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ABSTRACT

I construct a range of individual stock-based mimicking portfolios for innovations

in three variables that describe investment opportunities: Dividend Yield (DY), De-

fault Spread (DS) and Term Spread (TS). I find that each risk factor can be hedged

well out-of-sample. DY risk is not priced, whereas DS and TS risk are priced at -4.5%

and +5.5%, respectively, for the average mimicking portfolio. The DS risk premium

is realized in recessions alone and is a Size effect. The TS risk premium is stable and

separate from the Fama and French (1993) factors and characteristics. This evidence

is consistent with the Intertemporal CAPM of Merton (1973), and adds to existing

portfolio-level evidence that is (i) largely silent on how to hedge and (ii) mixed and

inconclusive on the issue of pricing.
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This paper tests the Intertemporal Capital Asset Pricing Model (ICAPM) of Merton

(1973) among individual stocks and is the first to show that state variable risk can be

hedged well out-of-sample. Moreover, the state variable risk premiums I estimate are an

important addition to existing portfolio-level estimates, which are mixed and inconclusive.1

Recent literature suggests that such conflicting evidence is perhaps unsurprising. Ahn et

al. (2009), Lewellen et al. (2010) and Maio and Santa-Clara (2012) show that inferences

from asset pricing tests depend critically on the chosen set of test portfolios, whereas Ang

et al. (2011) argue that portfolio-level tests are ineffi cient relative to firm-level tests. In

addition, having focused almost exclusively on the issue of pricing, the literature offers

little guidance to investors who desire to hedge time-varying investment opportunities in

real-time.

The ICAPM is a natural candidate to study the cross-section of stock returns given

mounting empirical evidence on stochastic variation in the investment opportunity set.2

In the ICAPM, exposure to state variables that predict this set are priced in addition

to market beta. I adopt the framework of Campbell (1996), but use individual stocks

to construct mimicking portfolios for Vector Auto-Regressive (V AR) innovations in three

variables commonly used to predict investment opportunities in various asset classes: Div-

idend Yield (DY), Default Spread (DS) and Term Spread (TS). In this way, I provide novel

evidence on both hedging and pricing in the ICAPM.3

First, a standard deviation increase in the DY, DS and TS innovation increases the

quarterly return of the typical mimicking portfolio by 1% to 3%. This out-of-sample hedging

ability is a prerequisite for the mimicking portfolios to capture a risk premium in the

ICAPM. Indeed, DS and TS risk are priced at an annualized premium that averages -

1A long history of papers test whether ICAPM-motivated variables are priced in a set of predetermined
portfolios. An incomplete list includes Shanken (1990), Ferson and Harvey (1991), Campbell (1996),
Brennan et al. (2004), Petkova (2006), Hahn and Lee (2006) and Maio and Santa-Clara (2012).

2Classic examples of predictability include Keim and Stambaugh (1986) and Fama and French (1989)
- stocks and bonds; Campbell (1996) - human capital; and, Liu and Mei (1992) - real estate. Recent
examples include Cochrane and Piazzesi (2005) and Ludvigson and Ng (2007, 2009) - stocks and bonds;
and, Hong and Yogo (2012) - commodities. Maio and Santa-Clara (2012) predict both return and volatility
in the stock market.

3Note, having measured exposures to innovations in the state variables, rather than their levels, separates
this work from versions of the Conditional CAPM in Jagannathan and Wang (1996) and Cochrane (1996).
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4.5% and +5.5%, respectively, over the various mimicking portfolios. These estimates are

consistent with the interpretation of an increasing DS as bad news and an increasing TS

as good news. DY risk is not priced, however, which is likely an artefact of the V AR.

Third, the DS risk premium is realized in recessions alone and is a Size effect, because it is

eradicated largely in the Fama and French (1993) model (FF3M) in time-series regressions

and upon the inclusion of characteristics, principally Size, in cross-sectional regressions.

The TS risk premium is stable over the business cycle and separate.

I use individual stocks not only to avoid the aforementioned problems with portfolios,

but also because this cross-section is more heterogeneous in exposures, which is attractive

for hedging. Although it may be more natural to hedge DS and TS using bonds, the

literature has focused on the stock market instead. The motivation is that the stock-based

hedge portfolio is priced when alternative hedges are imperfect or when the markets are

segmented. I construct mimicking portfolios in response to Hou and Kimmel (2009), who

advise to report risk premiums for both a factor and its projection on the return space if

the factor is non-traded and potentially unspanned. However, the maximum correlation

portfolio of Breeden et al. (1989) cannot be estimated, because there are more stocks than

time-series observations. The alternative, using a small set of portfolios as base assets, is

unattractive as long as we are uncertain that these portfolios span the cross-section or when

these portfolios have a strong factor structure (see, e.g., Lewellen et al. (2010)). Therefore,

the mimicking portfolios use a range of common strategies that weight stocks as a function

of their ex ante exposures. I use these exposures to run cross-sectional regressions, as well.

As in, for instance, Petkova (2006) and Brandt and Wang (2010), the state variable

risk premiums are estimated without intertemporal restrictions, which rely on observing

the aggregate wealth portfolio. The motivation is that this portfolio is unobserved and the

typical proxy, the CRSP value-weighted stock market return, is likely far from perfect (Roll

(1977)). In addition, the state variables are known to relate importantly to many aspects

of the opportunity set that need not all be traded (Cochrane (2001)). Nevertheless, I argue

that the estimates are consistent with ICAPM economics, which alleviates concerns about

"factor fishing" in Fama (1991), Black (1993) and Maio and Santa-Clara (2012).
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First, the absence of a DY risk premium is consistent with Campbell (1996) and follows

from a large negative correlation between the contemporaneous stock market return and

both innovations in DY and innovations in the long-run expected return from the V AR-

system. Consequently, DY is redundant, because it is included primarily for its role in

predicting the stock market, whereas market beta is enough to capture both market risk

and this aspect of intertemporal risk.

This argument need not imply that DS and TS are redundant, as well. First, both

DS and TS predict returns in stock as well as government and corporate bond markets,

consistent with their common use as proxies for credit market conditions and the stance of

monetary policy, respectively (Keim and Stambaugh (1986) and Fama and French (1989)).

Second, Fama and French (1989) argue that TS captures a term premium that is common

to long maturity assets. Indeed, Campbell (1996) finds that TS also predicts human capital

returns. Third, an increase in TS (steepening of the yield curve) predicts an increase in

economic activity, whereas a yield curve inversion has preceded all US recessions since the

50s (see, e.g., Estrella and Hardouvelis (1991) and Adrian and Estrella (2008)). Thus, a

negative price for DS risk is consistent with the simple intuition that an increasing default

spread is bad news. Given that defaults cluster in recessions, it is natural that the risk

premium is largest in these periods. In contrast, an increasing TS is good news.

This study contributes to three strands of the literature. First, previous work on the

ICAPM has typically ignored the question of how to hedge in real-time, by running cross-

sectional tests using in-sample betas. Notable exceptions are Petkova (2006) and Hahn

and Lee (2006), who find that SMB and HML hedge state variables similar to the ones

I analyze, ex post. In fact, SMB is a particularly natural hedge, as Baker and Wurgler

(2012) interpret this return as the spread between "speculative" and "bond-like" stocks.

This paper is different and sets out to construct portfolios that are maximally exposed ex

ante, which is more informative for institutional investors that desire to tilt their equity

portfolio towards or away from these risks. Ex ante, the mimicking portfolios load on stocks

with distinct Size and Book-to-Market characteristics and are not costly to trade. Ex post,

the individual stock-based mimicking portfolios hedge at least as well as SMB, HML and
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alternative portfolio-based mimicking portfolios in the spirit of Breeden et al. (1989) and

Lamont (2001). Also, these mimicking portfolios hedge well relative to similar individual

stock-based mimicking portfolios for non-traded factors in Chan et al. (1998), Pastor and

Stambaugh (2003) and Ang et al. (2012).

Second, existing portfolio-level evidence on pricing is sensitive to the choice of test assets

and generally inconsistent with the ICAPM (Maio and Santa-Clara (2012)). An incomplete

list of papers that examine state variables similar to the ones I analyze, includes Campbell

(1996), Petkova (2006) and Hahn and Lee (2006).4 In the most popular set of test assets,

25 Size and Book-to-Market portfolios, DY and DS are not priced, whereas TS and RF

(the Risk Free rate) are priced. I exclude RF, because these exposures correlate strongly

with TS exposures in the cross-section. More importantly, using the now preferred set of

test assets, I confirm that TS risk captures a positive premium and reveal that DS risk

captures a procyclical, negative premium.

A recent, closely related paper is Cederburg (2011), who performs a firm-level test of an

ICAPM including shocks to the market risk premium and the real interest rate, similar to

Brennan et al. (2004). He concludes that the ICAPM outperforms the CAPM, although the

intertemporal risk prices are typically insignificant. This paper differs in three dimensions.

First, I estimate betas out-of-sample, which is more informative for hedging. Second, I

estimate significant risk prices for the most popular state variables in the literature. Third,

I provide additional information by comparing different mimicking portfolios, recessions

versus expansions and a quarterly and monthly frequency.

Finally, these results add to the debate on whether the Fama and French (1993) factors

proxy for intertemporal risk and, as such, to the risk factor versus characteristics contro-

versy discussed in Fama and French (1992), Daniel and Titman (1997) and Chordia et al.

(2011). For instance, results in Petkova (2006) and Hahn and Lee (2006) suggest that SMB

and HML can substitute for my state variables in portfolio-level tests. In cross-sectional

regressions for individual stocks, I confirm evidence to the contrary in Cederburg (2011)

4Kan et al. (2012) find that Petkova’s model (including V AR-innovations in DY, DS, TS and RF) per-
forms impressively in R2 compared to seven popular asset pricing models among various sets of portfolios.
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and Maio and Santa-Clara (2012). To be precise, I find that exposures to SMB and DS

are priced largely because these exposures correlate with Size. This finding is consistent

with Perez-Quiros and Timmermann (2000) and Baker and Wurgler (2012), who argue

that small stocks are more sensitive to business cycle variation in credit market conditions.

Although, HML and TS are correlated to some extent as well, it is only HML that is

eradicated by the inclusion of Book-to-Market in these cross-sectional regressions.

The rest of this paper is organized as follows. Section I presents the ICAPM framework,

data and methodology. Section II tests whether mimicking portfolios in fact mimick. Sec-

tion III estimates risk premiums. Section IV confronts the ICAPM factors with the Fama

and French (1993) factors and characteristics. Section V presents a number of robustness

checks. Section VI summarizes and concludes.

I ICAPM state variable mimicking portfolios

This section describes the ICAPM framework, data and methodology used to construct

state variable mimicking portfolios. To fix ideas, the ICAPM can be approximated in

discrete time, leading to the pricing equation:

Et−1 (ri,t) = λm,t−1βi,m,t−1 +
∑
k

λk,t−1δi,k,t−1, (1)

where Et−1 (ri,t) is the expected excess return (ri,t = Ri,t − Rf,t) of asset i, λm,t−1 is the

market risk premium, and λk,t−1 is the price of risk for state variable k (all conditional on

the information set at t − 1). The exposures βi,m,t−1 and δi,t−1 are the slope coeffi cients

from the return-generating process ri,t = αi,t−1 + βi,m,t−1rm,t + δ′i,t−1εt + νi,t, where εt is a

vector containing innovations in the relevant state variables.

To be precise, λm,t−1 is a function of the coeffi cient of relative risk aversion of the

representative agent, which is time-varying (see, e.g., Campbell and Cochrane (1999)). In

turn, λk,t−1 is a function of the derivative of the indirect marginal utility of wealth with

respect to state variable k and may also vary over time as in Ferson and Harvey (1991),
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consistent with time-varying predictability.5 When the innovations in the state variables

are orthogonal to the market (the empirically relevant case), λm,t−1 is positive.6 When the

innovations are also orthogonal to each other, λk,t−1 is negative (positive) if an increase in

the state variable is bad (good) news for the agent and increases (decreases) his marginal

utility of wealth.

Note, estimating equation (1) using conditional exposures (βi,m,t−1 and δi,t−1) for in-

dividual stocks (i) is novel in the context of the ICAPM. Indeed, previous literature has

focused on the issue of pricing, typically by running cross-sectional regressions with full

sample betas for a small set of portfolios. First, conditional exposures, estimated using his-

torical data only, ensure that the investor can apply and could have applied these strategies

in real-time. Second, the use of individual stocks provides the investor with the broadest

possible range of exposures and allows me to estimate risk premiums more effi ciently.

A State variables

I focus on three state variables known to predict returns in various asset classes: the

Dividend Yield (DY) of the CRSP value-weighted stock portfolio (dividends over the last

12 months divided by the current level of the index), the Default Spread (DS) between the

yield of long-term corporate BAA and AAA bonds (both monthly averages) and the Term

Spread (TS) between the yield of the ten and one year government bond (both observed at

month-end). Data on bond yields are from the FRED R© database of the Federal Reserve

Bank of St. Louis. Note, in a number of previous applications (e.g., Petkova (2006)

and Kan et al. (2012)) the Risk-Free rate (RF) is included as fourth state variable. In a

robustness check (Section V.A), I find that RF is largely redundant in the presence of TS

5For instance, Rapach et al. (2010), Henkel et al. (2011) and Dangl and Halling (2012) provide evidence
for time-varying predictability in stock markets; and, Ang et al. (2008) for bond markets, as a result of
monetary policy regimes.

6To be precise,
(
λm,t−1
λt−1

)
= Σmε,t−1

(
γm,t−1
γt−1

)
, where Σmε,t−1 is the conditional covariance matrix

of the market and the innovations in the state variables. Here, γm,t−1 is the coeffi cient of relative risk
aversion (−WJWW /JW ) and γk,t−1 is (−JWFk/JW ), where J(W (t), F (t), t) is the indirect utility of wealth
(W (t)) of the representative agent and F (t) is the vector with levels of the state variables, with subscripts
denoting partial derivatives at t− 1.
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and I therefore exclude it.

I adopt the Vector Auto-Regressive (V AR) approach of Campbell (1996) and assume

the state variables follow a V AR(1)-process. To be consistent with previous work, I also

include the CRSP value-weighted stock market return, such that zt = (rm,t, DYt, DSt, TSt)′.

However, given that rm,t is likely a poor proxy for the return on aggregate wealth, I will

not put intertemporal restrictions on the risk prices. Furthermore, t indexes either quarter-

end or month-end, depending on the sampling frequency. I consider two frequencies to

alleviate concerns about data-mining and potential horizon-effects in the relation between

the state variables and the investment opportunity set. Moreover, this is an important

consideration because the investment horizon of the representative agent is unknown (see,

e.g., Kothari et al. (1995), Campbell (1996) and Brennan and Zhang (2012)). To ensure

the exercise is fully conditional, I run the V AR using only historical data at the end of each

period t − 1, such that zτ = At−10 + At−11 zτ−1 + et−1τ . Here, the superscript t − 1 indicates

the length of the sample and τ = 1, .., t − 1. Following Petkova (2006), the innovations

et−1τ are orthogonalized from rt−1m,τ and scaled to have the same variance as r
t−1
m,τ . This

orthogonalization is particularly important for DY, because the correlation between the

excess market return and the innovation in DY that is not orthogonalized is -0.89 at both

frequencies. The transformed innovations in the state variables, used as risk factors in the

asset pricing model, are denoted εt−1τ = (εt−1DYτ
, εt−1DSτ

, εt−1TSτ
)′.7 Note, the innovations are not

orthogonalized from each other, because (i) their correlations are all below 0.20 and (ii)

this could add additional noise through the arbitrary ordering of the variables.

B Mimicking portfolios

To find out whether I can identify stocks that are exposed to the innovations εt and if these

exposures are priced, I form out-of-sample mimicking portfolios at t− 1 with weights that

are a function of historical betas. I use all ordinary common stocks traded on NYSE, AMEX

7The results are similar when I use innovations from a full-sample V AR. This approach is common
in previous work, but uses forward-looking information. Further, the results are qualitatively similar for
innovations from a V AR(2) and for first-differences in the state variables. These results are available on
request.
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and NASDAQ (excluding firms with negative book equity). To be consistent with previous

work, I exclude financial firms. Although financials are potentially useful for hedging, their

inclusion does not meaningfully alter the main results. Furthermore, I require that at least

four out of the last five years of returns are available for a stock to be included. The sample

period is April 1962 to December 2010. This sample start is often used in empirical work

and coincides with the introduction of AMEX stocks in the CRSP file and the availability of

daily treasury rate data. Accounting for a burn-in period of five years, this sample amounts

to a total of 175 quarterly and 525 monthly post-ranking returns.

B.1 Exposures

I estimate betas using a weighted least-squares regression over all observations τ = 1, ..., t−1

and shrink these betas as suggested in Vasicek (1973). These modifications to the usual

rolling-window beta are important, because exposures to non-traded and macroeconomic

factors tend to be small and hard-to-estimate (see, e.g., Duarte (2010)).8 First, the expand-

ing window ensures that we use as much information as possible, whereas an exponential

decay in the weights ensures timeliness of the estimated betas. To be precise, for each stock

i = 1, ..., Nt−1 the WLS-estimator of δi,t−1 is given by

(
α̂i,t−1, β̂i,m,t−1, δ̂i,t−1

)
= argmin

αi,t−1,βi,m,t−1,δi,t−1

t−1∑
τ=1

K(τ)
(
ri,τ − αi,t−1 − βi,m,t−1rm,τ − δ

′

i,t−1ε
t−1
τ

)2
with weights K(τ) =

exp(−|t− τ − 1| h)
t−1∑
τ=1

exp(−|t− τ − 1| h)
. (2)

With h = log(2)
20

in case of quarterly data and h = log(2)
60

in case of monthly data, the half-life

converges to 5 years for large t. Next, I perform the Bayesian transformation of δ̂i,k,t−1 for

k = DY,DS, TS:

δ̂vi,k,t−1 = δ̂i,k,t−1 +
varTS(δ̂i,k,t−1)[

varTS(δ̂i,k,t−1) + varCS(δ̂i,k,t−1)
] [meanCS(δ̂i,k,t−1)− δ̂i,k,t−1] , (3)

8Indeed, the main results are qualitatively similar, but weaker for the more noisy rolling-window betas.
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where the subscripts TS and CS denote means and variances taken over the time-series

dimension τ and cross-sectional dimension i, respectively. In this way, δ̂vi,k,t−1 is a weighted

average of the estimated beta and the cross-sectional average beta, where the former receives

a larger weight when it is estimated more precisely. Among others, Elton et al. (1978)

and Cosemans et al. (2010) show that this adjustment can improve forecasts of ex post

exposures. From this point forward, all results are based on the Vasicek-adjusted exposures

δ̂vi,k,t−1, simply denoted δi,k,t−1.

B.2 Mimicking portfolio weights

In theory, one can find the maximum correlation mimicking portfolio, with mean return

equal to the factor risk premium, by regressing the factor on the cross-section of asset re-

turns, or equivalently a set of spanning assets (see, e.g., Breeden et al. (1989) and Hou and

Kimmel (2009)). However, we cannot run this regression for the cross-section of individ-

ual stocks, because the cross-sectional dimension is larger than the time-series dimension.

Moreover, Lewellen et al. (2010) argue that many cross-sectional asset pricing tests in the

past are flawed by having estimated risk premiums in a small set of portfolios that likely

do not span the entire cross-section. Therefore, I use individual stocks to construct the

mimicking portfolios, but use a range of alternative weighting schemes. Thus, I construct

mimicking portfolios of the form rmpk,t = w′k,t−1(δk,t−1)rt for each factor k. These portfolios

can be thought of as simple, out-of-sample proxies for the maximum correlation portfolio

and are consistent with asset pricing model in equation (1).

I differentiate between weighting schemes that assign a weight to only a fraction of the

available stocks and those that assign a weight to all stocks. For the first, arguably the

most interesting from a practical point of view, I sort stocks at the quintiles of ranked

exposures and construct market value-weighted and equal-weighted portfolios. I focus, in

particular, on the High minus Low (HML) spreading portfolios.

For the last, I consider two alternatives. The first, wbeta, is suggested by Lehmann
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(1990) and defines the mimicking portfolio weights for factor k as

wbetai,k,t−1 =
δi,k,t−1 − δk,t−1∑

i:δi,k,t−1−δk,t−1>0
δi,k,t−1 − δk,t−1

, (4)

where δk,t−1 is the cross-sectional average exposure. This strategy places an aggregate bet

of one dollar long (short) on those stocks with above (below) average exposures, with the

absolute weight increasing in distance from the average.

The second, wFMB, is based on the Fama and MacBeth (1973) cross-sectional regression.

Fama (1976) shows that the estimated risk premium in this procedure is the return on a

zero-investment portfolio that has a beta of one with respect to the factor of interest and

a beta of zero with respect to the other factors. Thus, in an ex ante sense, this mimicking

strategy is ideal for the purpose of this paper. However, in the context of the ICAPM, this

time series perspective on the cross-sectional regression is novel.

To be precise, the weight on each stock at time t − 1 in case factor k is given by the

(k + 1, i)-th entry of the (k + 1)×Nt−1 matrix given by

(B′t−1Bt−1)
−1B′t−1, for Bt−1 with typical row Bi,t−1 = [1, βi,m,t−1, δ

′
i,t−1]. (5)

Because Bi,t−1 contains pre-ranking betas, which are noisy, one can expect the post-ranking

exposure to the state variable of interest to be smaller than one and to the other factors

unequal to zero. Indeed, testing whether the post-ranking exposures are both statistically

and economically significant is an important reality check of the procedure that applies for

all mimicking strategies.

II Do mimicking portfolios in fact mimick?

This section tests whether each mimicking portfolio succeeds in its primary objective, that

is, being exposed to the risk factor it is supposed to mimick. An ex post exposure means that

the portfolios can be used to hedge in practice. Moreover, this exposure is a prerequisite for
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the mimicking portfolios to capture a risk premium in the ICAPM and suggests the state

variables are not useless, in the sense of Kan and Zhang (1999) and Kleibergen (2010).

Furthermore, I analyze whether the portfolios are costly to trade and whether they load

on stocks with certain characteristics.

A Post-ranking exposures

Table I presents post-ranking exposures (βm, δ
′)′ from the four-factor model rmpk,t = α +

βmrm,t + δ′[εFullDYt
, εFullDSt

, εFullTSt
]′ + ut. In this case, the innovations εFullt

are constructed by

running the V AR(1) over the full sample. To accomodate interpretation, the innovations

are orthogonalized from rm,t and scaled to have the same variance as rm,t. I present expo-

sures for the mimicking portfolios (HMLMVW , HMLEW , wbeta and wFMB) as well as the

market value-weighted quintile portfolios for each factor k = DY,DS, TS in Panel A to C.

The main results, that is, for the quarterly frequency are presented in columns one to five.

Columns six to ten present results for the monthly frequency as a check of robustness.

Insert Table I about here.

At the quarterly frequency, the post-ranking exposures to the relevant innovations are

large and significant for all mimicking portfolios. In Panel A, loadings on εFullDYt
range from

0.11 (p < 0.10) for wbeta, to 0.25 and 0.29 (p < 0.01) forHMLMVW and wFMB , respectively.

In Panel B, loadings on εFullDSt
range from about 0.10 (p < 0.10) for HMLMVW , HMLEW

and wbeta, to 0.31 (p < 0.05) for wFMB. In Panel C, loadings on εFullTSt
range from 0.09

(p < 0.05) for wbeta, to 0.15 (p < 0.01) and 0.18 (p < 0.05) for HMLMVW and wFMB,

respectively. Further, in each panel, we see a roughly decreasing pattern moving from

High to Low among the single-sorted portfolios. Finally, the typical mimicking portfolio is

only exposed to the one ICAPM factor it is supposed to mimick. Although, DY and DS

mimicking portfolios load strongly on MKT.

At the monthly frequency, we see that DY mimicking portfolios perform slightly better,

whereas TS mimicking portfolios perform slightly worse. In contrast, DS mimicking port-
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folios perform much worse, given that exposures to εFullDSt
are small and insignificant ranging

from 0.00 for wbeta to 0.06 for wFMB. Evidently, we cannot identify stocks ex ante that

hedge DS risk at this frequency.9

It is important to note that the out-of-sample nature of these strategies comes at the

cost of not predicting betas perfectly. This problem is immediately clear for wFMB, which

has a pre-ranking beta that equals one by construction. At the quarterly frequency, the

post-ranking betas fall to 0.29, 0.31 and 0.18 in case of DY, DS and TS, respectively. Nev-

ertheless, these exposures represent a meaningful hedge and translate to quarterly returns

ranging from about 1.6% to 2.7% when the risk factors increase by one standard deviation.

As a benchmark, these hedge returns are larger than for individual stock-based mimicking

portfolios of liquidity and inflation in Pastor and Stambaugh (2003) and Ang et al. (2012).

Moreover, these exposures are at worst similar to two alternative hedges. First, Panel D

presents exposures for the Fama and French (1993) factors, which have been found to load

on similar state variables ex post (Petkova (2006) and Hahn and Lee (2006)). We see that

SMB only loads marginally on εFullDYt
at 0.07, whereas HML loads significantly on εFullDSt

and

εFullTSt
at -0.17 and 0.16, respectively. Second, Panel E presents exposures for portfolio-based

mimicking portfolios in the spirit of Breeden et al. (1989). These strategies use as base

assets 25 Size and Book-to-Market portfolios instead of individual stocks in an otherwise

identical out-of-sample sort into quintiles.10 Among these mimicking portfolios, only the

one for TS loads significantly on εFullTSt
at 0.11 (p < 0.01). At the monthly frequency, the

exposures to εFullDYt
and εFullTSt

are similar, but neither alternative hedge loads on εFullDSt
.

I conclude that state variable risk can be hedged well out-of-sample, except for DS

risk at the monthly frequency. Moreover, the individual stock-based mimicking portfolios

are "as good as it gets" for an investor that desires to hedge in the stock market. Thus,

these strategies are an important step forward in using information from the cross-section

of individual stocks in real-time. Although, HML is second-best in hedging TS risk at

9Note however, Section III shows that the returns for DS mimicking portfolios are quite similar at both
frequencies. A potential explanation is that the monthly DS mimicking portfolios are marginally exposed
to quarterly DS innovations when their returns are compounded.
10The conclusions are largely unaltered when I use instead 30 industry portfolios as base assets.
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both frequencies, the results below show that the risk premiums for HML and TS differ in

important dimensions.

B Pre-ranking characteristics

Table II is structured similarly to Table I and describes the mimicking portfolios in terms

of various characteristics (averaged over time). In each period, Pre-ranking exposure, Size

($ billion), Book-to-Market and Momentum are weighted cross-sectional averages, whereas

Turnover (annualized) is the amount of trading required to rebalance.11 For HMLMVW ,

HMLEW and wbeta, Turnover is calculated as

∑
i

∣∣∣∣wi,t−1(1
2

∑
i

|wi,t−2 (1 + ri,t−1)|
)
− wi,t−2 (1 + ri,t−1)

∣∣∣∣∑
i

|wi,t−2 (1 + ri,t−1)|
. (6)

The numerator sums all absolute changes in the portfolio weights from the instant before

rebalancing, wi,t−2 (1 + ri,t−1), to the instant after, wi,t−1, where the latter is scaled to allow

the long and short position to grow equally over time from the initial value of one dollar

each. The denominator scales by the size of the portfolio.

For wFMB, the total long and short position do not equal one dollar and vary over time.

Therefore, Turnover is calculated as∑
i

|wi,t−1 − wi,t−2 (1 + ri,t−1)|∑
i

|wi,t−2 (1 + ri,t−1)|
, (7)

such that you trade to keep the pre-ranking beta exactly equal to one.

Insert Table II about here.
11Book-to-Market (BM) is calculated in June as the ratio of the most recently available book-value

of equity in Compustat (assumed to be available six months after the fiscal year-end) divided by Mar-

ket Capitalization from CRSP (Size) at previous year-end. Momentum is defined as
1∏
j=4

(1 + ri,t−j) and

2∏
j=12

(1 + ri,t−j) at the quarterly and monthly frequency, respectively.
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First, we see that there is a wide spectrum of exposures to DY, DS and TS in the

cross-section of individual stocks. Pre-ranking exposures are about one at the quarterly

frequency and about 0.6 at the monthly frequency. Thus, sampling at the lower frequency

presents a wider range of exposures, perhaps due to reduced noise in both returns and the

non-traded factors. However, note that it is only in the case of DS and TS that this leads

to a larger spread in post-ranking exposures in Table I, as well.

Next, I find that transaction costs are acceptable, i.e., small relative to the risk premiums

analyzed in the next section. For all strategies, Turnover is about 1.5 at the quarterly

frequency and about 2.5 at the monthly frequency. This figure implies that an investor,

who is long and short one unit and rebalances quarterly (monthly), will trade three (five)

units per year.12 These trades add up to transaction costs of about 37.5 (62.5) basis points,

assuming an average quoted half-spread of 12.5 basis points.13

For the characteristics Size, Book-to-Market and Momentum, let us focus on HMLEW

at the quarterly frequency. This weighting scheme presents results that are typical and

most comparable to previous work, because it equal-weights each characteristic in the top

and bottom quintile.14 First, high DY exposure stocks are smaller by -1.10$ billion and have

higher book-to-market ratios by 0.13. Second, Size and Book-to-Market are also significant

for DS mimicking portfolios at 0.81$ billion and -0.36, respectively. The fact that small

stocks have lower exposures to DS risk is consistent with Perez-Quiros and Timmermann

(2000) and Baker and Wurgler (2012). These authors argue that small firms are more

vulnerable to variation in credit market conditions over the business cycle, such that an

increasing DS signals lower cash flows and higher discount rates for smaller stocks. In this

light, it is surprising that SMB does not load on DS risk in Table I. The negative relation

between DS exposure and Book-to-Market is consistent with the negative loading of HML

on DS risk in Table I and the common interpretation of high Book-to-Market as indicative

12Note, rebalancing the portfolios only at the end of the year rougly halves the amount of trading
required, but leaves all other results largely unchanged.
13This estimate likely overestimates transaction costs in recent years (see, e.g., Chordia et al. (2011) and

Hendershott et al. (2011)).
14Note, the size characteristic is extreme in case of HMLMVW , because this strategy implicity squares

market values.
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of relative distress (Fama and French (1995)). Third, high TS exposure stocks are smaller

by over 1.23$ billion, whereas their Book-to-Market ratio is larger by about 0.16. Both

characteristics are consistent with Petkova (2006) and Hahn and Lee (2006) and with the

positive loadings of both SMB and HML on TS risk in Table I. A possible explanation is

that small firms are marginal firms and therefore more sensitive to news about the business

cycle (Chan and Chen (1991)). Further, Cornell (1999), Campbell and Vuolteenaho (2004)

and Da (2009), among others, argue that value (growth) stocks are low (high) duration

assets. Then, if an increasing TS signals higher expected returns on high duration assets,

value will outperform growth contemporaneously.

For each state variable, I find in unreported results that the Book-to-Market character-

istic is monotonically related to pre-ranking exposure. In contrast, the Size characteristic

presents an inverted U-shape, consistent with the common intuition that smaller stocks

have more extreme betas. I conclude that if the characteristics Size and Book-to-Market

explain the cross-section of expected returns completely, one would expect an unconditional

risk premium that is positive for DY and TS and negative for DS. In the next section, I

test these hypotheses and analyze the empirical relation between the characteristics and

the state variable risk premiums in cross-sectional regressions.

III State variable risk premiums

Given that the mimicking portfolios allow the investor to hedge state variable risk in real-

time, the ICAPM implies that the investor will pay a premium for these portfolios. There-

fore, this section tests whether the estimated exposures to intertemporal risks are priced.

First, I present results for the previously introduced mimicking portfolios. Subsequently,

I focus attention on the risk premiums in cross-sectional regressions, both excluding and

including characteristics, because the mimicking portfolios were found to load distinctively

on Size and Book-to-Market.
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A Unconditional risk premiums

A.1 Mimicking portfolios

Table III presents annualized average and risk-adjusted returns (i.e., CAPM, FF3M and

Carhart’s four-factor model (FFCM) α’s), standard deviations and Sharpe ratios in the

same fashion as Table I.15

Insert Table III about here.

Focusing on the quarterly frequency, we see that exposure to DY risk is not priced.

The average return of all DY mimicking portfolios is almost zero, even though standard

deviations increase with DY exposure among the single-sorted portfolios. Second, DS risk

is rewarded with a negative risk premium in all weighting schemes. In case of wFMB,

HMLEW and wbeta the risk premium is economically large and significant at the 5%-level

at -6.90%, -4.85% and -4.98% per annum, respectively. This risk premium translates to a

Sharpe ratio of about 0.40, which is large relative to 0.30 for the aggregate stock market.

In case of HMLMVW , the risk premium is insignificant at -2.07%, which is suggestive of

a Size effect. In line with this suggestion, the negative risk premiums are captured largely

in the FF3M, mainly due to a large negative loading on SMB. Finally, TS risk is rewarded

with a consistent positive risk premium that is economically large and significant in all

weighting schemes at 5.29% (p < 0.05) in case of HMLMVW and almost 5.80% (p < 0.01)

for the remaining weighting schemes. The corresponding Sharpe ratios are large, as well,

and range from 0.37 to 0.61. These risk premiums are not captured in the CAPM nor in

the FF3M and FFCM, where alphas are large and typically significant ranging from 3% to

5%. Furthermore, consistent with a risk-based interpretation, we see that both standard

deviation and Sharpe ratio increase with TS beta.

The main results are similar at the monthly frequency, although the annualized risk

premiums for both DS and TS are less stable over the various weighting schemes.16 First,

15The inclusion of the traded liquidity factor of Pastor and Stambaugh (2003) has little effect on the
risk-adjusted returns.
16Note, the fact that the risk premiums are typically largest for wFMB is consistent with the relatively

large pre- and post-ranking exposures for this weighting scheme.
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the DS risk premium is negative and significant at the 5%-level in case of wFMB, HMLEW

and wbeta ranging from -5.54% to -2.88%, but is positive and insignificant for HMLMVW at

2.13%. This variability is perhaps unsurprising taking into account that these portfolios are

not exposed to DS risk in the first place. As before, we see that adding SMB (and HML)

has a considerable impact. For TS, the risk premium is insignificant in case of HMLMVW

at 2.84%, but is large and significant in average and risk-adjusted returns for the remaining

weighting schemes.

I conclude that the risk premiums are quite robust in size and sign. Nevertheless, the

observed variation is informative of where exactly the risk premium is coming from and for

practitioners who might prefer one weighting scheme over another, for instance, depending

on ex post hedging capacity or trading costs. We have also seen that potentially interesting

patterns in the cross-section of expected returns can be missed when considering only one

particular combination of weighting scheme and frequency. For instance, both DS and TS

risk premiums are rather anomalous for HMLMVW at the monthly frequency, which is a

popular combination in empirical work.

A.2 Cross-sectional regressions

Table IV presents Fama and MacBeth (1973) cross-sectional regressions for individual

stocks. As argued by Litzenberger and Ramaswamy (1979) and Ang et al. (2011), firm-level

tests are more effi cient than portfolio-level tests, because the larger amount of information,

that is, the wider dispersion in betas, more than makes up for the larger degree of noise

in the estimated betas when estimating risk premiums. I use the pre-ranking exposures

of the previous section as explanatory variables in the second stage.17 In Section V.B,

I show that using exposures to the traded mimicking portfolios instead gives similar risk

premiums. In Panels A (quarterly) and B (monthly), I compare the performance of the

four-factor ICAPM model to a model that additionally includes the three usual character-

17The results are similar when I use simple instead of multiple regression betas, or equivalently, a
covariance-based test.
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istics: Size, Book-to-Market and Momentum.18 Berk (1995) and Jagannathan and Wang

(1998) suggest that the inclusion of characteristics allows the researcher to detect model

misspecification. It is important to note, however, that characteristics do not suffer from

any measurement problems, which exposures do, such that the cross-sectional test is biased

in their favor.19

Thus, in each period t, I estimate λt’s using

ri,t = λ0,t + λm,tβ̂i,m,t−1 + λ′tδ̂i,t−1 + υi,t and (8)

ri,t = λ0,t + λm,tβ̂i,m,t−1 + λ′tδ̂i,t−1 + λ
′

chars,t[Sizei,t−1,BMi,t−1,MOMi,t−1]
′ + υi,t. (9)

The first four rows of Panels A and B present the unconditional average risk premiums,

λ̂full =
1
T

∑
t

λ̂t, the corresponding Fama and MacBeth (1973) t-statistics, and the average

cross-sectional R2. Panel C presents select results for the FF3M as a benchmark.

Insert Table IV about here.

By construction, the risk premiums from equation (8) are identical to the average returns

of the Fama-MacBeth mimicking portfolios in Table III. Thus, without characteristics, the

risk premiums for DS and TS risk are large and significant at -6.90% (t = −2.89) and

5.71% (t = 3.12), respectively, whereas DY risk is not priced. Further, the MKT risk

premium is positive, but small and insignificant, at 1.83%.20 The R2 equals 3.72%, which

is low, but typical for this exercise. For instance, the R2 for the FF3M is similar in Panel

C at 4.25%. The inclusion of Size (positive), Book-to-Market (negative) and Momentum

(positive) increases the fit to 6.75% and eradicates a considerable chunk of the DS risk

premium, leaving a marginally significant -2.51% (t = −1.69). The TS risk premium is

18Following Chordia et al. (2011), Size is the natural logarithm of Market Capitalization and Book-to-
Market (BM) is the natural logarithm of the Book-to-Market ratio winsorized at the 0.5th fractile.
19Indeed, the errors-in-variables bias introduced by using estimated exposures ( ̂βi,m,t−1 and δ̂i,t−1) likely

causes these regressions to understate the importance of intertemporal risk.
20Similar to what happens in portfolio-level tests, I find that the MKT risk premium is large and

significant at about 7% when restricting the intercept to zero. In contrast, the ICAPM factor risk premiums
are largely unaffected.
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smaller as well, but remains economically large and significant at 3.61% (t = 2.63). To

gauge the importance of this result, Panel C shows that both SMB (2.04%, t = 1.30) and

HML (2.66%, t = 2.03) are eradicated completely when their underlying characteristics are

included.

In many directions, the results are similar at the monthly frequency. The risk premiums

for DS and TS are large and significant without characteristics at -5.54% (t = −2.31)

and 5.73% (t = 2.75), respectively. Now, in the ICAPM model, the DS risk premium is

eradicated completely by the inclusion of characteristics, just as SMB and HML are in

the FF3M (unreported). Again, the TS risk premium stands out and remains marginally

significant at 2.89% (t = 1.75). In line with previous evidence, unreported results show

that the eradication of the DS risk premium is driven by the inclusion of Size at both

frequencies.

A.3 Discussion

On one hand, the absence of a DY risk premium is surprising, because high DY risk stocks

are (i) small and high Book-to-Market (Table II) (ii) systematically risky (Table III) and

(iii) exposed to the most popular predictor of stock market returns. A possible explana-

tion is that DY does not predict returns out-of-sample, as argued in Bossaerts and Hillion

(1999), Goyal and Welch (2003) and Ang and Bekaert (2007). However, this conclusion is

inconsistent with, among others, Cochrane (2008) and Binsbergen and Koijen (2010). An

alternative explanation that does not take sides in this debate follows Campbell (1996) and

builds on the fact that short-run movements in the dividend yield are largely driven by cur-

rent stock returns. In turn, the current stock return is strongly negatively correlated with

innovations in the long run expected return in the full sample V AR-system, at -0.89 and

-0.86 at the quarterly and monthly frequency, respectively. As a result, assets that covary

positively with the contemporaneous return tend to covary negatively with expectations of

future returns, such that market beta largely incorporates the pricing implications of the

V AR and DY is redundant.

This argument also suggests that DS and TS are priced for reasons other than their
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impact on long run expected stock returns, or in other words, that both must relate im-

portantly to other aspects of the investment opportunity set. Indeed, neither DS nor TS

is an important predictor in the V AR, consistent with a large body of evidence that casts

doubt on their ability to predict (see, e.g., Bossaerts and Hillion (1999) and Guo (2006)).

For instance, when εFullDSt
(εFullTSt

) increases by one standard deviation, the long run expected

return changes only by -0.3% (1.5%), compared to 2.5% for εFullDYt
.21

However, a negative price for DS risk is consistent with the simple intuition that an

increasing default spread signals worsening credit market conditions, which is bad news

that increases the marginal rate of substitution. Consequently, low DS beta stocks have

high returns. Furthermore, I find that this premium is largely a Size effect. First, Table II

shows that low DS beta stocks tend to be small. Since low DS beta stocks are also volatile,

one can consider them "speculative" in the sense of Baker and Wurgler (2012). Second,

the DS risk premium is largely eradicated in the FF3M time-series regressions, mainly due

to a negative loading on SMB, and by the inclusion of characteristics, principally Size, in

cross-sectional regressions.

A positive price for TS risk is consistent with Fama and French (1989), who argue that

an increasing TS predicts higher expected returns on all long term assets. Furthermore, it is

consistent with the observation that a steepening slope of the yield curve predicts economic

activity to increase, whereas a yield curve inversion has preceded all US recessions since

the 50s, with only one false signal (see, e.g., Adrian and Estrella (2008) and Gilchrist

and Zakrajsek (2012)). Hence, the marginal rate of substitution is high when TS is low

(inverted) and investors will pay a premium for low beta assets.22 In contrast to DS,

the TS risk premium is largely separate from the Fama and French (1993) factors and

characteristics.
21These impacts are calculated in an orthogonalized full sample V AR-system similar to Campbell (1996)

at the quarterly frequency.
22Cochrane and Piazzesi (2005) find that a tent-shaped linear combination of forward rates (henceforth

CP) is a better predictor of both bond and stock returns than TS. I find that the two factors are correlated
(both in the time-series and cross-section), such that it is unsurprising that replacing TS with CP gives
similar positive risk premiums in the cross-section of individual stocks. The results for these CP mimicking
portfolios are available upon request.
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Having determined the unconditional risk premiums for these V AR-factors in the cross-

section of individual stocks, the now preferred set of test assets, one might wonder how these

compare to previous portfolio-level estimates in e.g., Campbell (1996), Petkova (2006), Kan

et al. (2012) and Maio and Santa-Clara (2012). First, I show that the absence of a DY risk

premium extends to the case of individual stocks, consistent with its redundancy in the

presence of the market portfolio. Second, I reveal that DS risk is rewarded with a negative

premium, whereas previous estimates indicate that DS risk is not priced. Moreover, I show

that this DS risk premium is largely a Size effect in an ex ante sense. This finding adds

to Hahn and Lee (2006), who conclude that SMB loads on first-differences in DS, ex post.

It is important to note, however, that SMB does not load on V AR-innovations in DS in

Table I.

Finally, the positive TS risk premium I estimate is consistent with a positive, marginally

significant estimate among 25 Size and Book-to-Market portfolios. Having said that, Maio

and Santa-Clara (2012) show that the portfolio-level estimate depends critically on the

choice of portfolios. For instance, among 25 Size and Momentum portfolios, the TS risk

premium is estimated to be significantly negative. Furthermore, I confirm Hahn and Lee

(2006) in that HML loads strongly on TS risk in Table I. However, in contrast to previous

evidence, both time-series and cross-sectional regressions suggest that the TS risk premium

is largely separate from the Fama and French (1993) factors and characteristics.23 I further

address the relations with SMB, HML, Size and Book-to-Market in Section IV.

B Conditional risk premiums: Business cycle variation

In this subsection I analyze whether the state variable risk premiums vary over the business

cycle. Holding exposures constant, this time-variation is consistent with the ICAPM when

risk aversion or the relation between the state variable and the investment opportunity, or

both, vary over the business cycle. For instance, Campbell and Cochrane (1999) argue that

23The conclusions from time-series FF3M and FFCM regressions are largely unchanged for both DS and
TS when I replace the sort-based factors SMB, HML and MOM with the time-series of cross-sectional
regression risk premiums for Size, Book-to-Market and Momentum (see, also, Hoberg and Welch (2009)).
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risk aversion is larger in economic downturns, whereas Henkel et al. (2011) and Dangl and

Halling (2012) provide evidence for business cycle variation in stock market predictability.

I use the Chicago FED National Activity Index (CFNAI) to distinguish between recessions

and expansions.24 For instance, Hong and Yogo (2012) find that CFNAI predicts returns

in stock, bond and commodity markets. Following convention, a month-end CFNAI value

below -0.7 signals a recession month or quarter coming up.25 This gives 26 (77) recession

and 149 (448) expansion quarters (months).

B.1 Mimicking portfolios

Table V presents annualized average returns and FF3M α’s for the mimicking portfolios

in each state. The inclusion of either MKT or MOM has little impact on risk-adjusted

returns, consistent with the unconditional evidence.

Insert Table V about here.

At the quarterly frequency we see that the DY risk premiums (in recessions, expansions

and the differences) are insignificant for all weighting schemes. In contrast, the DS risk

premium is strongly procyclical.26 In expansions, the average return for DS mimicking

portfolios is small and ranges from a marginally significant -3.64% to an insignificant 0.51%.

In contrast, the annualized average returns are large and significant at the 5%-level in

recessions, ranging from -25.59% (for wFMB) to -14.28% (forHMLEW ). The corresponding

differences are significant at the 10%-level and range from -21.95% to -11.08%. Also, we see

that average returns decrease monotonically in DS exposure in recessions alone. As in the

unconditional case, the FF3M typically eradicates a substantial fraction of the recession

risk premium and therefore also the recession minus expansion difference.

Finally, the TS risk premium is consistently positive and economically large in both

24CFNAI is a weighted average of 85 indicators of U.S. economic activity and is available in real-time
since 2001. I use the 3-month moving average of the index. The results are similar for NBER dating.
25I lag the index by an extra month, to account fully for a reporting delay of about three to four weeks.
26It is important to note that neither ex ante nor ex post DS exposures are larger in recessions.
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states of the world, ranging from 4.96% to 6.29% in expansions and from 2.40% to 7.20%

in recessions. Due to the limited size of the recession sample, only the expansion risk

premiums are significant. These risk premiums are quite robust to the inclusion of SMB

and HML. In expansions, αFF3M is large and significant at about 5%. In recessions, αFF3M

is also large, but insignificant ranging from 1.98% to 4.63%. These conclusions hold up well

at the monthly frequency, although the DS and TS risk premiums vary a bit more over the

various weighting schemes, which is again similar to the unconditional case.

B.2 Cross-sectional regressions

The last twelve rows of Panel A and B l in Table IV present the average risk premium in CF-

NAI expansions and recessions, i.e., λ̂Exp = 1
TExp

∑
t:CFNAIt−1>−0.7

λ̂t and λ̂Rec = 1
TRec

∑
t:CFNAIt−1≤−0.7

λ̂t.

At the quarterly frequency, we see the familiar procyclical DS risk premium that is

much larger in absolute value in recessions at -25.59% (t = −2.31) versus -3.64 (t = −1.89)

in expansions. The difference is large and significant at -21.95% (t = −1.95). In contrast,

the TS risk premium is consistently positive at 6.04% (t = 3.41) in expansions and 3.84%

(t = 0.54) in recessions. Interestingly, the time-variation in the DS risk premium is similar

to the market risk premium, which is countercyclical at 24.62% (t = 2.36) in recessions

versus -2.15% (t = −1.06) in expansions.

The inclusion of characteristics eradicates the time-variation in the DS risk premium

to a large extent, leaving an economically large, but considerably smaller and insignificant

risk premium in recessions of -8.93% (t = −1.33). The TS risk premium remains positive,

large and significant in expansions at 4.37% (t = 3.13), but turns insignificantly negative

in recessions. The countercyclical MKT risk premium is robust to the inclusion of char-

acteristics. Further, the Size effect is negative in both states of the world, although much

stronger in recessions. In contrast, BM and MOM are positive in expansions alone.

To conclude, at both frequencies, I find that only the DS risk premium varies mean-

ingfully over the business cycle. Both in expansions and recessions, the DS risk premium

is eradicated largely when controlling for SMB in time-series regressions and Size in cross-
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sectional regressions. This finding is unsurprising given that the risk premium for SMB (in

the time-series) and Size (in the cross-section) is considerably larger in recessions than in

expansions, at 10% versus 1% and -4% versus -1.5%, respectively.

Also conditionally, this risk premium is inconsistent with how DS predicts aggregate

stock market returns. For instance, Henkel et al. (2011) find that DS predicts positively and

particularly so in recessions. However, this time-variation is consistent with the Size effect

and natural given that a countercyclical market risk premium implies that risk aversion

is larger in recessions and this is the exact time when the investor is most worried about

defaults. The absence of similar variation in the TS risk premium is perhaps consistent

with the idea that the slope of the yield curve is commonly used as a leading indicator

of recessions (Adrian and Estrella (2008)). As a result, TS is most strongly related to

the investment opportunity set in expansions, which counterbalances the countercyclical

variation in risk aversion.

IV State variables versus Fama and French (1993)

This section analyzes how the ICAPM state variables relate to both the Fama and French

(1993) factors (SMB and HML) and their underlying characteristics (Size and Book-to-

Market) in a uniform framework. In this way, I respond to (i) Fama and French (1993,

1996), who appeal to the ICAPM for theoretical justification, (ii) Petkova (2006) and Hahn

and Lee (2006), who argue that innovations in similar sets of state variables may substitute

for SMB and HML, and (iii) the risk factor versus characteristic controversy discussed in

Fama and French (1992), Daniel and Titman (1997) and Chordia et al. (2011), among

others.

To start, I additionally include SMB and HML in each rolling window, such that expo-

sures are estimated in a six-factor model similar to equations (2) and (3). In this section, I

analyze the state variable risk premiums. To conserve space, I present results only for the

quarterly frequency, but the results are similar at the monthly frequency. In unreported

results, I find that the post-ranking exposures of the ICAPM factor mimicking portfolios
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are only slightly smaller and less significant than what they are in the case without SMB

and HML. Thus, we can identify stocks ex ante that hedge the part of the ICAPM risk

factors that cannot be hedged by investing in SMB and HML alone.

A Mimicking portfolios

Table VI is similar to Tables III and V and presents average returns, Sharpe ratios and

FF3M alphas over the full sample as well as average returns in CFNAI expansions and

recessions (all annualized).

Insert Table VI about here.

First, consistent with most previous literature, both SMB and HML capture a posi-

tive risk premium of about 2% to 4%, which is significant only for the latter. Perhaps

unsurprisingly, both premiums are eradicated completely in the FF3M. Moreover, both

premiums are countercyclical, which is especially true for SMB at a significant 14% to

26% in recessions versus zero in expansions. Second, again, a DY risk premium is absent

unconditionally as well as in both states of the business cycle. Third, in all weighting

schemes but HMLMVW , we find a significant negative DS risk premium that ranges from

-5.81% to —1.85% (p < 0.10) and that is captured largely in the FF3M. Furthermore, in all

weighting schemes, the DS risk premium is lower in recessions, but now this time-variation

is only large and significant in case of wFMB. Finally, the TS risk premium is positive in

all weighting schemes ranging from an insignificant 1.49% for HMLMVW to a large and

significant 3% to 4% (p < 0.05) for the remaining weighting schemes. Again, this premium

is not captured well in the FF3M and is most robust in expansions.

I conclude that the state variable risk premiums are quite robust in size and sign to

controlling for exposures to SMB and HML. The various mimicking portfolios for DS, TS

and HML typically obtain an unconditional risk premium that is large and significant.

These risk premiums translate to annualized Sharpe ratios of about 0.25 to 0.40, which is

slightly smaller than what we had before in the case of DS and TS.
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B Cross-sectional regressions

Table VII presents cross-sectional regressions for the six-factor model similar to Table IV.

Insert Table VII about here.

Over the full sample and without characteristics, the TS and DS risk premiums are only

slightly smaller than in the case without SMB and HML at a large and significant -5.81%

(t = 2.63) and 4.13% (t = 2.53), respectively. The risk premium for exposure to MKT,

SMB and HML is positive at about 2%, but only the latter is marginally significant. The

inclusion of characteristics changes the risk premiums for DS, SMB and HML considerably.

For DS, the risk premium is forced down to a marginally significant -2.35% (t = −1.66),

whereas the risk premiums for SMB and HML are eradicated completely. Again, however,

it is comforting to see that the TS risk premium remains large and significant at 2.91%

(t = 2.21).

Over the business cycle, we see the usual variation for DS without characteristics, from

-3.10% (t = −1.94) in expansions to -21.34% (t = −1.89) in recessions. The TS risk

premium is positive in both states, but large and significant in expansions alone at 4.67%

(t = 2.94). Both the MKT and SMB risk premiums are strongly countercyclical, whereas

the HML risk premium is positive and similarly large in both states. When characteristics

are included, we see that only the countercyclical MKT risk premium and the TS risk

premium in expansions survive.

To conclude, the TS risk premium is robust to the inclusion of both SMB and HML

and their underlying characteristics in cross-sectional regressions.27 In these regressions,

the procyclical DS risk premium is not captured by the inclusion of SMB and HML, but it

is eradicated almost completely upon the inclusion of characteristics. The "failure" of SMB

and HML is perhaps surprising considering that the DS risk premium is (i) captured well

27Another indication that the TS risk premium is robust comes from running cross-sectional regressions
within three Size, Book-to-Market or momentum groups, as in Fama and French (2008). I find that the
TS risk premium is positive in all nine control groups and significant at over 3% in seven (except among
Big and low Book-to-Market stocks). These results are available upon request.
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in the FF3M in time-series regressions (Tables III and V) and (ii) less time-varying when

controlling for exposures to SMB and HML (Table VI). In contrast, given the evidence so

far, the "success" of characteristics, and Size in particular, is natural. Similar to DS, both

SMB and HML are captured well by characteristics.

In sum, the evidence in this section suggests that exposures to SMB and DS are priced

largely because these correlate with the underlying characteristic Size. Although HML and

TS are correlated risk factors, I find that a similar conclusion only applies for HML, which

is eradicated by the inclusion of Book-to-Market. The survival of the TS risk premium is a

strong and novel result, because previous work in Petkova (2006) and Hahn and Lee (2006)

suggests that HML and TS are subtitutes in pricing a set of 25 Size and Book-to-Market

portfolios. I cannot replicate this result in the cross-section of individual stocks. On top

of that, the present evidence suggests that TS is even separate (to a considerable extent)

from Book-to-Market, which is favored in this type of test, because it does not suffer from

any measurement error.

V Robustness checks

A Innovations in the risk-free rate

A number of previous studies include the three-month t-bill rate (RF) in the set of state

variables. I exclude RF, because it is largely redundant in the presence of TS. To validate

this claim, Table VIII presents cross-sectional regressions for portfolios (i.e., 25 size and

book-to-market and 5 industry portfolios as in Kan et al. (2012)) as a benchmark in Panel

A, and for individual stocks in Panel B. Model (1) includes all innovations from the extended

five-variable V AR, wherein the correlation between TS and RF is large at -0.78; Model (2)

excludes RF; Model (3) excludes TS; Model (4) uses RF and TS orthogonalized from RF;

and Model (5) uses RF orthogonalized from TS and TS. As is common in the literature,

I use full sample betas for portfolios.28 For individual stocks, I use the ex ante betas

28The results are similar for periodically updated betas.
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used throughout. To be consistent with previous work, I present results for the monthly

frequency. The quarterly results are similar, however.

Insert Table VIII about here.

A.1 30 Portfolios

First, we see that Model (1) explains the cross-section of portfolios well at an R2 of 0.74.

The risk premiums for TS and RF are large at 59.86% and -25.82%, respectively, but only

the former is significant. Interestingly, Models (2) and (3) show that the R2 drops only

marginally when RF is excluded (to 0.67), whereas it drops sharply when TS is excluded

(to 0.45). Further, in Model (4) we see that TS|RF adds to a model that already includes

RF, at a marginally significant risk premium of 39.73% (t = 1.87). Model (5) shows that

the reverse is not true, as RF is insignificant and reverses sign.29

In sum, these results suggest that it is largely the part of RF that is spanned by TS

that is priced, whereas there is a part of TS that is not spanned by RF, but priced. This

multicollinearity problem is also clear from the exposures. The cross-sectional correlation

between δi,TS and δi,RF from Models (2) and (3) equals -0.86, but is wildly different in

Model (1) at 0.65.

A.2 Individual stocks

We cannot conclude that TS has much to add to a model that already includes RF in the

cross-section of individual stocks. Having said that, relative to Models (1) to (3), TS|RF

remains positive and nonnegligble economically at 1.82% (t = 1.42) in Model (4), whereas

the risk premium for RF|TS switches sign in Model (5).30 Moreover, for individual stocks,

δi,TS,t−1 and δi,RF,t−1 are also sensitive to the methodology, given an average cross-sectional

correlation from Models (2) and (3) of about -0.70, but within Model (1) of 0.69. Thus, it

29Similarly, Lioui and Poncet (2011) show that the results for the V AR-ICAPM (and, in particular, RF)
are sensitive to the orthogonalization procedure.
30Note, these risk premiums are smaller, because the range in exposures within 30 portfolios is far below

one, such that the cross-sectional risk premium is scaled up.
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is again clear that the return space spanned by the two factors overlaps for a large part,

whereas TS is the most important of the two factors.31 On top of this, the exclusion of RF

is attractive, because this allows me to estimate one beta less per stock, per period.

B Cross-sectional regressions using mimicking portfolios as fac-

tors

The maximum correlation portfolio of Breeden et al. (1989), which projects the non-traded

factor on the test assets, gives identical total risk premiums (amount of risk times risk

premium) as the non-traded factor, whether or not the asset pricing model is true (Hou

and Kimmel (2009)). Since I am unable to estimate this portfolio and use an out-of-sample

procedure, this exact identity is lost. Therefore, Table IX tests whether this identity holds

approximately by running cross-sectional regressions that use exposures with respect to

the traded mimicking portfolios. The procedure to estimate these exposures is similar to

equations (2) and (3), with

(
α̂i,t−1, β̂i,m,t−1, δ̂

mp
i,t−1

)
= argmin

αi,t−1,βi,m,t−1,δ
mp
i,t−1

t−1∑
τ=1

K(τ)
(
ri,τ − αi,t−1 − βi,m,t−1rm,τ − δ

mp′

i,t−1r
mp
τ

)2
,

(10)

where rmpτ = (rmpDY,τ , r
mp
DS,τ , r

mp
TS,τ )

′, the vector of mimicking portfolio returns, and the super-

script mp indicates either HMLMVW , HMLEW , wbeta or wFMB.

I present Fama-MacBeth cross-sectional regressions without characteristics at the quar-

terly frequency, but the results are similar at the monthly frequency.32 The sample period

is 1972Q2 to 2010Q4, because the use of out-of-sample betas shrinks the sample by five

years. As a benchmark, I present results for the non-traded innovations as factors in the

first two rows. In the remaining rows, the type of mimicking portfolio used is given in the

31Consistent with this conclusion, I find that including the largest principal component of the two factors
gives results most similar to those when including TS alone.
32The inclusion of characteristics does not add any insight and has the same exact effect for the DS and

TS risk premiums as in the previous sections.
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first column. I scale the estimated risk premiums for DY, DS and TS to facilitate their

interpretation as total risk premiums.33

Insert Table IX about here.

First and foremost, we see that the risk premiums for exposure to the mimicking port-

folios of DS and TS are consisten in sign and economically large, but slightly smaller in

absolute value. In case of DS, the risk premiums range from -3.84% (t = −1.52, for wbeta) to

-5.04% (t = −2.16, for HMLMVW ), relative to -6.42% (t = 2.59) for the non-traded factor.

In case of TS, the risk premiums range from 3.06% (t = 1.36, for wbeta) to 4.73% (t = 1.95,

for wFMB), relative to 4.97% (t = 2.57) for the non-traded factor. A likely explanation for

the discrepancy is that the re-estimation of exposures in each rolling window has added a

second round of noise.

Over this shorter sample period, the risk premium for exposure to non-traded DY in-

novations increases to an insignificant 2%. Strikingly, the risk premiums for DY mimicking

portfolios are even larger and typically significant, ranging from 1% to 5%. I interpret

such a large DY risk premium cautiously, as this result is likely to be an artefact of the

methodology, as well. For instance, these mimicking portfolios are not orthogonalized from

the market and are much more correlated among each other than the non-traded factors.

Further, in unreported results, I find that the large premiums for DY mimicking portfolios

are easily eradicated when including characteristics.

In all, the evidence is unambiguous and in favor of a negative DS and a positive TS

risk premium that is economically large. Combined with the fact that the cross-sectional

R2’s are only slightly larger for the mimicking portfolios than for the non-traded innova-

tions, these results suggest that the two are similarly informative about the cross-section

of expected returns.

33To be specific, for each cross-sectional regression, I multiply the estimated risk premiums for DY, DS
and TS with the pre-ranking exposure of a market value-weighted High minus Low quintile portfolio, which
is constructed from a one-dimensional sort on exposures to each factor as in Table II. This means that if
two risk premiums are equal, roughly the same spread in expected returns is explained.
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VI Conclusions

This paper is the first to show that exposure to three state variables known to describe

investment opportunities in various asset classes (Dividend Yield (DY), Default Spread

(DS) and Term Spread (TS)) can be hedged well in the cross-section of individual stocks.

This finding is an important addition to the ICAPM literature, which has focused almost

exclusively on answering whether these state variables are priced in a small set of predeter-

mined portfolios. As a result, little guidance could be offered to practitioners who desire

to hedge. Moreover, the risk premiums I estimate in the cross-section of individual stocks

expose a new and interesting dimension along which state variable risk is priced, as existing

portfolio-level estimates are mixed and inconclusive.

To be precise, I find that exposure to innovations in DS and TS is priced at about

-4.5% and +5.5%, respectively, whereas exposure to DY risk is not. Moreover, the DS risk

premium is solely realized in recessions. I argue that these premiums are consistent with

Merton’s (1973) ICAPM, that is, each variable’s impact on future investment opportunies.

Also, I show that the DS risk premium is a Size effect, whereas the TS risk premium is

largely separate from the Fama and French (1993) factors and characteristics. Thus, in

contrast to previous literature, I cannot conclude that SMB and HML proxy for intertem-

poral risk. However, my results do add to the debate on whether rationally priced risks or

irrationally mispriced characteristics determine expected returns.

A number of extensions come to mind. First, I have largely ignored how the pre-

and post-ranking betas vary cross-sectionally and over time, which is relevant for more

advanced hedging strategies and portfolio optimization. Second, I leave open the question

of how to determine the optimal out-of-sample hedge portfolio, which relates to questions

in the literature on optimal portfolio choice (see, e.g., Kan and Zhou (2007)). Third, it

is unlikely that the state variables used in this paper capture all there is to know about

investment opportunities. I focus on the most commonly used set that is well-established

in the literature. Nevertheless, it could be fruitful to consider alternatives, such as the

VIX-index. Another interesting alternative, the Cochrane and Piazzesi (2005) factor, is
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found to be priced similar to TS in unreported results. Fourth, in future work the time-

series may be linked directly to the cross-section by imposing intertemporal restrictions on

the risk prices. However, doing this requires a better proxy of the wealth portfolio, and

perhaps a set of test portfolios that span the cross-section.
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Table IV: Fama-MacBeth cross-sectional regressions for individual stocks
This table presents cross-sectional regressions (from April or Q2 1967 to December or Q4
2010) for individual stocks at the quarterly (Panel A) and monthly (Panel B) frequency
for the four-factor ICAPM-model excluding (Model (1)) and including (Model (2)) char-
acteristics. I present annualized average risk premiums and cross-sectional R2’s over the
full sample in rows 1 to 4. The remaining rows in these panels present estimates in ex-
pansions, in recessions and the corresponding difference. Underneath each estimate are
Fama-MacBeth t-statistics in brackets, which use the time-series standard deviations of
the quarterly or monthly slopes. Recessions periods follow a CFNAI-value ≤ −0.7. As a
benchmark, I present full sample results for the Fama-French three-factor model (FF3M)
at the quarterly frequency in Panel C.

λ0 λMKT λDY λDS λTS λSize λBM λMOM R2

Panel A: Quarterly data
(1) Full 7.35 1.83 0.46 -6.90 5.71 3.72

(3.75) (0.75) (0.21) (-2.89) (3.12)
(2) Full 27.54 1.99 -0.43 -2.51 3.61 -1.68 3.71 3.49 6.75

(3.75) (1.01) (-0.24) (-1.69) (2.63) (-3.03) (4.55) (1.49)
(1) Exp. 9.04 -2.15 -0.07 -3.64 6.04 3.32

(4.73) (-1.06) (-0.03) (-1.89) (3.41)
(1) Rec. -2.29 24.62 3.52 -25.59 3.84 5.99

(-0.32) (2.36) (0.45) (-2.31) (0.54)
(1) Diff. -11.32 26.77 3.60 -21.95 -2.20 2.67

(-1.54) (2.52) (0.44) (-1.95) (-0.30)
(2) Exp. 23.53 -0.77 -0.53 -1.39 4.37 -1.23 3.99 6.60 6.26

(2.99) (-0.43) (-0.29) (-1.09) (3.13) (-2.05) (4.69) (3.23)
(2) Rec. 50.57 17.81 0.16 -8.93 -0.73 -4.21 2.09 -14.32 9.55

(2.52) (2.29) (0.03) (-1.33) (-0.16) (-3.11) (0.82) (-1.43)
(2) Diff. 27.05 18.58 0.69 -7.54 -5.10 -2.98 -1.90 -20.91 3.29

(1.25) (2.33) (0.12) (-1.10) (-1.06) (-2.01) (-0.71) (-2.05)
Panel B: Monthly data

(1) Full 8.04 1.23 2.00 -5.54 5.73 2.68
(4.94) (0.49) (0.69) (-2.31) (2.75)

(2) Full 33.70 2.61 2.28 -0.54 2.89 -2.26 3.05 6.47 5.02
(5.21) (1.18) (0.97) (-0.31) (1.75) (-4.37) (4.57) (3.46)

(1) Exp. 8.66 -1.26 0.96 -2.42 5.65 2.59
(5.23) (-0.49) (0.31) (-1.03) (2.80)

(1) Rec. 4.39 15.77 8.04 -23.71 6.23 3.20
(0.80) (1.90) (0.96) (-2.71) (0.78)

(1) Diff. -4.28 17.03 7.08 -21.28 0.58 0.61
(-0.75) (1.97) (0.79) (-2.35) (0.07)

(2) Exp. 30.04 0.60 2.18 0.71 3.14 -1.88 3.34 9.27 4.90
(4.33) (0.26) (0.86) (0.40) (1.93) (-3.36) (4.85) (5.31)

(2) Rec. 54.95 14.27 2.87 -7.81 1.41 -4.46 1.34 -9.80 5.77
(3.12) (2.10) (0.45) (-1.32) (0.23) (-3.38) (0.63) (-1.31)

(2) Diff. 24.91 13.66 0.69 -8.52 -1.73 -2.57 -2.00 -19.06 0.87
(1.32) (1.91) (0.10) (-1.37) (-0.27) (-1.79) (-0.89) (-2.48)

Panel C: Benchmark - FF3M (Quarterly data)
λ0 λMKT λSMB λHML λSize λBM λMOM R2

(1) Full 6.89 1.78 2.04 2.66 4.25
(3.71) (0.74) (1.30) (2.03)

(2) Full 28.63 2.58 0.29 0.15 -1.79 3.59 2.59 6.82
(4.10) (1.29) (0.25) (0.15) (-3.40) (4.73) (1.10)
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Table VI: Risk premiums of mimicking portfolios controlling for exposure to
SMB and HML
This table is similar to Table III and V and presents annualized risk premiums for mimicking
portfolios in the extended six-factor model that includes the market return, the Fama and
French factors (SMB and HML, Panels A and B) and the ICAPM factors (DY, DS and TS,
Panels C to E) at the quarterly frequency. As before, the pre-ranking betas are estimated
jointly using only historical data at the end of each period t−1. I present the unconditional
average return (µFull), Fama-French alpha (αFF3M), Sharpe ratio (θ) and average return
in CFNAI expansions and recessions (µExp and µRec). ***,**,* indicate significance at the
1%, 5% and 10%-level, respectively, using White’s heteroskedasticity-consistent standard
errors.

Quarterly data
µFull αFF3M θ µExp µRe c

Panel A: Size (SMB)
HMLMVW 2.93 -1.52 0.14 -1.09 25.98**
HMLEW 3.91 -1.11 0.18 0.15 25.47**
wbeta 2.98 -1.19 0.16 -0.24 21.43**
wFMB 2.26 -0.24 0.22 0.20 14.11**

Panel B: Book-to-Market (HML)
HMLMVW 3.19 -1.33 0.20 2.70 5.96
HMLEW 4.27** 1.28 0.33 3.69* 7.59
wbeta 3.99** 1.17 0.32 3.53* 6.60
wFMB 2.28* 0.85 0.27 2.07* 3.44

Panel C: Dividend Yield (DY)
HMLMVW -0.50 0.31 0.04 0.45 -5.93
HMLEW -1.18 -0.35 0.14 -0.78 -3.45
wbeta -1.16 -0.45 0.15 -0.73 -3.64
wFMB 0.50 -0.10 0.04 -0.25 4.80

Panel D: Default Spread (DS)
HMLMVW 2.55 4.02** 0.23 2.63 2.11
HMLEW -1.85* -0.46 0.26 -1.75 -2.43
wbeta -2.06* -0.64 0.29 -1.45 -5.60
wFMB -5.81*** -2.53 0.40 -3.10* -21.34*

Panel E: Term Spread (TS)
HMLMVW 1.49 0.11 0.12 1.93 -1.03
HMLEW 3.25** 2.47** 0.34 4.28*** -2.69
wbeta 3.33** 2.68** 0.37 4.29*** -2.20
wFMB 4.13** 2.94* 0.38 4.67*** 1.04
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Table VIII: Exclusion of Risk-Free rate from set of ICAPM-factors
This table serves to justify the exclusion of the risk-free rate (RF) from the set of ICAPM
factors. I present cross-sectional regressions at the monthly frequency (to be consistent
with most previous literature) for (i) a set of 30 portfolios (25 size and book to market
and 5 industry, as in Kan et al. (2012)) in Panel A and (ii) individual stocks in Panel B.
For portfolios, I estimate the V AR-innovations and first stage betas over the full sample
as is usual. For individual stocks, I use the periodically updated V AR and betas used
throughout. I consider five models. Model (1) contains all four ICAPM factors and the
MKT; Model (2) excludes RF; Model (3) excludes TS; Model 4 includes RF, but TS is
orthogonalized from RF (TS|RF); and finally, Model (5) includes RF orthogonalized from
TS (RF|TS) and TS itself. I present average estimated risk premiums (with corresponding
t-statistics in brackets, based on Shanken (1992) standard errors in Panel A and Fama and
MacBeth (1973) standard errors in Panel B) and cross-sectional R2’s (from a regression of
average returns on betas in Panel A and the time-series average of the cross-sectional R2

in Panel B.)

λ0 λMKT λDY λDS λRF λTS R2

Panel A: Cross-sectional regressions for 30 portfolios
(1) RF and TS 13.03 -7.21 -5.81 46.07 -25.82 59.86 74.41

(2.44) (-1.20) (-0.57) (1.87) (-1.22) (2.31)
(2) TS 8.46 -2.66 -4.42 17.80 51.54 66.65

(1.44) (-0.41) (-0.55) (0.94) (2.76)
(3) RF 5.67 0.49 -2.07 -3.83 -45.54 45.04

(0.97) (0.07) (-0.27) (-0.20) (-2.59)
(4) RF and TS|RF 13.03 -7.21 -5.81 46.07 -25.82 39.73 74.41

(2.44) (-1.20) (-0.57) (1.87) (-1.22) (1.87)
(5) RF|TS and TS 13.03 -7.21 -5.81 46.07 20.87 59.86 74.41

(2.44) (-1.20) (-0.57) (1.87) (1.09) (2.31)
Panel B: Cross-sectional regressions for individual stocks

(1) RF and TS 8.09 1.06 0.39 -6.02 -3.38 5.12 2.93
(4.98) (0.42) (0.14) (-2.59) (-1.49) (2.55)

(2) TS 8.04 1.23 2.00 -5.54 5.73 2.68
(4.94) (0.49) (0.69) (-2.31) (2.75)

(3) RF 8.20 1.32 0.44 -6.27 -3.21 2.73
(5.01) (0.52) (0.15) (-2.60) (-1.40)

(4) RF and TS|RF 8.15 1.06 0.37 -5.95 -3.36 1.82 2.93
(5.01) (0.42) (0.13) (-2.56) (-1.49) (1.42)

(5) RF|TS and TS 8.10 1.06 0.37 -5.94 0.81 5.34 2.93
(4.98) (0.42) (0.13) (-2.55) (0.54) (2.65)
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Table IX: Cross-sectional regressions with mimicking portfolios of DY, DS and
TS as factors
This table is similar to Table IV and presents Fama-MacBeth cross-sectional regressions
that use the mimicking portfolios, analyzed in Section II and III, as factors. Due to the out-
of-sample nature of the mimicking portfolios, this means that the sample period shrinks
by five years and runs from April or Q2 1972 to December or Q4 2010. I present five
regressions row-wise, where the set of factors is given in the second column. First, I repeat
the risk premium for exposure to the non-traded innovations. Next, I present the risk
premiums for exposures to each of four mimicking portfolios, i.e., HMLMVW , HMLEW ,
wbeta or wFMB. For interpretative purposes, the risk premiums for DY, DS and TS are
scaled by the pre-ranking exposure of the HMLMVW mimicking portfolio to the factor of
interest. For each model, I present the scaled time-series average risk premium λ̂sFull (with
corresponding Fama and MacBeth (1973) t-statistics underneath each estimate) as well as
the time-series average cross-sectional R̂2.

Quarterly data
Type DY,DS,TS λ0 λMKT λDY λDS λTS R2

Non-traded V AR-innovations 7.73 1.85 2.21 -6.42 4.97 3.29
(3.72) (0.73) (1.05) (-2.59) (2.57)

Mimicking HMLMVW 8.02 1.70 1.98 -5.04 3.09 3.43
portfolios (3.96) (0.71) (0.82) (-2.16) (1.45)

HMLEW 7.72 1.62 4.76 -4.07 3.28 3.90
(3.78) (0.69) (2.29) (-1.59) (1.42)

wbeta 7.66 1.78 4.35 -3.84 3.06 3.90
(3.76) (0.75) (2.06) (-1.52) (1.36)

wFMB 7.70 1.97 3.59 -4.14 4.73 3.98
(3.75) (0.75) (1.55) (-1.48) (1.95)
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