the market return can be no greater than that of the market itself, similar to

Cochrane and Saa-Requejo (2000) (see also references therein).25

The parameter of interest, which measures convexity in SMU, is

αS,adjustedt,t+j ≡ αSt,t+j + covt

(
M̂t,t+j, R̂

S
t,t+j

)
(16)

It has two sources of uncertainty: estimation uncertainty in αSt,t+j and the unobservable value

of covt

(
M̂t,t+j, R̂

S
t,t+j

)
. Appendix C shows how those two sources of uncertainty can be

combined geometrically, essentially treating cov
(
R̂S
t,t+j, M̂t,t+j

)
as another Gaussian source

of error.

Figure 7 reports an alternative version of figure 4 that now incorporates these robust

uncertainty bands instead of the original confidence bands based only on estimation error.

The left-hand panels assume that corr
(
R̂S
t,t+j, M̂t,t+j

)
based on the results in the previous

section, while the right-hand panels use the most conservative possible value of 1.26

The uncertainty bands in figure 7 are guaranteed to be wider than in the baseline. How-

ever, they can still reject information ratios of -0.5 in all but a few cases with the shortest

sample. In the top-center panel, which is the most powerful case, using the longest sample

and corr
(
R̂S
t,t+j, M̂t,t+j

)
= 0.5, the bound can reject even small negative information ratios.

So even when accounting for unspanned risk, the curvature of SMU implied by synthetic

options remains small.

4.6 Implications for marginal utility

Figure 2 plots, in blue, the shape of SMU implied by the synthetic option returns for a strike

of -5% at maturity of one month for various samples. In all cases, the synthetic options imply

that marginal utility is if anything weakly concave, consistent with the positive measured

alphas and implying risk aversion falls slightly in bad times. While there are no confidence

bands plotted in figure 2, the change in the slope across the strike is measured by the alphas

25The 1 here represents the gross-risk-free rate. Again, in the empirical analysis the actual risk-free rate
is used.
26Equivalently, the right-hand panel can be taken as treating the market Sharpe ratio as 1 instead of 0.5

(and leaving the correlation at 0.5).
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Figure 7: Average option returns with robust uncertainty intervals
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Note: These graphs replicate the main results, but the shaded uncertainty intervals here incor-
porate the bound on the effect from potential pricing of unspanned risk in the synthetic option
returns.
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reported above, and so the confidence bands apply here.

As discussed above, the red lines corresponding to traded options imply significant con-

vexity due to the large negative estimated alphas, so that effective risk aversion rises strongly

as market returns fall.

The analysis in section 2 of how to estimate SMU based on the returns on the market and

a single option is a special case of the minimum-variance SDF of Hansen and Jagannathan

(1991) and naturally extends to using multiple options simultaneously.

Figure 8 plots the minimum-variance SMU for the traded and synthetic options separately

using strikes at 5% moneyness intervals from 90 to 110 percent (for 1926—2022 for synthetic

options and 1987—2022 for traded). The mean-variance optimal portfolio is calculated based

on the full-sample estimates of mean returns and covariances, with both a lasso- and ridge-

type adjustment for robustness.27

As in the benchmark case, estimated SMU is convex for the traded options and concave

for the synthetic options. For the synthetic options, the concavity is fairly consistent, though

it may change signs at large positive strikes. For the traded options, the convexity appears

strongest around market returns of zero. While traded options again imply non-monotone

marginal utility, the synthetic options do not.

4.7 Robustness

The baseline results use deltas from the method of Hull and White (2017). The left column

of figure A.8 shows (for different sample periods) that the results are highly similar simply

using the standard Black—Scholes delta.

Constructing the weights for the synthesis requires a forecast of volatility. The benchmark

analysis uses a recursively estimated HAR model (Corsi (2009). The middle column of figure

A.8 shows that the alphas are very similar to those in the baseline if the volatility used to

calculate the hedge weights is simply set to 0.15 on all dates. That shows that the results

are driven by how δSt depends on the level of the market, rather than its volatility.

The benchmark analysis uses asymptotic standard errors based on the Hansen—Hodrick

method. Since option returns can be highly non-normal, convergence to the asymptotic

distribution might be slow, which can be addressed via bootstrapping. Results with block-

bootstrapped standard errors with block length equal to two months are reported in right

27Mean-variance optimization requires inverting the covariance matrix. We make two modifications to
ensure that the inversion is well behaved. First, we inflate the main diagonal of the covariance matrix
by 10%, which corresponds to a ridge-type adjustment. Second, in constructing the inverse, we drop any
eigenvalue smaller than 0.01 times the largest (in practice this eliminates one eigenvalue). These adjustments
only affect the weights in the tangency portfolio.
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Figure 8: Estimated SMU using all options jointly
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Note: The figure reports the estimated SMU obtained by using options of all strikes jointly. The blue
line uses synthetic puts (sample 1926—2022), and the red line uses traded puts (sample 1987—2022).

column of figure A.8, and they are highly similar to the baseline.

5 Intermediary frictions and the change in option re-

turns over time

The theoretical analysis examined two ways to estimate curvature in marginal utility —

using traded options and using synthetic options —and in the data we find that they give

different answers. There were three theoretical conditions needed for estimating curvature

from synthetic options, and the empirical analysis provided some evidence in their favor.

And even allowing for a conservative bound on the pricing of unspanned risk in synthetic

options (i.e. relaxing condition 3), the implied convexity in SMU is far smaller than what is

measured from traded options.

There is also a required condition for using traded options to measure the curvature

of SMU, though, which is that they are priced by marginal utility. This section considers

a model in which the prices of traded options do not align with the marginal utility of a

representative investor, but rather are driven by intermediary frictions. It shows that it can

rationalize the gap in returns between the synthetic and traded options, including its changes
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over time.

5.1 The decline of option overpricing

Figure 5 above already showed some suggestive evidence that the returns on traded options

may have trended towards zero in recent years. Figure 9 examines that behavior in greater

detail. The left-hand panel of figure 9 plots information ratios over rolling 10-year windows

for traded and synthetic puts along with their difference for the 1987—2022 sample.28 The

synthetic options consistently had zero or positive returns, while the traded options con-

sistently had strongly negative returns until 2009, when they begin to trend up, eventually

turning starkly positive in 2020. In the early periods, the information ratio for the traded

options was very large —about equal to the size of the market risk premium itself.

The difference between the information ratios on traded and synthetic options, plotted

in the middle panel of figure 9, has also nearly converged to zero over the same period.

The confidence bands show that the change in the information ratio appears to be highly

statistically significant, which is tested more formally in section 5.3.4.

Figure 9: Changes in premia over time

Note: The left-hand panel plots 10-year rolling CAPM information ratios for traded and synthetic 5The
middle panel plots the difference between those two series for each 10-year window along with a 95-percent
confidence band. The right-hand panel plots information ratios for three other related measures of the
difference between traded and synthetic options.

The difference in the information ratios between traded and synthetic options is very

closely related to the return on delta-hedged options, which have been studied widely in the

28The main results use the overlapping 21-day returns for synthetic option. In this section, all results
use synthetic option returns that match exactly the roll dates of the traded options, in order to ensure
comparability. This has only minor effects, and in any case they run against the main conclusions of this
section.
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past literature and used as a proxy for the variance risk premium (e.g. Bakshi and Kapadia

(2003)). To examine that idea more directly, the right-hand panel of figure 9 plots the rolling

10-year information ratios for delta-hedged 5%OTMput options and at-the-money straddles.

Both have risen over time, converging to zero in 2020 (with the convergence for the ATM

straddles coming even before Covid). As an even simpler test, the green line in the same plot

proxies for the payoff of a variance swap simply as the gap between realized variance and

the squared VIX (Carr and Wu (2009)). The information ratio of RV-minus-VIX behaves

highly similarly to the other series, also converging to zero over the sample.29

The results here do not mean that the variance risk premium is zero by the end of the

sample. There is still a premium for variance risk, but the results imply that the premium

is no larger than what would be expected from the CAPM beta. Variance rises when the

market falls, so it has a negative beta and carries a negative premium. In the past, the

premium from trading variance via delta-hedged options was even larger than is implied

by the CAPM beta, but by the end of the sample that is no longer true. These results

are consistent with those in Heston, Jacobs, and Kim (2022), who also find that there is

a negative variance risk premium, but that it cannot be distinguished from simple market

(beta) risk.

5.2 Model

This section studies a simple extension of the model of Garleanu, Pedersen, and Poteshman

(GPP; 2009) to help clarify how various frictions can affect option prices when markets are

segmented. The only addition to their framework is to allow for transaction costs and index-

futures basis risk. The main text describes just the key parts of the setup and predictions

of the model. The details are in appendix D.

5.2.1 Setup

In GPP’s model, the price of the underlying —which we take here to be the market index —

is determined exogenously (presumably by a much larger mass of traders, for example retail

investors optimizing between index funds and cash), as is the demand or supply for a set

of derivative claims, such as options. GPP show empirically that in general retail investors

appear to be long index options, so that dealers must be net short.30

29Specifically, define a (pseudo-) return RRVt =
(
RVt − V IX2

t−1
)
/V IX2

t−1, where RVt is (annualized)
realized variance in month t and V IXt−1 is the level of the VIX at the end of month t− 1. The information
ratio is then the CAPM alpha of RRVt divided by the residual standard deviation.
30A simple model for the source of asymmetry in retail demand is that it is easier in practice to buy than

sell options —buying options does not require posting margin, it has limited downside risk, and it can be
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The dealers are assumed to have time-additive CARA preferences over consumption with

risk aversion γ. The key equation in the model is the dynamic budget constraint,

Wt+1 = (Wt − Ct)Rf +DtR
O
t+1 + FtR

F
t+1 −

κ

2
F 2t (17)

Wt is wealth and Ct consumption. The risk-free rate, Rf is constant for simplicity, RF
t+1 is

the gross return on index futures, and RO
t+1 is the return on the derivatives. The dealers

endogenously choose consumption and the allocations to derivatives and futures Dt and Ft,

respectively.

We add two frictions: a quadratic trading cost, κ
2
F 2t , and a wedge between the futures

return, RF
t+1, and the underlying index return, R

I
t+1,

RF
t+1 = RI

t+1 + zt+1 (18)

zt+1 represents basis risk. Ideally the dealers would like to hedge the options they trade with

the underlying, like the S&P 500. But the S&P 500 is not itself directly tradable (except at

significant cost by buying 500 stocks). Instead, dealers must buy futures (or ETFs or other

instruments) whose price is not guaranteed to perfectly track the index. zt+1 captures the

risk associated with imperfect tracking.31

While the dealers chooseDt, markets must clear, meaning that in equilibrium their choice

of Dt must perfectly offset the (exogenous) demand from retail investors. The core idea in

GPP is to understand how derivative prices, denoted by Pt, vary with quantities, Dt.

5.2.2 Predictions

In the model, intermediaries hedge their options each period with a position in the underlying

—it can be thought of as a delta hedge that is adjusted each period. The optimal position, in

the absence of any frictions, is denoted by βIt (which is simply the local sensitivity of option

returns to the underlying index). The unhedgeable risk is defined as

σ2ε,t ≡ vardt
(
RO
t+1 − βItRI

t+1

)
(19)

done in both regular and tax-protected accounts. So if retail investors are roughly split between those who
would to buy and sell, the net demand can still be positive due to asymmetry in frictions. And as those
frictions decline, so should the asymmetry.
31The S&P 500 index is the underlying for CBOE options, but not CME futures options. For the futures

options, an interpretation of basis risk would be that intermediaries price options based on a model for the
underlying, meaning that deviations of the futures price from the index create risk.
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where vardt is a variance taken under the intermediaries’pricing measure d based on date-t

information.

The model’s key prediction is for the sensitivity of option prices, PO
t , to demand:

Proposition 4 Up to first order in the transaction cost κ and the index-futures basis risk
vardt (zt+1),

∂PO
t

∂Dt

= −γ (Rf − 1)

 σ2ε,t︸︷︷︸
Unhedgeable risk

+
(
βIt
)2

vardt (zt+1)︸ ︷︷ ︸
Basis risk

+ κR2f
(
βIt
)2︸ ︷︷ ︸

Imperfect hedging

(20)

The sensitivity is proportional to risk aversion, γ, and has three terms.

The first component, σ2ε,t, is the unhedgeable risk from (19). Dealers hedge by taking

positions exposed to the underlying, but since options have nonlinear exposure, that hedge is

inevitably imperfect, due to discrete hedging, jumps, and unspanned volatility. The synthetic

options studied in our empirical analysis exactly map into the hedge that the dealers use

here — they are updated discretely and inherit risk from deviations between the discrete

replication and the traded option return.

The second term represents basis risk. When there are larger random gaps between the

hedging instrument and the true underlying index, dealers face greater risk and thus demand

larger premia. Finally, the third term arises due to the quadratic trading cost, κ, which causes

dealers to hedge incompletely, further raising their risk from holding derivatives.

In the context of the general theoretical analysis in section 2, this is a model in which

traded options are not priced by the marginal utility of retail equity investors, but instead by

that of dealers. And the exogenous option demand, since it must be borne only by dealers,

drives option prices up, creating negative CAPM alphas.

5.3 Empirics

The results in section 5.1 show that the premium for traded options has shrunk toward zero

over time. Proposition 4 predicts that the options premium declines if any of the three

factors in equation (20) have shrunk (without offsetting rises in the others). This section

examines those factors and how they have changed over time.

5.3.1 Trading frictions

The top-left panel of figure 10 plots measures of bid-ask spreads for equities as a measure of

trading costs. The gray line is the average spread for the Dow 30 (from Jones (2002)), blue
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is for the DIA Dow 30 ETF, and red is for the SPY S&P 500 ETF. Spreads were around

100 basis points until the late 1990’s, falling with both the rise in electronic trading and

decimalization.

The top-right panel of figure 10 plots effective spreads based on the Roll (1984) estimator

for S&P 500 futures. Effective spreads also have consistently fallen over time. While the

decline looks close to linear, note that the y-axis is on a log10 scale, so that in absolute terms

the declines were much larger in the early part of the sample. Overall, effective spreads fell

by about a factor of 100 over the 1982—2022 period.

5.3.2 Basis risk

We measure basis risk empirically from the gap between the level of the S&P 500 index and

the futures price. The middle-left panel of figure 10 plots the three-month rolling standard

deviation of that gap. The y-axis is again on a log10 scale. Over time, basis risk has fallen

by about an order of magnitude. While there is a large decline early in the sample, similar

to trading frictions, basis risk seems to settle at its current level around the early 2000’s.

Also similar to trading frictions, basis risk is significantly higher during market crashes

—that is clearly apparent for 1987, 2008, and 2020. However, note that in the latter two

episodes basis risk was far, far smaller. During the 1987 crash, SP futures were underpriced

by as much as 20% for a period of three days. During the 2008 crash, on the other hand,

the mispricing was never larger than 5%. In the 2008 and 2020 crashes, the volatility of the

basis is lower by an order of magnitude than in 1987. To the extent that it is basis risk in

crashes that dealers are worried about —futures prices separating from the underlying index

at exactly the moment when the hedge is most important —that is something that can really

only be learned about in a crash. In other words, 2008 represented a stress test that the

futures market appears to have passed in this sense, after which the model predicts a smaller

options premium.

5.3.3 Unhedgeable risk

Figure 10 plots three measures of unhedgeable risk. The first is the standard deviation of

the daily delta-hedged options return, which measures the gap between the return on the

option and the daily rebalanced hedge (equation (19)) and maps directly into the model. It

shows no clear trend. While the 10-year rolling standard deviation is high when the 1987

crash is included, outside that event it has been flat, with no downward trend matching the

change in traded option returns.

The second measure of unhedgeable risk is based on the idea that jumps are a potential
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Figure 10: Various measures of hedging risk figure_frictions.jpg

Note: The to-left panel plots bid-ask spreads: for the Dow-30 from Jones (2002) and the DIA and SPY
ETFs from CRSP. The top-right panel plots effective spreads based on the Roll estimator for S&P 500
futures. The middle-left panel plots the three-month rolling average of the (log10) standard deviation of
the gap between the S&P 500 futures price and the level of the index based on 15-minute averages for
each. The middle-right panel plots the 10-year rolling standard deviation of the gap between synthetic and
traded option returns (which is simply the volatility of the delta-hedged return). The bottom-left panel
plots jump variation for the S&P 500 measured as total quadratic variation minus bipower variation from
15-minute returns. The bottom-right panel plots realized skewness of S&P 500 returns from Dew-Becker
(2022). 35



major driver. It is the measure of jumps as the gap between quadratic and bipower variation

in the S&P 500 return (see Bollerslev et al. (2009)). Relative jump variation rose during the

2008 financial crisis, and has been lower subsequently, but again does not have a clear trend.

The period when traded option returns were most negative does not match the period when

jump variation was highest.

Finally, unhedgeable risk is, more broadly, driven by higher moments in returns, so

the bottom-right panel of figure 10 plots the measure of S&P 500 return skewness from

Neuberger (2012). Realized skewness has, over time, trended consistently more negative

(implied skewness does the same; see the CBOE’s SKEW index and Dew-Becker (2022)).

Overall, figure 10 shows that unhedgeable risk does not appear to have clearly fallen

along with options alphas.

5.3.4 Tests for changes in the premia

The evidence shows that two major sources of risk to dealers —trading costs and basis risk

—have declined over time, which the model predicts should reduce the premia on traded

options. This section first examines simple time-series tests for a break in options premia

and then tries connecting those premia more directly to the risks from the previous section.

We examine two tests of whether the gap between traded and synthetic option returns

has shrunk over time, one reduced-form and the other based on the GPP model. For the

reduced-form test, we test for a structural break in the difference in the information ratios

for traded and synthetic options at various dates. This is a standard econometric way to

look for a structural shift, but it is not terribly well supported economically —one would not

really expect a discrete shift in the gap between the returns to happen on a single date, to

the test is probably not well specified, impairing its power.

We look at two specific dates, 12/2003 and 12/2008, based on the decline in bid/ask

spreads in the former case and the index-futures basis in the latter (both discussed further

below). The date in the bottom row, 1/2013, is chosen as the optimal date from a Wald test

perspective. The p-values in that case are calculated using the optimal exponential Wald

statistic of Andrews and Ploberger (1994), which corrects for multiple testing.

Difference in information ratios

Breakpoint Before break After p-value

12/2003 -0.62 -0.42 0.37

12/2008 -0.67 -0.26 0.03

12/2012 -0.67 -0.12 0.01
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The changes in the information ratios are economically significant in all cases and statis-

tically significant for the two later dates. The magnitude of the difference is also larger for

the later break dates, implying that any shift happened closer to, say, 2010, than the early

2000’s.

Our second test is more tightly linked to the model studied in this section. We regress

the gap between traded and synthetic option returns on basis risk.32 Periods in which basis

risk is high are associated with lower future average returns of traded options compared

to synthetic options (i.e., a more negative gap), with a coeffi cient of -0.035 statistically

significant at the 0.01 level).

Overall, then, this section shows that returns on exchange-listed options have converged

to those on synthetic options in a way that is economically meaningful and statistically

significant. Over time the positive excess return from shorting traded options has shrunk

until by the end of the sample there is no significant difference between the true and synthetic

options, and their alphas are both approximately equal to zero. The results are consistent

with the idea that in the earlier part of the sample, up to the mid-2000’s, perhaps, traded

options were segmented from the overall equity market and hence priced differently. As

that segmentation has shrunk, due to declines in the costs and risks of hedging for dealers,

the results from the two methods have converged and now both agree on the proposition

that there is no particular premium for derivatives that pay convex functions of the market

return.

All of that said , these are certainly not the only factors driving options premia, they are

just ones that are relatively easy to measure. Many other factors may have also contributed

to the decline. For example, Jurek and Stafford (2015) show that hedge fund returns are

highly similar to those from writing S&P 500 puts. As the hedge fund sector has grown over

the past three decades, it may have contributed to the supply of options, increasing risk-

bearing capacity in the context of the GPP model and reducing premia. Increased liquidity

in options markets, development of other derivatives markets (e.g. VIX futures and the

related ETFs), and changes in risk management practices may have also played important

roles.
32We estimate this regression model via maximum likelihood, accounting for the fat-tailed nature of the

hedging errors by modeling them with a student-t distribution with degrees of freedom chosen to match the
empirical kurtosis of the hedging residuals. We measure basis risk as the log of the exponentially-weighted
moving average of the squared daily basis realizations, with smoothing parameter estimated to minimize the
in-sample sum-of-squared forecast errors, lagged by one month.
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6 Conclusion

The fact that options can reveal state prices is a foundational result in asset pricing, and it is

well known that in the data equity index option prices imply that state prices are especially

high (relative to the associated physical probabilities) for states in which the market has

significant declines. This paper takes a novel approach to measuring the characteristics

of state prices, showing that they can be recovered from the dynamics of stock market

returns. The results of that method contrast starkly with those from options, with index

returns implying that there is nothing particularly special about the left tail of the return

distribution.

Standard models of intermediary constraints and market segmentation imply that as

liquidity increases in the options market and it becomes better integrated and accessible, the

returns in the options and equity markets should converge. We provide evidence that the

convergence seems to be going in the direction of equities —the tail and variance risk premia

in options have been shrinking and approaching the values recovered from equity returns.

There are two additional implications of the results that we would like to highlight.

First, they show that it is important to take nonstationarity in options returns into account

in empirical analyses. The results that one obtains for options premia are very sensitive to

the sample used, and research using the full sample currently available through 2022 will get

answers that are both economically and statistically significantly different from earlier work

using data only through the 1990’s.

Second, if synthetic options premia are the superior measure of the preferences of the

typical investor —with derivatives markets being segmented —that suggests in the future

calibrating and estimating structural models not based on the returns on traded options,

but on those for synthetic options. The synthetic options have the added benefits of being

available over the same period that equity returns are available and being able to be con-

structed not only for the total stock market, but also for bonds, anomaly portfolios, or any

other asset class.
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A Proofs from section 2

A.1 Proposition 2

Consider a regression of Mt,t+j on Rm
t,t+j and R

O⊥
t,t+j. Since R

m
t,t+j and R

O⊥
t,t+j are, by construc-

tion, conditionally uncorrelated with each other, we have

Mt,t+j = const.+
covt

(
Rm
t,t+j,Mt,t+j

)
vart

[
Rm
t,t+j

] Rm
t,t+j +

covt
(
RO⊥
t,t+j,Mt,t+j

)
vart

(
RO⊥
t,t+j

) RO⊥
t,t+j + resid. (21)

Additionally, Rm
t,t+j is conditionally uncorrelated with M̂t,t+j by construction, so that

cov
(
Rm
t,t+j,Mt,t+j

)
= cov

(
Rm
t,t+j, M̄t,t+j

)
(22)

The same fact works for RO⊥
t,t+j since, conditional on date-t information, R

O⊥
t,t+j is a (nonlinear)

function of Rm
t,t+j. We then can replace Mt,t+j on the left-hand side above with M̄t,t+j.

Under the assumption that Rm
t,t+j and R

O⊥
t,t+j are priced,

cov
(
Rm
t,t+j,Mt,t+j

)
= −Et

[
Rm
t,t+j − 1

]
(23)

cov
(
RO⊥
t,t+j,Mt,t+j

)
= −Et

[
RO⊥
t,t+j − 1

]
(24)

But since RO⊥
t,t+j is uncorrelated with R

m
t,t+j, its (conditional) CAPM beta is zero by construc-

tion, and hence

Et
[
RO⊥
t,t+j − 1

]
= αOt,t+j (25)

The result then follows.

A.2 Proposition 3

The proof follows similar lines to that for proposition 2. The only required adjustment is to

note that

covt
(
RS
t,t+j,Mt,t+j

)
= −Et

[
RS
t,t+j − 1

]
= −αSt,t+j (26)

and

covt
(
RS
t,t+j, M̄t,t+j

)
= covt

(
RS
t,t+j,Mt,t+j

)
− covt

(
M̂t,t+j, R̂

S
t,t+j

)
(27)

= −
(
αSt,t+j + covt

(
M̂t,t+j, R̂

S
t,t+j

))
(28)
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B Synthetic puts and replicating portfolio

B.1 Standard delta-hedging

Consider an option with price Pt, and the underlying with price St. The payoff from holding

the option from time 1 to T is:

Πoption
1,T = PT − P1 =

T−1∑
t=1

(Pt+1 − Pt)

The Black-Scholes-Merton replication portfolio is a dynamic strategy that buys a time-

varying number of shares of the underlying, ∆t, and invests a time-varying amount Bt in the

risk free rate. These numbers are chosen so that, in the original setup of Black and Scholes,

they guarantee an exact replication of the option value as it evolves over time: equivalently,

they guarantee that at maturity the payoff of the option and the replicating portfolio are

equal, while cash flows are zero in every period except the first and the last.

To achieve this, ∆t is chosen as the Black-Scholes delta, and Bt is chosen as the difference

between the BS option value Pt and the cost of buying the underlying ∆tSt:

Bt = Pt −∆tSt

This portfolio costs Bt + ∆tSt to buy at time t, and has a value of Bt(1 + rt
365

) + ∆tSt+1

at time t + 1, where rt is the annualized interest rate at time t. At time t + 1, the strategy

requires buying the new portfolio Bt+1 + ∆t+1St+1, and so on. In every period between the

first and the last one, this strategy generates an intermediate cash flow of:

ICFt+1 = (Bt(1 +
rt

365
) + ∆tSt+1)− (Bt+1 + ∆t+1St+1)

and at the last period T , it generates a final cash flow of BT−1(1 + rT−1

365
) + ∆T−1ST which is

equal to the option payoff. In the BS model, the portfolio is self-financing, so ICFt+1 = 0.

Therefore, the total P&L that this replication portfolio generates is:

Πhedge
1,T =

T−2∑
t=1

[
(Bt(1 +

rt
365

) + ∆tSt+1)− (Bt+1 + ∆t+1St+1)
]

︸ ︷︷ ︸
=0under BS

+
[
B0T−1(1 +

rT−1
365

) + ∆T−1ST
]

︸ ︷︷ ︸
final cash flow

− [B1 + ∆1S1]︸ ︷︷ ︸
initial cost

(29)
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This can be also rewritten in the following way:

Πhedge
1,T =

T−1∑
t=1

[
(Bt(1 +

rt
365

) + ∆tSt+1)− (Bt + ∆tSt)
]

=
T−1∑
t=1

∆t(St+1−St)+
T−1∑
t=1

Bt
rt

365
(30)

which corresponds to the formula of Bakshi and Kapadia (2003) and Buchner and Kelly

(2022) when setting Bt = Pt −∆tSt. When the assumptions of Black-Scholes do not hold,

the rebalancing of the portfolio generates intermediate cash flows (i.e., CFt is not zero),

which is accounted for by the formula above.

Finally, we examine excess returns of the delta-hedged portfolio. Both Πoption
1,T and Πhedge

1,T

are dollar payoffs that correspond to initial investments of P1 and B1 + ∆1S1, respectively.

If the objective is to compute delta-hedged returns, then one can compute:

Πoption
1,T − Πhedge

1,T =
T−1∑
t=1

(Pt+1 − Pt)−
T−1∑
t=1

∆t(St+1 − St)−
T−1∑
t=1

Bt
rt

365
(31)

and this is an excess return: the cost of buying the option is P1, the income from shorting

the hedge portfolio is B1 + ∆1S1 = (P1 − ∆1S1) + ∆1S1 = P1. This is because the hedge

portfolio is designed to borrow exactly an amount B1 that fully matches the price of the

option P1 (which, in this case, is observed). The hedge strategy updates Bt over time by

always setting Bt = Pt−∆tSt, using the observed price of the option Pt at each point in time.

Therefore, the delta-hedging strategy described above (eq. 31) is an excess return whether

Pt conforms or not to the BS prices. The only difference is, if the BS model is correct, then

the ICFt and the last period cash flow will all be zero.

B.2 Synthetic options: P&L of zero-cost strategy

Next, we consider the case in which we do not observe the option price Pt. In that case,

we cannot use it as an input for computing Bt and ∆t. We also cannot obviously compute

Πoption
1,T . However, we note that equation (29) still describes the total P&L of any dynamic

trading strategy that at each point in time buys ∆t units of the underlying and invests Bt in

the risk free rate, whether or not those are chosen as per the BS model. Therefore, we can

still compute Πhedge
1,T for a choice of Pt and ∆t

33 (and hence Bt). In particular, we determine

the Black-Scholes price of an option, Pt, using as input the current underlying St and an

estimated value for σ2t , and then build the hedging portfolio for that idealized option. The

33∆t corresponds to δ
S
t,t+j in the main text. To evaluate ∆t, we follow Hull and White (2017); specifically,

we use equation (5) of the referenced paper and select a = −0.25, b = −0.4, c = −0.5.
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fact that that option is not directly tradable is irrelevant, in the sense that the P&L we build

as described above is an actual return of a portfolio that is just a dynamic portfolio of the

market.

While the delta-hedged P&L, Πoption
1,T −Πhedge

1,T , is, as described above, the P&L of a zero-

cost portfolio, Πhedge
1,T is not. So we next describe the P&L of hedge portfolios that yield

Πoption
1,T and Πhedge

1,T separately but are funded at the risk-free rate at inception. For the option

(i.e. when we do observe Pt), we have:

Πoption,exc
1,T = PT − P1(1 +

r1
365

)T

Funding the hedge portfolio requires borrowingB1+∆1S1 = Pt, where Pt is the theoretical

BS price of an option. So the total P&L can be written as:

Πhedge,exc
1,T =

T−2∑
t=1

[
(Bt(1 +

rt

365
) + ∆tSt+1)− (Bt+1 + ∆t+1St+1)

]
︸ ︷︷ ︸

=0under BS

+
[
BT−1(1 +

rT−1
365

) + ∆T−1ST

]
− [B1 + ∆1S1] (1 +

r1
365

)T

Note that in these formulas the intermediate cash flows are assumed not to be reinvested.

One can also reinvest them to obtain:

Πhedge,exc
1,T =

T−2∑
t=1

(1 + rt+1)
T−t−1

[
(Bt(1 +

rt
365

) + ∆tSt+1)− (Bt+1 + ∆t+1St+1)
]

+
[
BT−1(1 +

rT−1
365

) + ∆T−1ST

]
− [B1 + ∆1S1] (1 +

r1
365

)T

An alternative procedure is to get the same exposure ∆t every period, but entirely fund it

at the risk-free rate every period. The P&L of this zero-cost portfolio is:

Π̃hedge,exc
1,T =

T−1∑
t=1

∆t(St+1 − St(1 +
rt

365
)) =

T−1∑
t=1

∆t(St+1 − St)−
T−1∑
t=1

∆tSt
rt

365

Note that this relates closely to Πhedge,exc
1,T , since

Πhedge,exc
1,T =

T−1∑
t=1

∆t(St+1 − St) +
T−1∑
t=1

(Pt −∆tSt)
rt

365
− P1[(1 +

r1
365

)T − 1]

where the latter term is the total interest paid on the original loan of P1. So we can write:

Πhedge,exc
1,T − Π̃hedge,exc

1,T =

T−1∑
t=1

Pt
rt

365
− P1[(1 +

r1
365

)T − 1]
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The difference is effectively only coming from the different timing of the borrowing (every

period vs. at the beginning of the month), and is unlikely to make any substantial difference

empirically.

In fact, we can also consider funding the original hedging strategy, Πhedge
1,T day by day

instead of once at the very beginning. Modifying eq. (30):

Π̂hedge
1,T =

T−1∑
t=1

[
(Bt(1 +

rt
365

) + ∆tSt+1)− (Bt + ∆tSt)(1 +
rt

365
)
]

=

T−1∑
t=1

∆t(St+1−St(1+
rt

365
))

So that:

Π̂hedge,exc
1,T = Π̃hedge,exc

1,T ' Πhedge,exc
1,T

B.3 P&L and returns

The P&Ls described above (Π̃hedge,exc
1,T and Πhedge,exc

1,T ) correspond to strategies that have zero

cost. Therefore, they also represent excess returns. Scaling that excess return by any time-1

quantity is also an excess return. Just like Buchner and Kelly (2022), we scale P&Ls by the

underlying at time 1:

Rhedge,exc
1,T =

Πhedge,exc
1,T

S1

and

R̃hedge,exc
1,T =

Π̃hedge,exc
1,T

S1

Finally, we consider another related zero-cost trading strategy. Instead of scaling by S1,

we scale the position of the strategy that funds every day (Π̃hedge
1,T ) by St every day:

R̃hedge,scaled
1,T =

T−1∑
t=1

∆t

St+1 − St(1 + rt
365

)

St

Defining RM
t+1 = St+1−St

St
we obtain:

St+1 − St(1 + rt
365

)

St
=
St+1 − St

St
− (1 +

rt
365

) = RM
t+1 −R

f
t+1

and therefore

R̃hedge,scaled
1,T =

T−1∑
t=1

∆t(R
M
t+1 −R

f
t+1)

A final point concerns dividends. While dividends make a small difference over short time
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horizons, we can incorporate them easily in our analysis since we are not trying to hedge a

traded option. In other words, we consider a synthetic option that aims to hedge a value St
that tracks the value of an investment in the underlying that reinvests all the dividends. In

that case, RM is the one-day gross return (including dividends) of the market.

B.4 Comparison of the different approaches

In this section, we compare our baseline excess returns (Rhedge,exc
1,T , with reinvested interme-

diate cash flow) to the one obtained by funding the position each day, R̃hedge,scaled
1,T . The

table below reports, for different combinations of maturity M and strike K, the correlation

between Rhedge,exc
1,T and R̃hedge,scaled

1,T and the information ratio of each of them.

C Robust confidence bands for alpha

To combine statistical uncertainty with uncertainty from covt

(
R̂S
t,t+j, M̂t,t+j

)
, we treat them

as two independent sources of error. Specifically, suppose one starts with a diffuse prior for

αS,adjustedt,t+j ≡ αSt,t+j + covt

(
M̂t,t+j, R̂

S
t,t+j

)
(32)

Denote by αS,estimatedt,t+j the empirical estimate. Asymptotically, αS,estimatedt,t+j ∼ N
(
αSt,t+j, SE

2
)
,

where SE is the standard error for the estimate. We also treat the second term as though

it is drawn from the distribution,

covt

(
M̂t,t+j, R̂

S
t,t+j

)
∼ N

0,

(
1

2
× 0.5× stdt

(
R̂S
t,t+j

) E [Rm
t,t+j − 1

]
std
(
Rm
t,t+j

) )2
 (33)

Recall from the main text that we take 0.5 × stdt

(
R̂S
t,t+j

)
E[Rmt,t+j−1]
std(Rmt,t+j)

as an upper bound

for covt

(
M̂t,t+j, R̂

S
t,t+j

)
. To incorporate that with the estimation uncertainty, we treat

covt

(
M̂t,t+j, R̂

S
t,t+j

)
as though it has a standard deviation of 0.5 × stdt

(
R̂S
t,t+j

)
E[Rmt,t+j−1]
std(Rmt,t+j)

,

so that the upper bound is two standard deviations from the prior mean —i.e. at the edge

of a ±2 standard deviation interval.

Given those two assumptions along with the diffuse prior, we then have

αS,adjustedt,t+j ∼ N

αS,estimatedt,t+j , SE2 +

(
1

2
× 0.5× stdt

(
R̂S
t,t+j

) E [Rm
t,t+j − 1

]
std
(
Rm
t,t+j

) )2
 (34)
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D Theoretical results for intermediary model

This section presents our version of the GPP model in more detail. The vast majority of

the content is due to them; the only change is the addition of the trading friction and

index-futures basis.

D.1 Basic setup

There is a constant gross risk-free rate Rf . The underlying index has an exogenous excess

return RI
t+1. We consider a simplified version of the model where there is a single option

traded that has some price Pt. Its excess return is then RO
t+1 = Pt+1 −RfPt.

Dealers/intermediaries maximize discounted utility over consumption Ct,

Et

∞∑
j=0

ρj
(
−γ−1

)
exp (−γCt) (35)

subject to a transversality condition and budget constraint, which is

Wt+1 = (Wt − Ct)Rf +DtR
O
t+1 + FtR

F
t+1 −

κ

2
F 2t (36)

where Wt is wealth. The intermediaries optimize over Dt, Ft, and Ct subject to the budget

constraint and taking the returns as given.

As described in the text, the term κ
2
F 2t is a deviation from GPP, as is the distinction

between RF and RI .

It is assumed that the futures contract on the underlying that the dealers trade is available

in infinite supply. For the options, there is some exogenous demand from outside investors,

dt, and the market clearing condition is Dt + dt = 0.

Lemma 5 In this model, assets are priced under a probability measure d which is equal to
the measure P multiplied by the factor exp(−k(Wt+1+G(dt+1,Xt+1)))

Et[exp(−k(Wt+1+G(dt+1,Xt+1)))]
. In addition,

κFt = Ed
t

[
RF
t+1

]
(37)

Pt = R−1f Ed
t Pt+1 (38)

where Pt is the price of the option (equivalently, 0 = Ed
tR

O
t+1).
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Proof. The value function and budget constraint satisfy

Vt = max
Ct,Dt,Ft

−γ−1 exp (−γCt) + ρEtVt+1 (39)

Wt+1 = (Wt − Ct)Rf +Dt (Pt+1 −RfPt) + FtR
F
t+1 −

κ

2
F 2t (40)

Now guess that

Vt = −k−1 exp (−k (Wt +Gt))

for some variable Gt that is exogenous to the dealers, and where

k = γ
Rf − 1

Rf

(41)

We have

∂

∂Wt

Vt = −kVt (42)

and
dWt+1

dCt
= −Rf (43)

So then the FOC for consumption under this guess is

0 = exp (−γCt) + kRfρEtVt+1 (44)

Noting that

Vt = −γ−1 exp (−γCt) + ρEtVt+1 (45)

ρEtVt+1 = Vt + γ−1 exp (−γCt) (46)

We have

exp (−γCt) = exp (−k (Wt +Gt)) (47)

Now consider the FOC with respect to Ft. First,

dWt+1

dFt
= RF

t+1 − κFt (48)
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And hence the FOC is

0 = ρEt
[
exp (−k (Wt+1 +Gt+1))

(
RF
t+1 − κFt

)]
(49)

κFt = Ed
t

[
RF
t+1

]
(50)

where Ed is the expectation under the risk-neutral measure, which is the physical measure

distorted by the factor
exp (−k (Wt+1 +Gt+1))

Et [exp (−k (Wt+1 +Gt+1))]
(51)

Next, for Dt,
dWt+1

dDt

= RO
t+1 (52)

So then

0 = ρEt
[
exp (−k (Wt+1 +Gt+1))R

O
t+1

]
(53)

0 = R−1f Ed
tR

O
t+1 (54)

It is straightforward to get a recursion for Gt by following the derivation in GPP.

Proposition 6 The effect of options demand on prices is

∂Pt
∂Dt

= −γ (Rf − 1)Ed
t

[(
RO
t+1 − β̂tRF

t+1

)
Pt+1

]
(55)

where

β̂t ≡ βFt

Ed
t

[(
RF
t+1

)2]
Ed
t

[(
RF
t+1

)2]
+ k−1Rfκ

(56)

βFt ≡
covdt

(
RF
t+1, R

O
t+1

)
vardt

(
RF
t+1

) (57)

Proof. Based on the analysis from the previous proof, the pricing kernel can be written as

md
t+1 ≡

exp
(
−k
(
FtR

F
t+1 +DtR

O
t+1 +Gt+1

))
RfEt exp

(
−k
(
FtRF

t+1 +DtRO
t+1 +Gt+1

)) (58)

52



Differentiate md
t+1 with respect to Dt to get

∂md
t+1

∂Dt

=
−k
(
RO
t+1 +RF

t+1
∂Ft
∂Dt

)
exp

(
−k
(
FtR

F
t+1 +DtR

O
t+1 +Gt+1

))
RfEt exp

(
−k
(
FtRF

t+1 +DtRO
t+1 +Gt+1

)) (59)

−
exp

(
−k
(
FtR

F
t+1 +DtR

O
t+1 +Gt+1

))(
RfEt exp

(
−k
(
FtRF

t+1 +DtRO
t+1 +Gt+1

)))2 (60)

×Et
[
−kRfPt+1 exp

(
−k
(
FtR

F
t+1 +DtR

O
t+1 +Gt+1

))]
(61)

= −k
(
RO
t+1 +RF

t+1

∂Ft
∂Dt

)
md
t+1 −

exp
(
−k
(
FtR

F
t+1 +DtR

O
t+1 +Gt+1

))
RfEt exp

(
−k
(
FtRF

t+1 +DtRO
t+1 +Gt+1

)) (62)

×Et

[
−kRfR

O
t+1

exp
(
−k
(
FtR

F
t+1 +DtR

O
t+1 +Gt+1

))
RfEt exp

(
−k
(
FtRF

t+1 +DtRO
t+1 +Gt+1

))] (63)

= −k
(
RO
t+1 +RF

t+1

∂Ft
∂Dt

)
md
t+1 (64)

Next, we differentiate the first-order condition for Ft with respect to Dt,

κ
∂Ft
∂Dt

= Et

[
∂

∂Dt

md
t+1R

F
t+1

]
(65)

= Et

[
−k
(
RO
t+1 +RF

t+1

∂Ft
∂Dt

)
RF
t+1m

d
t+1

]
(66)

Solving for the derivative yields

k−1κ
∂Ft
∂Dt

= Et

[
−RO

t+1R
F
t+1m

d
t+1 −RF

t+1

∂Ft
∂Dt

RF
t+1m

d
t+1

]
(67)

k−1κ
∂Ft
∂Dt

+
∂Ft
∂Dt

R−1f Ed
t

[(
RF
t+1

)2]
= R−1f Ed

t

[
−RO

t+1R
F
t+1

]
(68)

∂Ft
∂Dt

= −
Ed
t

[
RO
t+1R

F
t+1

]
Ed
t

[(
RF
t+1

)2]
+ k−1Rfκ

≡ −βFt
Ed
t

[(
RF
t+1

)2]
Ed
t

[(
RF
t+1

)2]
+ k−1Rfκ

(69)

where

βFt ≡
Ed
t

[
RO
t+1R

F
t+1

]
Ed
t

[(
RF
t+1

)2] =
covdt

(
RF
t+1, R

O
t+1

)
vardt

(
RF
t+1

) (70)
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The price sensitivity comes from differentiating the pricing equation for the option

∂Pt
∂Dt

= Et

[
∂md

t+1

∂Dt

Pt+1

]
= −kEt

[(
RO
t+1 +RF

t+1

∂Ft
∂Dt

)
md
t+1Pt+1

]
= −kEt

[(
RO
t+1 − β̂tRF

t+1

)
md
t+1Pt+1

]
= −γ (Rf − 1)Ed

t

[(
RO
t+1 − β̂tRF

t+1

)
RO
t+1

]
where the last line uses the fact that Ed

t

[
RO
t+1

]
= Ed

t

[
RF
t+1

]
= 0 since they are excess returns

that are fairly priced under the pricing measure d.

D.2 Proof of proposition 4

The proof involves simply analyzing the expectation in 6 above. We have

Ed
t

[(
RO
t+1 − β̂tRF

t+1

)
RO
t+1

]
= Ed

t

[(
RO
t+1 − βFt RF

t+1 −
(
β̂t − βFt

)
RF
t+1

)
RO
t+1

]
(71)

= Ed
t

[(
εFt+1 −

(
β̂t − βFt

)
RF
t+1

) (
βFt R

F
t+1 + εFt+1

)]
(72)

= vardt
[
εFt+1

]
−
(
β̂t − βFt

)
βFt E

d
t

[(
RF
t+1

)2]
(73)

= vardt
[
εFt+1

]
−

 −k−1Rfκ

Ed
t

[(
RF
t+1

)2]
+ k−1Rfκ

(βFt )2Ed
t

[(
RF
t+1

)2]
(74)

Next, we want to further decompose vardt
[
εFt+1

]
. We have

RF
t+1 = RI

t+1 + zt+1 (75)

βFt = βIt
σ2I,t

σ2I,t + σ2z,t
(76)

where σ2I,t = vardt
(
RI
t+1

)
. We can write

RO
t+1 = βItR

I
t+1 + εIt+1 (77)
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where βIt is the (d-measure) regression coeffi cient. Then

εFt+1 = RO
t+1 − βFt RF

t+1 (78)

= βItR
I
t+1 + εIt+1 − βIt

σ2I,t
σ2I,t + σ2z,t

(
RI
t+1 + zt+1

)
(79)

= βIt
σ2z,t

σ2I,t + σ2z,t
RI
t+1 + εIt+1 − βIt

σ2I,t
σ2I,t + σ2z,t

zt+1 (80)

vardt
[
εFt+1

]
=
(
βIt
)2 σ2z,tσ

2
I,t

σ2I,t + σ2z,t
+ σ2ε,t (81)

where σ2ε,t ≡ vardt
[
εIt+1

]
.

Up to first order in κ and σ2z,

∂Pt
∂Dt

= −γ (Rf − 1)

(βIt )2 σ2z,t︸ ︷︷ ︸
Basis risk

+ σ2ε︸︷︷︸
Unhedgeable risk

+ κR2f
(
βIt
)2︸ ︷︷ ︸

Imperfect hedging

(82)
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E Additional figures
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Figure A.1: Synthetic put returns for various strikes

Note: these figures replicate figure 3 varying the strike used for the synthetic option.
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Figure A.2: Risk measures for synthetic and traded options.
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Note: Standard deviations and CAPM betas for synthetic and traded option returns. The shaded regions
are 95% confidence intervals (no confidence interval is shown for the dotted line)
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Figure A.3: Synthetic option returns across maturities
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Note: Average return, CAPM alpha, and information ratio for synthetic options across maturities. In all
cases, the strike is set to be equivalent to -5% at the monthly maturity (scaling with the square root of the
maturity). Note that the two series plotted are not traded versus synthetic options but rather synthetic
options in two different samples (the longer maturities are much less liquid for the traded options, especially
early in the sample, and present a number of issues in implementation).
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Figure A.4: Option returns for moneyness in volatility units
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Note: Average return, CAPM alpha, and information ratio for synthetic and traded options. Strikes here
are selected in units of volatility instead of as a fixed percentage of the price of the underlying.
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Figure A.5: Option returns scaling by option price
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Note: Reports results where the denominator of the return is the price of the option instead of the
underlying —so purching a fixed dollar amount of insurance, instead of insurance on a fixed number of
units of the underlying.
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Figure A.6: Information ratios under various specifications for beta
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Note: Information ratios under various specifications for the betas. The left-hand column uses the full-
sample beta, which is the benchmark specification. The middle column uses betas estimated from a rolling
three-month window. Finally, the right-hand column instruments for the conditional beta, as described in
the text.
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Figure A.7: Synthetic versus traded option returns

Note: The scatter plots are for traded verus synthetic option returns over the period 1987—2022. The
returns are monthly, rolling on the third Friday.
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Figure A.8: Robustness for information ratios
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Note: The figure reports information ratios for synthetic options of different strikes, for alternative choices
in the construction of the option returns. The first column uses standard Black-Scholes to compute delta
(instead of Hull-White). The second column fixes implied volatility at 15% instead of estimating it using
historical data. The last column computes standard errors via block bootstrap. The three rows correspond
to different samples: the full 1926-2022 sample, the sample in which both traded and synthetic options
are available (1987-2022) and the BCJ sample (1987-2005).
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Figure A.9: Cumulative alphas for delta-hedged options

Note: This graph reports results analogous to those in figure 5, but giving cumulative alphas for delta-
hedged option returns.
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