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Inter-firm relationships, such as strategic alliances, joint ventures, R&D partnerships, and customer-

supplier relationships, are prevalent in modern economies. A growing body of empirical work

highlights the importance of these relationships in the case of firms’ distress and shows that they

may serve as propagation mechanisms of negative shocks to individual firms.1 For instance, consider

South Africa’s platinum miners’ strike in 2014, which affected the world’s top platinum producers,

Anglo American Platinum, Impala Platinum, and Lonmin. First, platinum production decreased.

Because platinum is used in many industrial applications such as oil cracking, some manufacturing

firms may have faced higher production costs, as they needed to restructure their production given

the lack of platinum. This, in turn, may have increased costs for some wholesale firms which, in

turn, may have decreased some retailers’ profits. Namely, a negative shock to a firm (or group of

them) may spread to others via inter-firm relationships, and in doing so, potentially alter aggregate

economic growth and volatility as well as asset prices and risk premia.

In this paper, I study the asset pricing properties that stem from the propagation of shocks

within a network economy and the extent to which such a propagation mechanism quantitatively

explains asset market phenomena. To do so, I develop a dynamic, network-based equilibrium model

in which the propagation of shocks determines, in large part, firms’ cash-flow growth rates. To get

a sense of the quantitative impact in asset prices of such a propagation mechanism, I calibrate the

model to match features of customer-supplier networks in the U.S. To the best of my knowledge,

this study is among the first to explore the extent to which the propagation of shocks within a

network economy quantitatively explains asset market phenomena.

The main finding of this paper is that changes in the propagation of shocks within a network

economy are important to understand variations in asset prices and returns, both in the aggregate

and in the cross section. In the aggregate, a calibrated model generates a persistent component in

expected consumption growth and stochastic consumption volatility similar to those in Bansal and

Yaron (2004). As in Bansal and Yaron (2004), these two features, together with Epstein-Zin-Weil

preferences, help explain characteristics of aggregate asset market data such as the equity premium

and the low risk-free rate. The calibrated model also helps in understanding the cross section of

expected returns, because it provides a mapping between firms’ quantities of risk and firms’ location

1See Lang and Stulz (1992), Cohen and Frazzini (2008), Hertzel et al. (2008), Menzly and Ozbas (2010), Boone
and Ivanov (2012), Kelly, Lustig, and Nieuwerburgh (2013) and Barrot and Sauvagnat (2014).
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in the network. For instance, firms that are more central in the network command a higher risk

premium than firms that are less central. On average, firms in the highest quintile of centrality

yield an annual excess return of 1% over those firms in the lowest quintile. This prediction is

aligned with the 3% excess return documented by Ahern (2013) in the network of intersectoral

trade. In the time series, firm-level return volatilities exhibit a high degree of comovement—which

is consistent with evidence documented by Herskovic et al. (2014) and Duarte et al. (2014).

The main features of the model are as follows. The economy is composed of n firms whose cash-

flow growth rates vary stochastically over time. In an otherwise standard dynamic endowment

economy, firms’ cash-flow growth rates are related via a network of inter-firm relationships, such as

a supply chain, which is exogenous and fixed.2 Each relationship generates benefits that increase

a firm’s cash-flow growth rate. However, relationships also increase a firm’s exposure to negative

shocks that affect other firms. In other words, the more relationships a firm is engaged in, the

more benefits a firm receives and the higher its exposure to negative shocks that affect other

firms in the network. To be more concrete, each firm faces a negative shock to its cash-flow

growth rate, independently of others, with probability q—which is time-invariant and equal across

firms—at very beginning of each period. Then, these negative shocks spread from one firm to

another via inter-firm relationships in a probabilistic manner. In particular, a negative shock

to firm i at period t propagates to firm j at t if there exists a sequence of relationships that

connects firms i and j in which each relationship in the sequence transmits shocks at period t. For

simplicity, each relationship potentially transmits shocks, independently of all other relationships,

with probability pt at period t.3 The value of pt captures the relative importance of relationship-

specific investments made by the average firm in a network economy. The higher the value of

pt, the more important relationships are on average, and the higher the likelihood that shocks

propagate through the economy at period t. To allow changes in the propagation of shocks within

the network, the propensity of inter-firm relationships to transmit shocks, pt, is allowed to vary

2The network of inter-firm relationships is assumed to be fixed for two reasons: (a) tractability, and (b) to capture
the long-term nature of some customer-supplier relationships that allow connected firms to circumvent difficulties in
contracting due to unforeseen contingencies, asymmetries of information, and specificity on firms’ investments, e.g.
Williamson (1979, 1983).

3In the baseline model, I only allow negative shocks to propagate in a probabilistic manner. However, the model
can be augmented so that positive and negative shocks propagate over the network using the above probabilistic
process. The main results continue to hold as long as the decrease in firms’ cash-flows due to negative shocks is larger
than the increase in firms’ cash-flows due to positive shocks.
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over time. As a consequence, the volatility of aggregate cash-flows and the correlation among firms’

cash-flows are time-varying. Temporal changes in pt capture changes in production technologies

and complementarities among firms’ activities. The pricing is done by a representative agent with

Epstein-Zin-Weil preferences to embed the time-varying cash-flow correlation structure—which is

endogeneously generated by the network—in a standard asset pricing model.

The above framework has two important properties. First, cash-flow growth rates are inde-

pendent across firms in the absence of relationships. Second, if only one sequence of relationships

connects two firms, the longer the sequence, the smaller the correlation between their cash-flow

growth rates. Namely, the more distant two firms are in the network economy, the less related their

cash-flows.

The distribution of consumption growth is shaped by two characteristics within the model: (a)

the topology of the network of relationships and (b) the propensity of relationships to transmit

shocks. Since the network is fixed, the calibrated model is able to generate a persistent component

in expected consumption growth and stochastic consumption volatility as long as the propensity of

relationships to transmit shocks exhibits persistent time variation. The persistent time variation in

the propensity of relationships to transmit shocks within the calibrated model is motivated by the

high persistence exhibited by macroeconomic variables that proxy for the level of input specificity

faced by the average firm within the U.S. economy. As Barrot and Sauvagnat (2014) show, input

specificity is an important driver of the propagation of shocks within customer-supplier networks.

Suppliers of specific inputs are more difficult to replace in case of distress, and, thus, shocks may

propagate more easily from one firm to another.4

In the cross section, shocks to central firms have a higher likelihood of affecting more firms

than do shocks to less central firms. As a consequence, central firms are procyclical, whereas less

central firms serve as a hedge against aggregate risk and command lower risk premium. Changes

in the propensity of relationships to transmit shocks drive fluctuations in growth opportunities and

uncertainty across firms. These fluctuations translate into changes in stock prices and returns at

equilibrium, which produces a factor structure in returns and returns volatilities at the firm level.

4To calibrate the model, I use the time series of R&D/GDP and the number of patents created in the U.S. as
measures of the degree of input specificity faced by the average firm in the U.S. The ratio R&D/GDP aims to proxy
for the intensity of relationship-specific investments faced by the average firm, whereas the number of patents proxies
for how easily the average firm can substitute its inputs whenever a supplier is under distress.
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This paper contributes to several strands of the literature. First, it develops a new theoretical

framework that relates to a growing body of work focused on understanding the effects of economic

linkages in asset pricing properties. Buraschi and Porchia (2012) show that firms more central

in a market-based network have lower price dividend ratios and higher expected returns. Using

the network of intersectoral trade, Ahern (2013) shows that firms in more central industries have

greater exposure to systematic risk. Unlike these papers, my study uses relationships at the firm

level to explore the asset pricing properties that stem from the propagation of shocks within a

network between firms’ cash-flow and the extent to which changes in such a propagation mechanism

quantitatively explain asset market phenomena. Using customer-supplier networks, Kelly, Lustig,

and Nieuwerburgh (2013) propose that the size distribution and firm volatility distribution are

intimately linked. However, they do not explore the equilibrium asset pricing implications of such

networks. In a contemporaneous paper, Herskovic (2015) focuses on efficiency gains that come from

changes in the input-output network and how those changes are priced in equilibrium. This paper,

on the other hand, focuses on how changes in the propagation of shocks within a fixed network

alter equilibrium asset prices, risk premia, and stock return volatilities across firms.

I also add to a body of work that explores how granular shocks may lead to aggregate fluctuations

in the presence of linkages among different sectors of the economy, e.g. Carvalho (2010), Gabaix

(2011), Acemoglu et al. (2012); Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015), Carvalho and

Gabaix (2013), among others. This literature focuses mostly on analyzing changes in aggregate

economic variables due to changes in the input-output network rather than exploring the asset

pricing implications of linkages among firms. This paper expands this literature by exploring the

asset pricing implications of linkages at the firm level and studying how changes in the propagation

of shocks within a network affect aggregate variables as well as asset pricing, both in the aggregate

and in the cross-section.

The rest of the paper is organized as follows: Section I explains the baseline model. Section II

describes aggregate output and consumption growth within the baseline model. Section III derives

expressions for the market return, the risk-free rate, the price of risk, firms’ stock prices, and firms’

quantity of risk in large network economies. Section IV uses data on customer-supplier networks

in the U.S. as well as macroeconomic variables related to the propagation of shocks within these

networks to calibrate the baseline model. Section V shows that changes in the propagation of
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shocks within large network economies are quantitatively important to understand variations in

asset prices and returns, both in the aggregate and in the cross section. Section VI concludes. All

proofs, unless otherwise stated, appear in the Appendix.

I. Baseline Model

A. The Environment

Consider an economy with one perishable good and an infinite time horizon. Time is discrete and

indexed by t ∈ {0, 1, 2, · · · }. The economy is populated by a large number of identical infinitely-lived

individuals who are aggregated into a representative infinitely-lived investor with Epstein-Zin-Weil

preferences who owns all assets in the economy. In each period, the single good is produced by n

infinitely-lived Lucas (1978) trees, henceforth firms, with n being potentially large. In an otherwise

standard dynamic endowment economy, firms’ cash-flows are related via a network of inter-firm

relationships. Interdependencies among firms’ cash-flows can be conveniently described by a graph

consisting of a set of nodes—which represent firms—together with lines or edges joining certain

pairs of nodes—which represent inter-firm relationships. To fix notation, let Gn = (Fn,Rn) denote

the network of inter-firm relationships among n firms, where Fn denotes the set of firms and Rn

denotes the set of inter-firm relationships among them. Because I focus on the effect of Gn on

asset prices rather than on strategic network formation, inter-firm relationships are exogenously

determined and fixed before t = 0.5

B. The network of inter-firm relationships Gn and firms’ cash-flows

Firms’ cash-flows vary stochastically over time and depend in large part on the network of

inter-firm relationships, Gn. The following reduced form formulation of firms’ cash-flows captures a

simple trade-off in a parsimonious manner. The more relationships a firm is engaged in, the more

benefits a firm receives and the higher its exposure to negative shocks that propagate through the

network. Let yi,t+1 denote firm i’s cash-flow at t + 1, and Yt ≡ ∏n
i=1 y

1/n
i,t denote the aggregate

5See Demange and Wooders (2005), Goyal (2007) and Jackson (2008) for a detailed description of network
formation models.
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output of the economy at t.6 I assume that yi,t+1 follows

log

(
yi,t+1

Yt

)
≡ α0 + α1di − α2

√
nε̃i,t+1 , i ∈ {1, · · · , n} (1)

where parameters α0, α1 and α2 are non-negative and equal across firms. Parameter di represents

the number of relationships of firm i in Gn, i.e. firm i’s degree in Gn. This parameter may differ

across firms. The term
√
n is included as a normalization factor in equation (1), which helps to

characterize the equilibrium distribution of aggregate consumption growth later on. Uncertainty in

yi,t+1 is introduced by a Bernoulli random variable ε̃i,t+1, which equals one if firm i faces a negative

shock at t+ 1 and zero otherwise. Given that

log

(
yi,t+1

Yt

)
= log

(
yi,t+1

yi,t

)
+ log

(
yi,t
Yt

)
(2)

parameter α2 in equation (1) measures the instantaneous decrease in a firm’s cash-flow growth

when a firm faces a negative shock, whereas parameter α1 captures the benefits a firm receives

from each relationship it engages in. Parameter α0 in equation (1) captures the parts of firms’

cash-flow growth that are unrelated to benefits or costs associated to inter-firm relationships.7

To complete the description of yi,t+1, it is necessary to understand how inter-firm relationships

affect the distribution of ε̃i,t+1 at t+1. Such a distribution is determined by the following random-

network model. First, each firm faces a negative shock to its cash-flow growth, independently of

other firms, with probability q at the very beginning of each period. A negative shock to firm i at

t+ 1 propagates to firm j at t+ 1 if there exists a path of relationships in Gn that connects firms

i and j in which each relationship in the path transmits shocks at t + 1. A path is a sequence of

6The definition of Yt implies that positive aggregate production requires positive production by each firm. To
assume that Yt ≡∏n

i=1 y
1/n
i,t is similar to assuming that Yt is proportional to

∑n
i=1 yi,t if n is sufficiently large and all

yi,t �= 0. The argument follows from applying a first order Taylor series expansion to log (Yt) in which aggregate output,

Yt ≡∑n
i=1 yi,t. A different way of justifying that Yt ≡ ∏n

i=1 y
1/n
i,t is to consider that every firm produces a different

perishable good and each good is necessary to produce other goods in the economy. In such an environment, one
obtains asset pricing properties similar to the ones obtained in this paper if the representative investor has preferences
over a Cobb-Douglas consumption aggregator of the form Ct ≡ ∏n

i=1 c
1/n
i,t , where ci,t represents consumption of the

good produced by firm i at time t.
7Blume et al. (2013) analyze a similar trade-off in a static environment. They focus, however, on the strategic

network formation features of economies in which agents receive benefits from the set of direct links they form, but
these links expose them to the risk of being affected by cascades of failures. They provide asymptotic bounds on the
welfare of both optimal and stable networks and show that very small amounts of “over-linking” may impose large
losses in welfare to networks’ participants.
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inter-firm relationships that connects a sequence of firms that are each distinct from one another.

Each relationship transmits shocks, independently of all other relationships, with probability p̃t+1

at t + 1, which may vary over time.8 I only allow negative shocks to propagate in a probabilistic

manner throughout the network to focus on the propagation of shocks in the case of firms’ distress.

However, equation (1) can be modified so that positive and negative shocks propagate over the

economy. The main results continue to hold as long as the decrease in firms’ cash-flows due to

negative shocks is larger than the increase in firms’ cash-flow due to positive shocks.

The value of p̃t+1 captures the importance of restrictions on alternative sources of substitutable

inputs for the average firm as well as the importance of relationship-specific investments made

by the average firm at t + 1. The higher the value of p̃t+1, the more important relationships are

on average, and the higher the likelihood that shocks are transmitted via relationships at t + 1.

For example, in the context of supply chains, Barrot and Sauvagnat (2014) show that input’s

specificity, switching costs, and complementaries among firms’ activities may allow negative shocks

to individual firms to propagate and affect other firms in a production chain. The existence of

switching costs may prevent firms from restructuring their production sufficiently fast when they

need to replace a supplier who is under distress, so negative shocks tend to spread from one firm

to another.

To sum up, equation (1) captures the potential consequences of some inter-firm relationships

in a simple manner. Despite the fact that firms may use relationships to increase their growth

opportunities via efficiency gains, these relationships may have additional consequences because

they may also increase a firm’s exposure to negative shocks that affect a broader set of firms in the

economy. In fact, for a given set of parameters, it follows from equation (1) that firms’ expected cash-

flow growth rates initially increase in the number of relationships of a firm, but then fall since the

benefits associated with relationships are eventually overcompensated by the increase in exposure

to negative shocks. Despite the fact that equation (1) is a reduced form formulation, this feature

8This random-network model can be thought of as a variation of either a reliability network or a bond percolation
model in each period. In a typical reliability network model, the edges of a given network are independently removed
with some probability. Remaining edges are assumed to transmit a message. A message from node i to j is transmitted
as long as there is at least one path from i to j after edges removal (see Colbourn (1987) for more details). Similarly,
in a bond percolation model, edges of a given network are removed at random with some probability. Those edges
that are not removed are assumed to percolate a liquid. The question in percolation is whether or not the liquid
percolates from one node to another in the network—which is similar to the problem of transmitting a message in a
reliability context. For more details see Grimmett (1989), Stauffer and Aharony (1994) and Newman (2010, Chapter
16.1).
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of firms’ expected cash-flow growth can also be obtained within an equilibrium context. Goyal and

Moraga-González (2001) obtain the same feature in firms’ profits within strategic environments

where firms collaborate in a (regular) R&D network to decrease their production costs but they

also compete with their collaborators within the same homogeneous good market.

Given the topology of Gn, the joint distribution of the sequence {ε̃i,t+1}ni=1 at t+1 is determined

by two parameters: q, p̃t+1. The marginal distribution of ε̃i,t+1 at t+1, conditional on p̃t+1, depends

on q as well as the topology of Gn and the location of firm i in Gn. In other words,

P
(
ε̃i,t+1 = 1

∣∣p̃t+1

)
= f (q, topology of Gn, location of firm i in Gn) (3)

where P
(
ε̃i,t+1 = 0

∣∣p̃t+1

)
= 1 − P

(
ε̃i,t+1 = 1

∣∣p̃t+1

)
, and f(·) is a mapping characterized by the

random-network model described above—which may be hard to characterize in closed-form for

general network topologies as n increases.

The above mapping has two important properties. First, in the absence of relationships,

P
(
ε̃i,t+1 = 1

∣∣p̃t+1

)
= P (ε̃i,t+1 = 1) = q , ∀ i and t + 1, so cash-flow growth rates are indepen-

dent and identically distributed across firms over time. Second, if only one path of relationships

exists between two firms, the longer the path, the smaller the correlation between their cash-flows

growth rates. Thus, the more distant two firms are in a network in which there is at most one path

between two firms, the less related their cash-flows are. Having this feature—which is sometimes

called correlation decay, e.g. Gamarnik (2013)—helps a great deal to obtain numerical solutions of

the model in large network economies relatively fast.

C. Changes in shock propagation within Gn

Given a network Gn, the correlation structure among firms’ cash-flows depends, in large part,

on the propensity of relationships to transmit shocks, p̃t. Sufficiently small values of p̃t imply that

shocks tend to remain locally confined and affect only negligible fractions of the economy, whereas

sufficiently large values of p̃t imply that shocks may affect a large fraction of the economy for some

network topologies and, thus, alter the distribution of the pricing kernel.

To capture temporal changes in production technologies and complementaries among firms’

activities, the propensity p̃t is time-varying and follows a two state ergodic Markov process, taking
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on either the value pL or pH , with 0 ≤ pL < pH < 1. The transition probability matrix of p̃t, Ωp,

is defined by

P(p̃t+1 = pH |p̃t = pH) = ψ(1− φ) + φ , (4)

P(p̃t+1 = pH |p̃t = pL) = ψ(1− φ)

where ψ is the unconditional probability that p̃t = pH . Parameter φ, which measures the persistence

in p̃t, satisfies 0 ≤ φ < 1, so p̃t is positively autocorrelated. If φ = 0, then p̃t’s are i.i.d. over time.

As φ tends to 1, p̃t’s become perfectly positively correlated over time.

II. Distribution of Consumption Growth

Two components of the model are important to understand equilibrium asset prices: (a) the

topology of the network Gn, and (b) the propensity of relationships to transmit shocks. Before I

discuss the cross-sectional asset pricing properties that stem from the propagation of shocks within

Gn, I study how changes in these two components affect the distribution of aggregate consumption

growth and, thus, alter the distribution of the pricing kernel. Let Δc̃t+1 ≡ log
(
C̃t+1

Ct

)
and x̃t+1 ≡

log
(
Yt+1

Yt

)
be the log consumption and output growth at t+1, respectively. In equilibrium, Δc̃t+1 =

x̃t+1. From the definition of aggregate output and equation (1) it follows that,

Δc̃t+1 = x̃t+1 = log

(
n∏

i=1

(
yi,t+1

Yt

)1/n
)

=

n∑
i=1

1

n
log

(
yi,t+1

Yt

)

= α0 + α1

(
1

n

n∑
i=1

di

)
︸ ︷︷ ︸−α2

√
n

(
1

n

n∑
i=1

ε̃i,t+1

)
︸ ︷︷ ︸

= α0 + α1 d̄ − α2

√
n W̃n,t+1 , (5)

where d̄ denotes the average number of relationships per firm in the economy, whereas W̃n,t+1

denotes the average number of firms affected by negative shocks at t+ 1. It follows from equation

(5) that the distribution of Δc̃t+1 is determined by the distribution of
√
nW̃n,t+1. Because the
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distribution of
√
nW̃n,t+1 is affected by p̃t+1 and the topology of Gn, these two components also

affect the distribution of Δc̃t+1.

To appreciate the importance of p̃t+1 and the topology of Gn in shaping the distribution of Δc̃t+1,

consider the simple case in which there are no relationships. In this case, {ε̃i,t+1}ni=1 is a sequence

of i.i.d. Bernoulli random variables, so nW̃n,t+1 follows a Binomial distribution. By the Lindeberg-

Lévy Central Limit Theorem,
√
nW̃n,t+1 is normally distributed as n grows large. Provided the

absence of relationships, the realization of p̃t+1 is irrelevant to determining the distribution of Δc̃t+1.

From equation (5) it follows that the unconditional mean and variance of Δc̃t+1 are (α0−α2q) and

q(1− q)α2
2, respectively.

In the presence of relationships, however, p̃t+1 and the topology of Gn affect the distribution

of consumption growth in two important ways. First, all moments of the distribution of Δc̃t+1 at

t + 1 potentially depend on the realization of p̃t+1 and the topology of Gn. Second, the sequence

{ε̃i,t+1}ni=1 at t + 1 is a sequence of dependent random variables, so the conditions under which

a Central Limit Theorem (CLT) holds may not be satisfied. In fact, relationships may generate

convoluted interdependencies among firms’ cash-flows, which it makes difficult to characterize the

distribution of Δc̃t+1 for general network topologies.

In general, there is no guarantee that Δc̃t+1 is normally distributed, despite the fact that Δc̃t+1

comes from aggregating shocks to individual firms, as in Acemoglu, Ozdaglar, and Tahbaz-Salehi

(2015). In fact, for a large variety of network topologies, simulation shows that the distribution of

Δc̃t+1 may differ from a normal distribution. In particular, if p̃t+1 is sufficiently close to 1 and Gn

is locally connected—i.e., there is at least one path between any two firms in an arbitrarily large

neighborhood around any given firm—then a non-negligible fraction of the economy is almost surely

affected by shocks to individual firms that propagate over the economy. Therefore, the distribution

of Δc̃t+1 may exhibit thicker tails than a normal distribution would. Figure 1 illustrates the

previous point. Figure 1(a) depicts an economy with n = 5 firms, whereas figure 1(b) depicts

the empirical probability density function of
√
nW̃n,t+1 for different values of p̃t+1. As figure 1(b)

shows, the distribution of
√
nW̃n,t+1 may differ from a normal distribution for large values of p̃t+1.

In particular, as p̃t+1 tends to one, the distribution of
√
nW̃n,t+1 tends to be bimodal.

Despite the existence of relationships and the convoluted dependencies they may generate among

firms’ cash-flows, the topology of Gn and p̃t+1 can be restricted so that Δc̃t+1 is normally distributed
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as n grows large. In such a case, keeping track of temporal changes of the whole distribution of

Δc̃t+1 is equivalent to keeping track of temporal changes in only averages and standard deviations.

In particular, if shocks tend to remain locally confined—i.e., shocks only propagate over fractions

of the economy that become negligible as n grows large—the sequence {ε̃i,t+1}ni=1 at t+1 becomes

a sequence of weakly dependent random variables to which a CLT can be applied. Then, the

dynamics of consumption growth can be recast as a version of Hamilton (1989)’s Markov-switching

model.

To fix the notation, let Gn+1 denote the network Gn, to which I add one new firm and all

the relationships the new firm may have with existing firms within Gn. The following proposition

imposes sufficient conditions on: (a) the limiting topology of the sequence of networks {Gn}∞n=1,

G∞ ≡ limn→∞ Gn, and (b) the propensity of relationships to transmit shocks, p̃t+1, so that Δc̃t+1

is normally distributed as n grows large.

PROPOSITION 1 (Asymptotic Normality of Δc̃t+1): Given q > 0 and a sequence of networks of

inter-firm relationships, {Gn}n≥1, with limiting topology G∞, define pc as

pc(G∞) = sup
p∈(0,1)

{
p : lim

n→∞Pq(n) = 0
}

(6)

where Pq(n) denotes the probability that a shock to any given firm within Gn also affects αn firms

via shock propagation, with α > 0. If p̃t+1 < pc(G∞), then
√
nW̃n,t+1 and Δc̃t+1 are normally

distributed at t+ 1 as n grows large.

Let μc,t+1 and σc,t+1 denote the mean and volatility of Δc̃t+1, conditional on knowing p̃t+1

at t + 1. Under the conditions of proposition 1, the distribution of Δc̃t+1 can be characterized

in terms of the pair (μc,t+1, σc,t+1). Since the network is fixed, the dynamics of (μc,t+1, σc,t+1) is

fully determined by the dynamics of p̃t+1. Thus, the economy follows a Markov process with a

continuum of values for aggregate consumption and its growth rate, Δc̃t+1, but only two values for

the first two moments of the distribution of Δc̃t+1, as in Kandel and Stambaugh (1991).

The following corollaries provide a more detailed characterization of those large network economies

in which Δc̃t+1 is normally distributed. In particular, they report the limiting topology of the se-

quence of networks {Gn}∞n=1, G∞, and the value of the critical probability pc. Corollary 1 focuses
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on large networks in which all firms have the same number of relationships.

COROLLARY 1 (Symmetric Networks): Given a sequence of networks of inter-firm relationships,

{Gn}n≥1, with limiting topology G∞,9

• pc = 1− 2 sin
(
π
18

) ≈ 0.65 if G∞ is the two dimensional honeycomb lattice.

• pc =
1
2 if G∞ is the two dimensional square lattice.

• pc = 2 sin
(
π
18

) ≈ 0.34 if G∞ is the two dimensional triangular lattice.

• pc =
1

z−1 if G∞ is the Bethe lattice with z neighbors per each firm.

Figure 2 illustrates each of the network economies considered in corollary 1. Corollary 2 focuses

on large networks in which the number of relationships may differ across firms—whose topologies

more closely resemble real economies.

COROLLARY 2 (Asymmetric Networks): Given a sequence of networks of inter-firm relationships,

{Gn}n≥1,

• pc = 1
branching number of G∞ if G∞ is a tree. The branching number of a tree is the average

number of relationships per firm in a tree.10

• pc =
1
eM

if Gn is sparse and locally treelike. Gn is said to be sparse if the number of relationships

in Gn increases linearly with n, as n increases. Gn is said to be locally treelike if an arbitrarily

large neighborhood around any given firm takes the form of a tree. Parameter eM is the

leading eigenvalue of the matrix

Mn =

⎛⎜⎝ An In −Dn

In 0

⎞⎟⎠ (7)

where An is the adjacency matrix of Gn, i.e. the n × n matrix in which Aij = 1 if there is a

relationship between firms i and j and zero otherwise. In is the n×n identity matrix, and Dn

is the diagonal matrix that contains the number of relationships per firm along the diagonal.

9A lattice is a graph whose drawing can be embedded in R
n. The two dimensional honeycomb lattice is a graph

in 2D that resembles a honeycomb. The two dimensional square lattice is a graph that resembles the Z
2 grid. The

two dimensional triangular lattice is a graph in 2D in which each node has 6 neighbors.
10A tree is a network in which any two firms are connected by exactly one path. A forest is a network whose

components are trees.
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III. Equilibrium Asset Prices

To see what the network Gn and p̃t+1 imply for equilibrium asset prices, both in the aggregate

and in the cross-section, I embed the cash-flows correlation structure that is endogenously generated

by the network in a standard asset pricing model. The representative investor has Epstein-Zin-Weil

recursive preferences to account for asset pricing phenomena that are challenging to address with

power utility preferences. The asset pricing restrictions on the gross return of firm i, R̃i,t+1, are

Et

(
M̃t+1R̃i,t+1

)
= 1 (8)

where M̃t+1 ≡
[
β
(
eΔc̃t+1

)−ρ
] 1−γ

1−ρ
[
R̃a,t+1

] 1−γ
1−ρ−1

represents the pricing kernel at t+ 1 and R̃a,t+1 is

the gross return on aggregate wealth—an asset that delivers aggregate consumption as its dividend

each period. Parameter ρ > 0, ρ 	= 1, represents the inverse of the inter-temporal elasticity of

substitution, γ > 0 is the coefficient of relative risk aversion for static gambles, and β > 0 measures

the subjective discount factor under certainty.11

To solve the model, I look for equilibrium asset prices so that price-dividend ratios are stationary,

as in Mehra and Prescott (1985), Weil (1989), and Kandel and Stambaugh (1991), among many

others. Because equilibrium values are time invariant functions of the state of the economy—which

is determined by the state of the propensity of relationships to transmit shocks—the index t can

be eliminated. Hereinafter, c denotes the current level of aggregate consumption, y denotes the

current level of aggregate output, and s denotes the current state of the propensity of relationships

to transmit shocks.

I first solve for the price of aggregate wealth and the risk-free rate. These expressions are then

used to solve for equilibrium asset prices and expected excess returns in the cross-section. The

conditions under which proposition 1 and corollaries 1 or 2 hold are not needed to be satisfied in

what follows. If those conditions are satisfied, however, the conditional expectations that appear in

the following propositions can be computed in closed-form. Otherwise, I use simulation to compute

those conditional expectations.

11If γ = ρ, these recursive preferences collapse to the standard case of VNM time-additive expected utility. The
functional form of the Euler equation when ρ = 1 is different from the one shown in equation (8). See Weil (1989,
Appendix A) for details. I use the standard terminology to describe γ and ρ. However, Garcia, Renault, and Semenov
(2006) and Hansen et al. (2007) indicate that this interpretation may not be correct if ρ �= γ.
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The following proposition determines the current price of aggregate wealth.

PROPOSITION 2 (Price of Aggregate Wealth): Let Pa(c, s) denote the current price of aggregate

wealth. Pa(c, s) = wa
sc, where w

a
s is the solution of the following non-linear system of equations,

wa
s = β

⎛⎝ ∑
s′∈{H,L}

ωs,s′E
(
e(1−γ)Δc̃t+1

∣∣ps′) (wa
s′ + 1)

1−γ
1−ρ

⎞⎠
1−ρ
1−γ

, s = {H,L} (9)

where E
(·∣∣ps′) denotes the conditional expectation operator if the propensity of relationships to

transmit shocks during the next period is ps′, and ωs,s′ represents the (s, s′) element of Ωp.

I restrict my analysis to the set of model primitives in which the existence of a non negative

solution of (9) is ensured.12 The expected period gross return of aggregate wealth in the current

state is then

E (Ra|s) =
∑

s′∈{H,L}
ωs,s′

wa
s′ + 1

wa
s

E

(
eΔc̃t+1

∣∣ps′) , s = {H,L} . (10)

It follows from equations (9) and (10) that the price and expected period return of aggregate wealth

are driven by the dynamics of p̃t. In particular, temporal changes in p̃t convey temporal changes

in the distribution of aggregate consumption growth, which, in turn, manifest in the price and the

expected period return of aggregate wealth. The dynamics of p̃t, parameterized by ψ and φ, also

impact the price and the expected period return of aggregate wealth via ωs,s′, because these two

parameters determine: (a) how frequently the economy is in a state in which relationships transmit

shocks more often, and (b) how frequently changes in the propensity of relationships to transmit

shocks occur.

I next consider the risk-free asset, which pays one unit of the consumption good during the next

period with certainty.

12Provided that eΔc̃t is positive for all t, parameters ρ and γ need to be restricted so that the function h(·) defined
as

h (wai ) ≡ β

⎛⎝ ∑
j∈{H,L}

ωi,jE
(
e(1−γ)Δc̃t+1

∣∣pj) (waj + 1)
1−γ
1−ρ

⎞⎠
1−ρ
1−γ

is continuous. If h(·) is continuous, the system of equations (9) has a solution by Brouwer’s Fixed Point Theorem.
Further restrictions in the set of parameter values can be imposed such that the solution of the system of equations
is unique.
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PROPOSITION 3 (Risk-free Rate): Let Rf (s) denote the period gross return of the risk-free asset

in the current state. Rf (s) solves

1

Rf (s)
= β

1−γ
1−ρ

⎛⎝ ∑
s′∈{H,L}

ωs,s′E
(
e−γΔc̃t+1

∣∣ps′)(wa
s′ + 1

wa
s

) ρ−γ
1−ρ
⎞⎠ s = {H,L} (11)

where wa
s are the solutions of the system of equations (9).

It follows from equation (11) that the equilibrium risk-free rate is also driven by the dynamics

of p̃t, because changes in p̃t drive changes in the distribution of consumption growth and prices of

aggregate wealth.

Using the previous expressions, I now study what the network Gn and p̃t imply for the cross-

section of asset prices and risk premia. The following proposition determines the (ex-dividend)

stock price of firm i and its expected period return.

PROPOSITION 4 (Firms’ Stock Prices and Expected Period Returns): Let Pi(y, s) denote the

current (ex-dividend) stock price of an asset that delivers firms i’s cash-flows as its dividend each

period. For large n, Pi(y, s) = vi(s)y, where vi(s) is the solution of the following linear system of

equations

vi(s) = β
1−γ
1−ρ ex̄+

σ2x
2

⎛⎝ ∑
s′∈{H,L}

ωs,s′

(
wa
s′ + 1

wa
s

) ρ−γ
1−ρ

E

(
e(τ−γ)Δc̃t+1

∣∣ps′) vi(s′)
⎞⎠ (12)

+ β
1−γ
1−ρ eα0+α1di

⎛⎝ ∑
s′∈{H,L}

ωs,s′

(
wa
s′ + 1

wa
s

) ρ−γ
1−ρ

E

(
e−γΔc̃t+1

∣∣ps′) [1− πi(ps′)]

⎞⎠
where πi(ps′) ≡ E

(
ε̃i,t+1

∣∣p̃t+1 = ps′
)
and s = {H,L}. Moreover, the expected one period gross

return of firm i is given by

E

(
R̃i,t+1

∣∣s) =
1

vi(s)

⎛⎝ ∑
s′∈{H,L}

ωs,s′
{
vi(s

′)E
(
ex̃t+1

∣∣ps′)+ eα0+α1di (1− πi(ps′))
}⎞⎠ . (13)

To appreciate the importance of a firm’s location in Gn in asset prices and returns, suppose Gn

is symmetric. Then, di = d̄ and πi = π̄ ≥ q for all i. It then follows from the second term in the

right hand side of (12) that all firms have the same price in a given period. As equation (12) shows,
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differences in prices across firms arise solely from differences in firms’ locations in Gn. Differences

in prices across firms are driven not only by the number of relationships of a firm, captured by di,

but also by the set of firms to which a firm is connected, captured by πi. The same applies for the

cross-section of expected excess returns. Differences in expected excess returns across firms arise

solely from differences across firms’ locations in Gn. To understand the cross-section of firms’ risk

premia, equation (8) can be rewritten as a beta pricing model,

E

(
R̃i,t+1

∣∣s)−Rf (s) =

⎛⎝Cov
(
R̃i,t+1, M̃t+1

∣∣s)
Var

(
M̃t+1

∣∣s)
⎞⎠

︸ ︷︷ ︸
⎛⎝−Var

(
M̃t+1

∣∣s)
E

(
M̃t+1

∣∣s)
⎞⎠

︸ ︷︷ ︸
(14)

β
i,M̃

(s) λ
M̃
(s)

where β
i,M̃

(s) and λ
M̃
(s) denote the quantity of risk in firm i and the price of risk in state s,

respectively. The following proposition determines λ
M̃
(s).

PROPOSITION 5 (Conditional Price of Risk: λ
M̃
(s)): The conditional price of risk in state s,

λ
M̃
(s), equals

λ
M̃
(s) =

1

Rf (s)
−Rf (s)

⎛⎝β2( 1−γ
1−ρ

) ∑
s′∈{H,L}

ωs,s′

(
wa
s′ + 1

wa
s

)2
(
ρ−γ
1−ρ

)
E

(
e−2γΔc̃t+1

∣∣ps′)
⎞⎠ (15)

where Rf (s) denotes the period gross return of the risk-free asset in state s.

As equation (15) shows, the price of risk is time-varying, because the propensity of relationships

to transmit shocks varies over time. Changes in p̃t introduce changes in the distribution of aggregate

consumption growth, in the price of aggregate wealth, and in the risk-free rate, which, in turn,

manifest in changes of the price of risk. To compute firms’ quantities of risk, one can rearrange

equation (14), which yields

β
i,M̃

(s) =
E

(
R̃i,t+1

∣∣s)−Rf (s)

λ
M̃
(s)

(16)

so that firms’ conditional quantities of risk can be computed from equations (11), (13), and (15).

As a consequence, firm i’s quantity of risk is driven by (a) firm i’s location in Gn, which alters
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E

(
R̃i,t+1

∣∣s), and (b) the dynamics of p̃t and topology of Gn, which alter Rf (s), λM̃ (s) and

E

(
R̃i,t+1

∣∣s).13
IV. Calibration

So far, the model illustrates how the propagation of shocks within a network economy alters

equilibrium asset prices. I now calibrate the model to get a sense of the extent to which such a

propagation mechanism quantitatively explains asset market phenomena. Section IV.A describes

the data and the strategy I use to calibrate the network Gn. Section IV.B describes the selection

of the rest of parameters in the model.

A. Description of Data and Customer-Supplier Networks

I use annual data on customer-supplier relationships among U.S. firms to pin down the topology

of Gn. Statement of Financial Accounting Standards (SFAS) No.131 requires firms to report the

existence of customers who represent more than 10% of their annual sales. This information is

available on COMPUSTAT files. However, these files tend to list only abbreviations of customers’

names. I then resort to the Cohen and Frazzini (2008) dataset on customer-supplier relationships—a

subset of the COMPUSTAT database—in which firms’ principal customers are uniquely identified.14

Their dataset consists of 6,425 different firms, considers common stocks, and represents 26,781

unique annual customer-supplier relationships from 1980 to 2005. Customer-supplier relationships

last about 3 years on average, and the distribution of firms’ size resembles the size distribution of the

CRSP universe over the sample period. The size distribution of firms’ principal customers, however,

is tilted toward large companies. The average customer size is above the 90th size percentile of

CRSP firms.

To proxy for those relationships that relate firms’ cash-flow growth rates, I consider customer-

supplier relationships in which a customer represents at least 20% of a firm’s annual sales. My

results, however, do not qualitatively change if I decrease that threshold from 20% to 10%. I

construct undirected and non-weighted customer-supplier networks at the annual frequency over the

sample period. Then, two firms are connected in a given year if one firm represents at least 20% of

13In an unreported proposition I also compute firms’ quantities of risk as a function of the primitives of the model.
14Data available at: http://www.econ.yale.edu/∼ af227/
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another firm’s sales during that year. Figures 3(a) and 3(b) depict the customer-supplier networks in

1980 and 1986 respectively, in which nodes represent firms and the size of each node is proportional

to the number of customer-supplier relationships a firm takes part in. Table II illustrates some of

the characteristics of the time series of customer-supplier networks. The average number of firms

per network is 388, whereas, on average, there are 281 customer-supplier relationships per network.

As in many economic and social networks, the number of relationships varies dramatically across

firms.

To select the benchmark topology of Gn, I generate a large network with n = 400 firms so that

such a network simultaneously matches some of the characteristics of the time series of customer-

supplier networks reported in Table II. In particular, the selected topology for Gn matches the

average size of each of the five largest components and the average empirical degree distribution

of customer-supplier networks. I restrict the topology of Gn to be one with no cycles so that firms’

probabilities of facing negative shocks in each state of the economy—{πi(ps)}ni=1 with ps ∈ {pL, pH}
in equations (12) and (13)—are easy to compute.15 Such restriction seems to be innocuous, because

cycles are not frequent in the customer-supplier dataset. Figure 4(a) depicts the topology of the

benchmark economy, whereas figure 4(b) depicts its degree distribution.

Selecting the network topology using this data has one important caveat. Because many firms

in the economy, as well as their relationships, are not included in this dataset, one may be able to

construct, in the most favorable case, a network that closely resembles only a small fraction of the

aggregate economy. This is because firms need to be sufficiently large to be publicly traded and

to represent at least 20% of the annual sales of a publicly traded company. To partially ensure

that the topology selected in the benchmark economy provides a fair representation of the network

that underlies the aggregate U.S. economy, I compare the benchmark network with networks that

are uncovered using BEA input-output tables. As table VI shows, the network in the benchmark

economy does a good job at representing some features of the U.S. input-output network, and in

doing so, potentially provides a reasonable representation of the aggregate U.S. economy.16

15A cycle consists of a sequence of firms starting and ending at the same firm, with each two consecutive firms in
the sequence directly connected to each other in the network.

16It is an empirical issue whether a network uncovered using BEA input-output tables provides a sensible repre-
sentation of the network structure that underlies the U.S. economy—I leave this for future research. Another way to
uncover the underlying network using the framework in this paper is to use probabilistic graphical models, which are
commonly used to represent statistical relationships in large and complex systems, since my baseline model predicts
certain behavior of returns covariances across stocks. For instance, one may calibrate the network using a graphical
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B. Selecting the rest of parameter values

Given the network topology uncovered in section IV.A, I calibrate the rest of the parameters

in the model at the monthly frequency to be consistent with the empirical literature. Table III

reports the key parameter values in the calibrated model.

For the sake of illustration, these parameters can be separated into four groups. Parameters

in the first group define the preferences of the representative investor, which I select in line with

Bansal and Yaron (2004). Thus, I set β = 0.997, γ = 10 and ρ = 0.65 (IES ≈ 1.5).

Parameters in the second group define the dynamics of firms’ cash-flows. I use annual data

on earnings per share from COMPUSTAT to proxy for firms’ cash-flows. I restrict my focus

to firms mentioned in the customer-supplier dataset, because the value of parameters {di}ni=1 in

equation (1)—which correspond to the number of relationships of firms—is available only for those

firms. To estimate parameters α0, α1 and α2 in equation (1), I run cross-sectional OLS regressions

at the annual frequency and then compute their equivalents at the monthly frequency. To run such

cross-sectional regressions, I need to determine whether firm i faces a negative shock in a given

year. To do so, I explore the temporal variation of firms’ cash-flows and run time series regressions

at the firm level, correcting for the existence of linear time trends.17 By doing so, I identify the

years in which each firm faces a negative shock. This allows me to compute annual estimates for

α0, α1 and α2 from 1980 to 2004, which are depicted in figure 5.18 I then set parameters α0, α1

and α2 to be equal to the time series average estimates. Thus, α0 = 0.3, α1 = 0.1 and α2 = 0.07.19

lasso estimator (GLASSO) to match observed returns covariances. In doing so, one estimates an undirected and tem-
porally invariant network by estimating a sparse inverse covariance matrix using a lasso (L1) penalty as in Friedman,
Hastie, and Tibshirani (2008). The basic estimation strategy assumes that observations have a multivariate Gaussian
distribution with mean μ and covariance matrix Σ. If the ijth component of Σ−1 is zero, then variables i and j are
conditionally independent, given the rest of the variables, which is graphically represented as the lack of an edge
between variables i and j in Gn. The normality assumption can be relaxed as in Liu et al. (2012).

17Namely, I run the following time series regression at the firm level,

log

(
yi,t
Yt−1

)
= β0 + β1 ∗ t+ εt. (17)

I consider that firm i faces a negative shock at year t if log
(
yi,t
Yt−1

)
is below the value predicted by regression (17) for

more than one standard deviation of the residuals computed from (17).
18Estimates of α0, α1, and α2 are statistically significant for most of the years within the sample. In particular,

out of 25 years in the sample, α0, α1, and α2 are statistically significant at the 95%, 12, 8, and 20 years, respectively.
19To determine the benchmark values of α0, α1, and α2 at the monthly frequency, I assume that yi,year =

12×yi,month, with i ∈ {1, · · · , n}. Provided that data on firms’ cash-flows is at the annual frequency, this assumption
facilitates the computation of parameters α0, α1, and α2 at the monthly frequency because Yyear = 12 × Ymonth so

that log
(
yi,year+1

Yyear

)
= log

(
yi,month+1

Ymonth

)
.
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Parameters in the third group define the process followed by the propagation of shock within

a network economy. The calibration of these parameters has only limited guidance from prior

studies. There are five parameters in this group: (i) the coefficient that measures how frequently

firms face negative idiosyncratic shocks, q; the values that p̃t may take in each period, pL and

pH ; the coefficient that measures how frequently relationships exhibit high propensity to transmit

shocks, ψ; and the coefficient that measures the persistence of the stochastic process followed by

p̃t, φ. I choose the benchmark values in this group by either using available studies or matching

important moments in data.20

To select parameter φ, I explore the time variation of macroeconomic variables that proxy for

the degree of input specificity in the U.S., motivated by evidence in Barrot and Sauvagnat (2014).

Barrot and Sauvagnat (2014) posit that input specificity is a key driver of the propagation of

shocks within supply chains. Their idea is simple. The more specific the inputs a firm uses, the

more difficult it is to restructure its production if it needs to replace a supplier who is under distress,

and, thus, the more likely it is that such a firm is affected by shocks to its suppliers. It is, then,

natural to think that the higher the degree of input specificity faced by the average firm in the

economy, the higher the likelihood that negative shocks spread from one firm to another within a

customer-supplier network. To proxy for the degree of input specificity faced by the average firm

in the network economy, I use the ratio of non federally funded R&D/GDP and the number of

patents created in the U.S. These two measures aim to proxy for (i) the relative importance of

relationship-specific investments made by the average firm, and (ii) how easily the average firm can

substitute suppliers who are under distress.21 Figure 6 depicts the time series for R&D/GDP from

1953 to 2002 in the U.S., as well as the number of patents created in the U.S. from 1963 to 2009. I

then set φ = 0.925 so that the time series, followed by the propensity of relationships to transmit

shocks, is as persistent as the time series of either R&D/GDP or the number of patents created

in the U.S.22 I select the rest of the parameters in this group by matching important moments in

20A similar strategy is used in Zhang (2005) to pin down parameters to which there is only limited guidance from
prior studies.

21Barrot and Sauvagnat (2014) construct three measures of suppliers’ specificity in their study. The first measure
uses information that classifies inputs as differentiated or homogeneous, depending on whether they are sold on
an organized exchange or not. The second measure uses suppliers’ R&D expenses to capture the importance of
relationship-specific investments, whereas the third measure uses the number of patents issued by suppliers to capture
restrictions on alternative sources of substitutable inputs.

22To pin down the persistence of these time series, I fit autoregressive processes to the time series of non-federal
R&D/GDP and the time series of the number of patents created in the U.S. by selecting the complexity of the model
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data. In particular, parameters q, pL, pH , and ψ are chosen so that the first two moments of the

time-aggregated annual growth rates of consumption and dividends generated by the calibrated

model are similar to those of observed annual data. I then set q = 0.2, pL = 0.38, pH = 0.45, and

ψ = 0.5.

Parameters in the fourth group define the difference between aggregate output and consumption

growth. Within the baseline model, output growth equals consumption growth at equilibrium. To

provide a more realistic description of dividends and improve the fit of the calibrated model to data,

I augment the baseline model so that consumption and dividends are two different processes within

the benchmark economy. Similar to many others, including Cecchetti, Lam, and Mark (1993),

Abel (1999), Campbell (1999, 2003), and Bansal and Yaron (2004), I assume that dividend and

consumption growth jointly satisfy (within the augmented model),

(x̃t+1 − x̄) = τ (Δc̃t+1 − c̄) + σxξ̃t+1 , (18)

where x̄ and c̄ are constant and represent the unconditional means of log output and consumption

growth, respectively. Parameter τ > 0 and ξ̃t+1 is i.i.d. normal with mean zero and unit vari-

ance. Thus, the representative investor is implicitly assumed to have access to labor income in

the augmented model. For simplicity, ξ̃t+1 is independent of both Δc̃t+1 and variables {ε̃i,t+1}ni=1.

As in Abel (1999), parameter τ represents the leverage ratio on equity. If x̄ = c̄ = σx = 0, then

aggregate consumption and dividend growth are specified as in Abel (1999). If x̄ = c̄ = σx = 0

and τ = 1, then the market portfolio is a claim to total wealth and I recover the baseline model. I

set c̄ = 0.019/12 and x̄ = 0.038/12 so that the unconditional means of consumption and dividend

growth generated by the benchmark economy are similar to the ones found in data. I follow Bansal

and Yaron (2004) and set τ = 3. I set σx = 0.0262 so that the volatility of dividends generated by

the benchmark economy is similar to the one found in data.

Despite the fact that aggregate output and consumption are two different processes within the

augmented model, both of these processes are still determined, in large part, by the propagation

of shocks within the network. In particular, the distribution of x̃t+1 is fully determined by the

using the Akaike information criterion. The fitted AR models are both highly persistent. In particular, the fitted AR
model for the number of patents in the U.S has a persistence parameter equal to 0.93, whereas the fitted AR model
for R&D/GDP has a persistence parameter equal to 0.85.
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propagation of shocks as equation (5) shows, whereas the distribution of Δc̃t+1 is also determined

by the propagation of shocks as equation (18) states.

V. Implications of the Calibrated Model

This section studies the asset market implications of the calibrated model. It shows that

changes in the propagation of shocks, within networks of inter-firm relationships that resemble

real economies, are quantitatively important to understand variations in asset prices and returns,

both in the aggregate and in the cross section.

A. Asset Market Phenomena, Network Economies, and Long-Run Risks

Table IV exhibits moments generated under the benchmark parameterization. Table IV sug-

gests that the model does a reasonable job at matching important asset pricing moments as well

as moments of consumption and dividend growth. The benchmark parameterization delivers an

average annual log consumption growth of 1.8%, an annual volatility of log consumption growth

of 4.7%, an average annual log dividend growth of 3.8%, and an annual volatility of log dividend

growth of 14.9%, all values similar to those found in data. It also delivers an average market return

of 12%, an annual volatility of the market return of 18.92%, an average risk-free rate of 2.16%, an

annual volatility of the risk-free rate of 0.7%, an annual equity premium of 10%, and a Sharpe ratio

of 0.52. With the exception of the volatility of the risk-free rate and Sharpe ratio, all values are

aligned with those found in data.

Besides matching the above moments, the calibrated model generates a persistent component

in expected consumption growth and stochastic consumption volatility similar to those assumed

by the Long-Run Risks Model (LRR) of Bansal and Yaron (2004). As Bansal and Yaron (2004)

and Bansal, Kiku, and Yaron (2012) show, these two features, together with Epstein-Zin-Weil

preferences, help to quantitatively explain an array of important asset market phenomena.23 Table

V reports means and volatilities based on 300 simulated economies over 620 monthly observations

23Since Bansal and Yaron (2004), several authors have used the long-run risk framework to explain an array of
market phenomena. For instance, Kiku (2006) provides an explanation of the value premium within the long-run risks
framework. Drechsler and Yaron (2011) show that a calibrated long-run risks model generates a variance premium
with time variation and return predictability that is consistent with data. Bansal and Shaliastovich (2013) develop
a long-run risks model that accounts for bond return predictability and violations of uncovered interest parity in
currency markets.
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of several similarity measures between time series generated with either the calibrated model or the

LRRmodel. As table V suggests, both models generate similar time series for expected consumption

growth and stochastic consumption volatility.

It is important to appreciate that these two features are endogenously generated within my

model rather than exogenously imposed, as in many asset pricing models. The calibrated model

generates these two features because the propensity of relationships to transmit shocks follows a

persistent process, that is consistent with data, and inter-firm relationships are long-term. Despite

the fact that these two features are endogenously generated, I do not claim that my model pro-

vides a complete micro-foundation of long-run risks. The reason is that inter-firm relationships

are exogenous and fixed within my model. Nonetheless, this model provides a novel link between

equilibrium asset prices and the propagation of firm level shocks, within networks that resemble

real economies, that is consistent with the existence of long-run risks. The model suggests that

changes in technologies and complementaries among firms activities within network economies are

quantitatively relevant to understand variations in asset prices and returns. This is particularly im-

portant in modern economies provided the high degree of interconnectedness among firms. In doing

so, the model provides a new perspective on the potential sources of long-run risks. The framework

presented in this paper is also able to nest long-run risk models under suitable assumptions as

Appendix C demonstrates.

B. Firms’ Centrality and the Cross-Section of Risk Premia

Besides helping to explain aggregate asset market phenomena, the model helps to understand

the cross-section of expected returns because it provides a mapping between firms’ quantities of

priced risk and firms’ importance in the network. To measure the importance of a firm in the inter-

firm relationships network, I define the centrality of firm i at time t as the expected number of firms

that can be affected by a shock to firm i at time t. This measure captures the relative importance

of firm i in transmitting shocks over the economy. Shocks to firm i may alter aggregate output and

consumption growth to the extent to which they propagate over a non-negligible fraction of the

economy and, thus, alter firm i’s risk premium. If the economy contains no cycles, the centrality
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of firm i at period t, χi,t, equals to

χi,t =

Li∑
d=1

nji p̃
j
t (19)

where nji denotes the number of firms that are at a distance j from firm i in Gn; and p̃t denotes the

realization of p̃t at time t. Firms i and k are said to be at a distance j if the shortest path between

i and k has length j. Li denotes the largest distance between any given firm within Gn and firm

i.24

Figure 7(a) shows firms’ conditional risk premia as a function of firms’ centrality. It follows

from figure 7(a) that firms that are more central in the network command higher risk premium

than firms that are less central. Figure 7(b) shows firms’ conditional quantity of risk, β
i,M̃

, as a

function of firms’ centrality. It follows from figure 7(b) that firms that are more central have higher

quantity of risk than firms that are less central. Shocks to central firms have higher likelihood of

affecting more firms on average than do shocks to less central firms. As a consequence, central

firms tend to be procyclical, whereas less central firms serve as a hedge against aggregate risk and,

thus, command lower risk premium. On average, firms in the highest quintile of centrality yield an

annual excess return of 1% over those firms in the lowest quintile—which is aligned with the 3%

excess return documented by Ahern (2013) within the network of intersectoral trade.25

24If the network contains no cycles, the probability that k firms that are at a distance j from firm i are also affected
by shocks to firm i at period t, Pji (k), is given by

P
j
i (k) =

(
nji
k

) (
p̃jt

)k (
1− p̃jt

)nj
i−k

The expected number of firms that are at a distance j from firm i and are also affected by a shock to firm i at period
t is nji p̃

j
t . As a consequence, the expected number of firms that can be affected by shocks to firm i is given by (19).

If there is no path between firm i and other firms within Gn, define Li = ∞.
25The 1% excess return comes from 200 simulated economies over 1100 monthly observations. I disregard the first

100 observations in each simulation to eliminate the potential bias coming from the initial condition. At the beginning
of each year, I sort firms into five quintiles based on centrality and form five equally weighted portfolios, which I keep
over the next twelve months. The 1% excess return corresponds to the average annual return of a strategy that goes
long in the portfolio with those firms with the highest centrality and short in the portfolio with those firms with the
lowest centrality. Despite that Ahern (2013) uses a different network to compute his results, Table VI shows that the
network topologies used by Ahern (2013) are similar to the network topology used in this paper.
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C. Factor Structure on Firm-Level Return Volatility

The calibrated model also generates a high degree of common time variation in return volatilities

at the firm level, which is aligned with recent empirical evidence, e.g. Herskovic et al. (2014), Duarte

et al. (2014). To facilitate comparison with evidence documented by Herskovic et al. (2014), figure 8

illustrates annual total return volatility at the firm level averaged within start-of-year size quintiles.

As figure 8 shows, firms of all size exhibit similar time series volatility patterns. On average, the first

principal component of the cross-section of annual return volatility accounts for 99% of the variance.

Within the model, the existence of this factor structure is not surprising, because fluctuations in the

propensity of relationships to transmit shocks drive changes in growth opportunities and uncertainty

across firms, which translate into changes in prices and returns at the firm level. Provided that

returns respond to a common factor—given by the propensity p̃t—firm level return volatilities

inherit a factor structure.26

VI. Conclusion

This paper suggests that the propagation of firm level shocks within network economies are

quantitatively important to understanding asset prices and returns, both in the aggregate and

in the cross-section. Changes in either the network that underlies the aggregate economy or the

propensity of relationships to transmit shocks within a fixed network may alter aggregate variables,

such as output and consumption, which, in turn, alter equilibrium asset prices and returns.

I show that a calibrated model that matches features of customer-supplier networks in the U.S. as

well as features of macroeconomic variables that aim to proxy for the propagation of firm level shocks

within these networks, generates a persistent component in expected consumption growth and

stochastic consumption volatility similar to that of the Long-Run Risk Model of Bansal and Yaron

(2004). As Bansal and Yaron (2004) and Bansal, Kiku, and Yaron (2012) show, these two features,

together with Epstein-Zin-Weil preferences, help to explain characteristics of aggregate asset market

26Recent empirical evidence also suggests the existence of common time variation in firm level idiosyncratic volatil-
ities, e.g. Herskovic et al. (2014), Duarte et al. (2014). In unreported results, I explore the extent to which firm
level idiosyncratic volatilities exhibit a factor structure within the calibrated model. After removing the market as a
common factor of return volatilities, the high degree of common time variation in firm level return volatilities tends
to disappear. On average, the first principal component of the cross-section of annual idiosyncratic volatility accounts
only for 3% of the variance (see figure 8(b)).
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data such as the equity premium and low risk-free rate. The model also helps in understanding

the cross-section of expected returns, as it provides a mapping between firms’ quantities of priced

risk and firms’ importance in the network. In the cross section, firms that are more central in the

network command higher risk premium than firms that are less central. Shocks to central firms

have higher likelihood of affecting more firms on average than do shocks to less central firms. As

a consequence, central firms tend to be procyclical, whereas less central firms serve as a hedge

against aggregate risk and, thus, command lower risk premium. In the time series, firm-level

return volatilities exhibit a high degree of comovement. These two features are consistent with

recent empirical evidence.

Future research in this area is needed. The data currently available allows us to uncover only a

partial representation of the network that underlies the aggregate U.S. economy. More detailed data

may improve the calibration of the model as well as the precision of its estimates. In addition, more

empirical evidence along the lines of Barrot and Sauvagnat (2014) may help to uncover a better

representation of the process that determines the propagation of shock via inter-firm relationships.

Finally, several questions remain open and should be studied further. For instance, how does the

multiplicity of relationships among firms quantitatively affect asset prices? To what extent does

endogenous network formation affect asset prices? I believe that the framework developed in this

paper may be of great use in starting to answer these challenging questions.
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ASSUMPTION 1: Firm i’s output at time t+ 1, yi,t+1, follows

log

(
yi,t+1

Yt

)
≡ α0 + α1di − α2

√
nε̃i,t+1 (1)

where ε̃i,t+1 denotes a Bernoulli random variable which equals one if firm i faces a negative shock at t + 1 and zero

otherwise. For a given Gn, parameter di denotes firm i’s degree. Parameters α0, α1 and α2 are non-negative real

numbers.

ASSUMPTION 2: Let x̃t+1 ≡ log
(
Yt+1

Yt

)
be the log output growth rate of the economy at time t+1, and let Δc̃t+1 ≡

log
(
C̃t+1

Ct

)
, be the log aggregate consumption growth rate. The processes for x̃t+1 and Δc̃t+1 satisfy

x̃t+1 − x∗ = τ (Δc̃t+1 − c∗) + σxξ̃t+1 (2)

where x̄ and c̄ are real numbers, τ > 0, σx > 0; and ξ̃t+1
d−→ i.i.d. N (0, 1). Variable ξ̃t+1 is independent of Δc̃t+1 and

{ε̃i,t+1}ni=1 at t+ 1.

To simplicity notation, define x̄ ≡ x∗ − τc∗. Let st denote the state of p̃t at period t. Given Gn, st determines

the distributions of aggregate output and consumption growth at period t. Provided that p̃t varies over time, the

distributions of aggregate output and consumption growth vary over time as well, and the dynamics of the moments

of these distributions satisfy the Markov property.

Sketch of proof of Proposition 1 and Corollaries 1 and 2. Given a sequence of network topologies {Gn}∞n=1, with lim-

iting topology G∞, and the realization of p̃t at time t, the goal is to find the conditions under which
√
nW̃n,t is

normally distributed as n grows large.

Without loss of generality, fix t so that subscript t on the sequence {ε̃i,t}ni=1 can be eliminated. If the sequence

of Bernoulli random variables {ε̃i}ni=1 is independent, the Lindeberg-Lévy central limit theorem implies that
√
nW̃n

is normally distributed as n grows large. Consequently, if p̃t = 0 firms’ cash-flows are independent and
√
nW̃n is

asymptotically normally distributed.

In the presence of inter-firm relationships, however, cash-flows of connected firms are correlated if p̃t > 0. De-

spite that the sequence {ε̃i}ni=1 may be dependent,
√
nW̃n may still be asymptotically normally distributed if the

dependence among variables {ε̃i}ni=1 is sufficiently weak in a sense to be defined.

To better understand the main idea behind the proof, it is illustrative to review statistical concepts such as

α-mixing, stationary processes and m-dependent sequences. I do so in what follows. For the sequence {ε̃i}ni=1, let αn

be a non-negative number such that

∣∣P(A ∩ B)− P(A)P(B)
∣∣ ≤ αn (3)

with A ∈ σ(ε̃1, · · · , ε̃k), B ∈ σ(ε̃k+n, ε̃k+n+1, · · · ), k ≥ 1 and n ≥ 1; where σ(·) denotes the σ-algebra defined on

the power set of {0, 1}n ≡ {0, 1} × · · · × {0, 1}. The sequence {ε̃i}ni=1 is said to be α-mixing if αn → 0 as n grows

large. In other words, ε̃k and ε̃k+n are approximately independent for large n. The sequence is said to be stationary
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if the distribution of (ε̃l, ε̃l+1, · · · , ε̃l+j) does not depend on l. If {ε̃i}ni=1 is α-mixing and stationary,
√
nW̃n follows a

normal distribution as n grows large—see Billingsley (1995, Theorem 27.4). A special case of the above result occurs

if there exists an ordering of the sequence {ε̃i}ni=1 such that the dependence between variables ε̃k and ε̃j decreases

as the distance between them increases in such an ordering. In particular, if there exists such an ordering and a

positive m ≥ 0 such that (ε̃1, · · · , ε̃k) and (ε̃1,k+s, · · · , ε̃k+s+l) are independent whenever s > m, the sequence {ε̃i}ni=1

is said to be m-dependent in which case
√
nW̃n follows a normal distribution for large n. An independent sequence

is 0-dependent using this terminology.

In what follows, I apply the same idea behind a m-dependent sequence. In particular, I impose that negative

shocks tend to remain locally confined as n grows large so that there always exist an index ordering I that makes

the sequence {ε̃i}i∈I to be m-dependent, in the sense described above.

For a given network topology, let 0 < pc ≤ 1 be a real number such that for all p̃t < pc, negative shocks only

spread over clusters of firms of finite size. Provided that the size of such clusters becomes negligible compared to the

size of the economy as n grows large, and there is an infinite number of small clusters, all independent among each

other,
√
nW̃n is normally distributed as n grows large. For instance, define m as the largest expected diameter of

such clusters and the corresponding index ordering I such that whenever s > m, (ε̃1, · · · , ε̃k) and (ε̃1,k+s, · · · , ε̃k+s+l)
are independent in {ε̃i}i∈I .

To find the threshold pc, it is illustrative to compute the probability that at least one negative shock spreads

over n− 1 different firms. Let Pn denote such a probability. Given how shocks spread from one firm to another, Pn

equals

Pn = (1− (1− q)n)P [there is at least one open walk connecting n firms ] (4)

≈ (1− e−nq)P [there is at least one open walk connecting n firms ] (for large n)

where q is the probability that a firm faces a negative idiosyncratic shock. A walk is a sequence of relationships which

connect a sequence of firms that may not be all distinct from one another. A walk is considered to be open at t if all

the relationships that compose the walk transmit negative shocks at t.

I focus on the limit of Pn as n grows large. Provided that 0 < q < 1, the first term in the right-hand side of

(4) tends to 1 as n → ∞ at an exponential rate. As a consequence, if the second term in the right-hand side of (4)

tends to 0 as n grows large, negative idiosyncratic shocks tend to remain locally confined since, almost surely, no

firm belongs to an infinite open walk. Then, to determine the conditions under which a CLT-type of result applies is

related to determine the probability, as n→ ∞, that a given firm belongs to an infinite open walk. Given a sequence

{Gn}n, with limiting distribution G∞, define pc as

pc(G∞) = sup
p∈(0,1)

{
p : lim

n→∞
Pn = 0

}
(5)

I write pc = pc(G∞) since pc may depend on the network topology in the limit. Therefore, if p̃t < pc then
√
nW̃n

follows a normal distribution as n grows large since all open walks are almost surely finite and their size distribution
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has a tail which tend to decrease with n sufficiently fast.27

To prove normality, condition p̃t < pc may be stronger than necessary. Imposing such a condition, however,

greatly facilitates the proof since the determination of pc has been extensively studied in percolation theory, e.g.

Grimmett (1989) and Stauffer and Aharony (1994). In percolation, pc is sometimes called the critical probability

or critical phenomenon of the model, because it indicates the arrival of an infinite connected component as n → ∞
within a particular model.

To illustrate how pc can be determined, consider the following two simple examples:

• Imagine n firms are arranged in a straight line and each relationship may transmit shocks with probability p.

The probability that the line is open is pn, which tends to zero as n→ ∞, so that pc = 1.

• Suppose n firms are arranged in a circle. The probability that the circle is open tends to zero as n → ∞.

Think about putting the endpoints of an infinitely line together. Thus, pc = 1.

Taking results from bond percolation, Table I reports critical probabilities for several symmetric network topolo-

gies. As Table I shows, pc varies across networks. For instance, if G∞ is the two dimensional honeycomb lattice then

pc = 1− 2 sin
(
π
18

) ≈ 0.65 whereas if G∞ is the two dimensional square lattice then pc =
1
2
.

The previous analysis determines conditions under which
√
nW̃n is normally distributed for some large symmetric

networks. But what happens in other network topologies? In particular, under what conditions is
√
nW̃n asymptoti-

cally normally distributed in large asymmetric networks? Using random walks on trees, Lyons (1990) shows that if

G∞ is a tree then

pc =
1

branching number of G∞
(6)

where the branching number of a tree is the average number of branches per node in a tree.28 A tree is a connected

graph in which two given nodes are connected by exactly one path. A tree is said to be z-regular if each node has

degree z. If G∞ is an z-regular tree, the average number of branches per node is z−1 so pc =
1
z−1

; which is consistent

with Table I.29

One can generalize the previous result for topologies where G∞ is sparse and locally treelike. Gn is said to be

sparse if Gn has m edges and m = O(n). Notation m = O(n) indicates that m grows, at most, linearly with n so

there exists a positive number c such that
∣∣m
n

∣∣ < c for all n. Namely, Gn is sparse if only a small fraction of the

possible n(n−1)
2

edges are present. G∞ is said to be locally treelike if in the limit an arbitrarily large neighborhood

27For instance, if Gn = L
d, where L

d represents the d-dimensional lattice, the probability that an open walk has
size n is proportional to exp (−ζ(p)n)—see Grimmett (1989, Chapters 5 and 7).

28For a concrete definition of the branching number see Lyons (1990, page 935).
29To motivate the previous result, it is informative to compute the percolation threshold in the Bethe lattice with

z neighbors per every node. Start at the root and check whether there is a chance of finding an infinite open path
from the root. Starting from the root, one has (z − 1) new edges emanating from each new node in each layer of the
lattice. Each of these (z − 1) new edges leads to one new node, which is affected with probability p. On average,
(z − 1)p nodes are affected at each layer of the lattice. If (z − 1)p < 1 then the average number of affected nodes
decreases in each layer by a factor of (z− 1)p. As a consequence, if (z− 1)p < 1 the probability of finding an infinite
open path goes to zero exponentially in the path length. Thus, pc =

1
z−1

for the Bethe lattice with z neighbors for
every node.
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around any node takes the form of a tree. Using the previous idea and reformulating percolation in trees as a message

passing process, Karrer, Newman, and Zdeborová (2014) shows that if G∞ is sparse and locally treelike then

pc =
1

εH
(7)

where εH is the leading eigenvalue of the 2n× 2n matrix

M =

⎛⎝ A I−D

I 0

⎞⎠ (8)

where A is the adjacency matrix that represents Gn, I is the n×n identity matrix, and D is the diagonal matrix with

the number of relationships per firm along the diagonal, e.g. Karrer, Newman, and Zdeborová (2014). Parameter eH

is always real. For a sparse network this matrix is also sparse, with only 2m + 2n nonzero elements, which permits

rapid numerical calculation of the leading eigenvalue. For the network that characterize the benchmark economy one

obtains

eH = 1 → pc ≈ 1 (9)

branching number = 1.185 → pc ≈ 0.85 (10)

Proof of Proposition 2. I look for an equilibrium such that the price dividend ratio is stationary. I conjecture that if

c is the current aggregate consumption and s the current state of p̃t, then Pa(c, s) = was c, in which Pa is the price

of aggregate wealth and was a number that depends on state s. If st = s and st+1 = s′, the realized gross return at

time t+ 1 of the asset that delivers aggregate consumption as its dividend each period, R̃a,t+1, equals

R̃a,t+1 =
P̃a,t+1 + C̃t+1

Pa,t
=

was′ + 1

was

C̃t+1

Ct
(11)

Setting R̃i,t+1 = R̃a,t+1 in equation (8) yields,

Et

⎛⎜⎝[β( C̃t+1

Ct

)−ρ] 1−γ
1−ρ [

R̃a,t+1

] 1−γ
1−ρ

⎞⎟⎠ = 1

⇒ E

⎛⎜⎝[β( C̃t+1

Ct

)−ρ] 1−γ
1−ρ
[
was′ + 1

was

C̃t+1

Ct

] 1−γ
1−ρ ∣∣∣∣ps

⎞⎟⎠ = 1 (12)

Provided that st follows a Markov process, equation (12) can be rewritten as

β
1−γ
1−ρ

⎛⎝ ∑
s′=H,L

ωs,s′E

((
C̃t+1

Ct

)1−γ ∣∣∣∣ps′
)(

was′ + 1

was

) 1−γ
1−ρ

⎞⎠ = 1 (13)
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Reordering equation (13) yields,

was = β

⎛⎝ ∑
s′=H,L

ωs,s′E
(
e(1−γ)Δc̃t+1

∣∣ps′) (was′ + 1)
1−γ
1−ρ

⎞⎠
1−ρ
1−γ

s = H,L (14)

which completes the proof.

REMARK 1: If
√
nW̃n,t+1 is normally distributed, then

E

(
e(1−γ)Δc̃t+1

∣∣s) = exp

(
(1− γ)(α0 + α1d̄− α2μs − x̄)

τ
+

(1− γ)2

2

(
α2
2σ

2
s − σ2

x

τ 2

))
s = H,L (15)

where

μH ≡ lim
n→∞

E

(
n∑
i=1

ε̃i,t+1√
n

∣∣∣∣p̃t+1 = pH

)
and σ2

H ≡ lim
n→∞

Var

(
n∑
i=1

ε̃i,t+1√
n

∣∣∣∣p̃t+1 = pH

)

μL ≡ lim
n→∞

E

(
n∑
i=1

ε̃i,t+1√
n

∣∣∣∣p̃t+1 = pL

)
and σ2

L ≡ lim
n→∞

Var

(
n∑
i=1

ε̃i,t+1√
n

∣∣∣∣p̃t+1 = pL

)

and the above constants are assumed to be finite so that equation (15) is well-defined.

REMARK 2 (Price of Market Return): If consumption and output growth differ I compute the price of the market

return as follows. I conjecture that if y is the current aggregate output and s the current state of p̃t, then Pm(c, s) =

wms y, where Pm is the price of the market portfolio and wms a number that depends on state s. If st = s and st+1 = s′,

then the realized gross return at time t + 1 of the asset that delivers aggregate output as its dividend each period,

R̃m,t+1, equals

R̃m,t+1 =
P̃m,t+1 + Yt+1

Pm,t
=

wms′ + 1

wms

Yt+1

Yt
(16)

Setting R̃i,t+1 = R̃m,t+1 in equation (8) yields,

Et

⎛⎜⎝[β( C̃t+1

Ct

)−ρ] 1−γ
1−ρ [

R̃a,t+1

] 1−γ
1−ρ

−1

R̃m,t+1

⎞⎟⎠ = 1

⇒ E

⎛⎜⎝[β( C̃t+1

Ct

)−ρ] 1−γ
1−ρ
[
was′ + 1

was

(
C̃t+1

Ct

)] 1−γ
1−ρ

−1(
wms′ + 1

wms
X̃t+1

) ∣∣∣∣ps
⎞⎟⎠ = 1 (17)

where X̃t+1 =
Yt+1

Yt
. Provided that st follows a Markov process, equation (17) can be rewritten as

β
1−γ
1−ρ

⎛⎝ ∑
s′={H,L}

ωs,s′E

((
C̃t+1

Ct

)−γ

X̃t+1

∣∣∣∣ps′
)(

was′ + 1

was

) 1−γ
1−ρ

−1 (
wms′ + 1

wms

)⎞⎠ = 1 (18)
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Reordering equation (18) yields,

wms = β
1−γ
1−ρ

⎛⎝ ∑
s′∈{H,L}

ωs,s′E
(
e−γΔc̃t+1+x̃t+1

∣∣ps′)(was′ + 1

was

) 1−γ
1−ρ

−1

(wms′ + 1)

⎞⎠ s = {H,L} (19)

It follows from (2) that −γΔc̃t+1 + x̃t+1 = x̄+ (τ − γ)Δc̃t+1 + σxξ̃t+1. Therefore, (19) equals to

wms = β
1−γ
1−ρ ex̄+

σ2
x
2

⎛⎝ ∑
s′∈{H,L}

ωs,s′E
(
e(τ−γ)Δc̃t+1

∣∣ps′)(was′ + 1

was

) 1−γ
1−ρ

−1

(wms′ + 1)

⎞⎠ s = {H,L} (20)

Proof of Proposition 3. Setting R̃i,t+1 = Rf in equation (8) yields,

E

⎛⎜⎝[β( C̃t+1

Ct

)−ρ] 1−γ
1−ρ [

R̃a,t+1

] 1−γ
1−ρ

−1
∣∣∣∣ps
⎞⎟⎠ =

1

Rf (s)
, s = {H,L} . (21)

Provided that st follows a Markov process and Pa(c, s) = was c, the left hand side of equation (21) can be rewritten

as the following sum

β
1−γ
1−ρ

⎛⎝ ∑
s′=H,L

ωs,s′E

((
C̃t+1

Ct

)−γ ∣∣∣∣ps′
)(

was′ + 1

was

) ρ−γ
1−ρ

⎞⎠
Therefore,

1

Rf (s)
= β

1−γ
1−ρ

⎛⎝ ∑
s′=H,L

ωs,s′E
(
e−γΔc̃t+1

∣∣ps′)(was′ + 1

was

) ρ−γ
1−ρ

⎞⎠ , s = {H,L}

which completes the proof

Proof of Proposition 4. Consider st = s and st+1 = s′. Equation (8) can be rewritten as,

Pi,t = Et

(
M̃t+1

(
P̃i,t+1 + yi,t+1

))
i = 1, · · · , n (22)

where

M̃t+1 ≡
[
β

(
C̃t+1

Ct

)−ρ] 1−γ
1−ρ [

R̃a,t+1

] 1−γ
1−ρ

−1

represents the pricing kernel. Dividing equation (22) by Yt yields

Pi,t
Yt

= Et

(
M̃t+1X̃t+1

P̃i,t+1

Yt+1

)
+ Et

(
M̃t+1

yi,t+1

Yt

)
i = 1, · · · , n (23)
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which can be rewritten as

vi,t = Et

(
M̃t+1X̃t+1vi,t+1

)
+ Et

(
M̃t+1

yi,t+1

Yt

)
i = 1, · · · , n (24)

with vi,t ≡ vi(s) ≡ Pi,t

Yt
. Provided that st follows a Markov process and Pa(c, s) = was c, the first term in the right

hand side of equation (24) can be rewritten as

Et

(
M̃t+1X̃t+1vi,t+1

)
= β

1−γ
1−ρ ex̄+

σ2
x
2

⎛⎝ ∑
s′=H,L

ωs,s′

(
was′ + 1

was

) ρ−γ
1−ρ

E

(
e(τ−γ)Δc̃t+1

∣∣ps′) vi(s′)
⎞⎠ (25)

whereas the second term in the right hand side of equation (24) can be rewritten as

Et

(
M̃t+1

yi,t+1

Yt

)
= eα0+α1diEt

(
M̃t+1e

−α2
√
nε̃i,t+1

)
(26)

The expectation term in the right hand side of equation (26) can be written as

Et

(
M̃t+1e

−α2
√
nε̃i,t+1

)
= β

1−γ
1−ρ

⎛⎝ ∑
s′=H,L

ωs,s′E

((
C̃t+1

Ct

)−γ

e−α2
√
nε̃i,t+1

∣∣∣∣ps′
)(

was′ + 1

was

) ρ−γ
1−ρ

⎞⎠
= β

1−γ
1−ρ

⎛⎝ ∑
s′=H,L

ωs,s′E

(
e−γΔc̃t+1−α2

√
nε̃i,t+1

∣∣∣∣ps′)(was′ + 1

was

) ρ−γ
1−ρ

⎞⎠
As a consequence,

vi(s) = β
1−γ
1−ρ ex̄+

σ2
x
2

⎛⎝ ∑
s′=H,L

ωs,s′

(
was′ + 1

was

) ρ−γ
1−ρ

E

(
e(τ−γ)Δc̃t+1

∣∣ps′) vi(s′)
⎞⎠

+ β
1−γ
1−ρ eα0+α1di

⎛⎝ ∑
s′=H,L

ωs,s′E

(
e−γΔc̃t+1−α2

√
nε̃i,t+1

∣∣∣∣ps′)(was′ + 1

was

) ρ−γ
1−ρ

⎞⎠ i = 1, · · · , n

Define πi(s
′) ≡ E [ε̃i,t+1|st+1 = s′]. It is worth noting that

−γΔc̃t+1 − α2

√
nε̃i,t+1 = −γ

⎛⎝ 1

τ

⎧⎨⎩α0 + α1d̄− α2

⎛⎝∑
j �=i

ε̃j,t+1√
n

⎞⎠− σxξ̃t+1 − x̄

⎫⎬⎭
⎞⎠

︸ ︷︷ ︸
−α2

√
n
(
1− γ

τn

)
ε̃i,t+1

= −γ Δc̃−i,t+1 − α2

√
n
(
1− γ

τn

)
ε̃i,t+1 (27)

Since Δc̃−i,t+1 and ε̃i,t+1 are independent

E

(
e−γΔc̃−i,t+1−α2

√
n(1− γ

τn )ε̃i,t+1

∣∣∣∣s) = E

(
e−γΔc̃−i,t+1

∣∣ps){πi(s)e−α2
√
n(1− γ

τn ) + (1− πi(s))
}

≈ E

(
e−γΔc̃t+1

∣∣ps) (1− πi(s)) (28)

where the last approximation is accurate for large n. If the distribution of Δc̃t+1 is known, the expectation of
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−γΔc̃t+1 − α2
√
nε̃i,t+1 can be approximated using equation (28). Therefore,

vi(s) = β
1−γ
1−ρ ex̄+

σ2
x
2

⎛⎝ ∑
s′=H,L

ωs,s′

(
was′ + 1

was

) ρ−γ
1−ρ

E

(
e(τ−γ)Δc̃t+1

∣∣ps′) vi(s′)
⎞⎠

+ β
1−γ
1−ρ eα0+α1di

⎛⎝ ∑
s′=H,L

ωs,s′E
(
e−γΔc̃t+1

∣∣ps) (1− πi(s))

(
was′ + 1

was

) ρ−γ
1−ρ

⎞⎠ i = 1, · · · , n

which completes the proof

Proof of Proposition 5. Recall

Var
(
M̃t+1

∣∣s) = E

(
M̃2
t+1

∣∣s)− E
2
(
M̃t+1

∣∣s) (29)

The first term in the right hand side of equation (29) can be rewritten as

E

(
M̃2
t+1

∣∣s) = β
2
(

1−γ
1−ρ

)⎛⎝ ∑
s′=H,L

ωs,s′E

((
C̃t+1

Ct

)−2γ ∣∣∣∣ps′
)(

was′ + 1

was

)2
(

ρ−γ
1−ρ

)⎞⎠ (30)

Provided that λm(s) ≡ −
Var

(
M̃t+1

∣∣s)
E

(
M̃t+1

∣∣s) and E

(
M̃t+1

∣∣s) = 1
Rf (s)

, it then follows from equation (29) that

λm(s) =
1

Rf (s)
−Rf (s)

⎛⎝β2
(

1−γ
1−ρ

) ∑
s′=H,L

ωs,s′

(
was′ + 1

was

)2
(

ρ−γ
1−ρ

)
E

(
e−2γΔc̃t+1

∣∣ps′)
⎞⎠ , s = {H,L}

which completes the proof

Appendix B: Simulation of the Model

This section describes the algorithm I use to compute firms’ probabilities of facing negative shocks in each state

of nature so one can compute asset prices and returns at the firm level using proposition 4. Let st denote the

state of p̃t at period t. To simplify the computation of probabilities {πi(st)}ni=1, I restrict the topology of Gn. In

general topologies, computing {πi(st)}ni=1 is hard, because the number of states that need to be considered increases

exponentially with n. In economies with no cycles, however, computing {πi(st)}ni=1 is easier. In those economies,

computing {πi(st)}ni=1 can be framed as a recursive problem as the following algorithm describes.

Algorithm Firms Probabilities (Gn, p̃t, q)

(∗ Description: Algorithm that computes firms’ probabilities of facing negative shocks if Gn is a forest ∗)
Input: Gn (a forest), p̃t, q.

Output: The set of probabilities of firms facing a negative shock at time t, {πi(st)}ni=1

1. for each firm i ∈ Gn

2. Determine the subgraph of Gn wherein firm i participates. Denote such a graph as Ti and label firm i
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as its root.30

3. if firm i has a no connections

4. return πi(st) = q

5. else return Prob(i,Ti,p̃t,q)

where Prob(i,Ti,p̃t,q) corresponds to the following recursive program,

Algorithm Prob(i,Ti,p̃t,q)

(∗ Description: Recursive algorithm that computes firm i’s probability of facing a negative shock ∗)
Input: A node i in Gn, the tree Ti wherein node i is the root, p̃t and q.

Output: πi(st)

1. Determine the set of children of node i in Ti, say Ci.31

2. if Ci = ∅
3. return πi(st) = q

4. else if every node in Ci has no children

5. return πi(st) = q + (1− q)
(
1− (1− p̃tq)

|Ci|
)

6. else return πi(st) = q + (1− q)
(
1−∏k∈Ci

(1− p̃tProb(k, Ti,k, p̃t, q))
)

32

where Ci denotes the cardinality of set Ci.
In economies with no cycles, it is also simple to compute the first two moments of the distribution of

√
nW̃n,t+1

at t+ 1. Let μs, σ
2
s denote the mean and variance of

√
nW̃n,t+1 if st+1 = s, respectively. In other words,

μs = lim
n→∞

E

(
n∑
i=1

ε̃i,t+1√
n

∣∣∣∣s
)

= lim
n→∞

n∑
i=1

πi(s)√
n

s = L,H (1)

and

σ2
s = lim

n→∞
Var

(
n∑
i=1

ε̃i,t+1√
n

∣∣∣∣s
)

(2)

= lim
n→∞

⎧⎨⎩ 1

n

n∑
i=1

πi(s) (1− πi(s)) +
1

n

∑
(i,j)∈Rn

Cov
(
ε̃i,t+1, ε̃j,t+1

∣∣st = s
)⎫⎬⎭ s = L,H

The second equation can be simplified further. If there exists a path between firm i and j after edges are removed

at time t + 1 then ε̃i,t+1 = ε̃j,t+1. If there is no path between firm i and j in Gn, variables ε̃i,t+1 and ε̃j,t+1 are

independent. It then follows,

Et

[
ε̃i,tε̃j,t

∣∣∣∣ there is a path between i and j

]
= Vart [ε̃i,t] + E

2
t [ε̃i,t] = πi(s)(1− πi(s)) + π2

i (s)

Et

[
ε̃i,tε̃j,t

∣∣∣∣ there is no path between i and j

]
= Et [ε̃i,t]Et [ε̃j,t] = πi(s)πj(s)

30Note that such a graph is a tree provided that Gn is a forest.
31In a rooted tree, the parent of a node is the node connected to it on the path to the root. Every node except

the root has a unique parent. A child of a node v is a node of which v is the parent.
32Tree Ti,k denotes the branch of tree Ti that starts at node k.
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Hence,

Et [ε̃i,tε̃j,t] = Et

[
ε̃i,tε̃j,t

∣∣∣∣ there is a path between i and j

]
P [there is a path between i and j at t]

+ Et

[
ε̃i,tε̃j,t

∣∣∣∣ there is no path between i and j

]
P [there is no path between i and j at t]

=
(
πi(s)(1− πi(s)) + π2

i (s)
)
Pij(s) + πi(s)πj(s) (1−Pij(s))

where Pij(s) ≡ P [there is a path between i and j if st = s]. Thus,

Covt [ε̃i,t, ε̃j,t] = Et [ε̃i,tε̃j,t]− Et [ε̃i,t]Et [ε̃j,t]

=
(
πi(s)(1− πi(s)) + π2

i (s)
)
Pij(s) + πi(s)πj(s) (1−Pij(s))− πi(s)πj(s)

= πi(s) (1− πj(s))Pij(s)

Therefore,

σ2
s = lim

n→∞

⎧⎨⎩ 1

n

n∑
i=1

πi(s) (1− πi(s)) +
1

n

∑
(i,j)∈Rn

πi(s) (1− πj(s))Pij(s)

⎫⎬⎭ s = L,H

To compute Pij(s) I need to determine the set of paths that connect firms i and j on Gn. If there is more than one

path connecting firm i and j, computing Pij(s) is difficult, because shocks can be transmitted by any of those paths

which may be of different length. On the other hand, if there is only one path connecting any two given firms, say

firm i and j, Pij(s) is a function of the length of the unique path connecting firms i and j. It then becomes handy

to restrict the topology of Gn so that it does not have cycles. The following remark describes Pij(s) when Gn is a

forest.

REMARK 3: Suppose Gn is a forest, namely there are no cycles. Then, every component of Gn is a tree. Provided

that any two given firms are jointed by a unique path (in case such a path exists),

Pij(s) =

⎧⎪⎪⎨⎪⎪⎩
p̃
li,j
t where li,j is the length of the (unique) path between i and j in Gn

0 there is no path between i and j

(3)

Appendix C: Network Economies and Long-Run Risks

This section shows how the baseline model can be recast so that it generates dynamics that are consistent with

long-run risks models. In what follows, both the mean and volatility of firms’ growth rate of cash-flows have a

persistent component. I use approximations similar to those used by Campbell and Shiller (1989) and Bansal and

Yaron (2004) to derive approximated solutions for equilibrium asset prices.

Recall that Pi,t+1 is the share price of firm i at t + 1. For simplicity assume x̄ = σx = 0 and τ = 1 so that the
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following two conditions hold at equilibrium

Pa,t+1 =

n∑
i=1

Pi,t+1 (1)

c̃t+1 =

n∏
i=1

y
1/n
i,t+1 (2)

Define

gi,t+1 ≡ log

(
yi,t+1

ct

)
, gt+1 ≡ log

(
c̃t+1

ct

)
(3)

zi,t+1 ≡ log

(
Pi,t+1

c̃t+1

)
, zt+1 ≡ log

(
Pa,t+1

c̃t+1

)
(4)

Provided Yt+1 definition, it follows

gt+1 =
n∑
i=1

1

n
gi,t+1 (5)

Using first order Taylor approximations yields

zt+1 ≈ w0 +

n∑
i=1

wizi,t+1 (6)

where wi ≈ E

(
zi,t∑n

j=1 zj,t

)
, and

∑n
i=1 wi = 1. The term w0 is selected to ensure that first order approximations hold

in levels as well. Define the continuous return of firm i at t+ 1 as

ri,t+1 ≡ log

(
Pi,t+1 + yi,t+1

Pi,t

)
(7)

and the continuous return on aggregate wealth at t+ 1 as:

ra,t+1 ≡ log

(
Pa,t+1 + c̃t+1

Pa,t

)
(8)

Using first order Taylor approximations yields33

ri,t+1 ≈ ki + ρizi,t+1 − zi,t + ρigt+1 + (1− ρi)gi,t+1 (9)

ra,t+1 ≈ km − zt + ρmzt+1 + gt+1 (10)

33Approximation (10) follows directly from Bansal and Yaron (2004) which in turns follows from the dividend-ratio
model of Campbell and Shiller (1989). Approximation (9) follows from Campbell and Shiller (1989) once noting that

ri,t+1 ≈ ki + log

(
yi,t
Pi,t

)
− ρi log

(
yi,t+1

Pi,t+1

)
+ log

(
yi,t+1

yi,t

)
= ki + log

(
yi,t
ct−1

ct
Pi,t

ct−1

ct

)
− ρi log

(
yi,t+1

ct

ct+1

Pi,t+1

ct
ct+1

)
+ log

(
yi,t+1

ct

ct
ct−1

ct−1

yi,t

)
= ki + ρizi,t+1 − zi,t + ρigt+1 + (1− ρi)gi,t+1
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where {ki}ni=1 and km ensure that first order approximations hold in levels as well. Provided gi,t+1 definition, gi,t+1

can be approximated by

gi,t+1 ≈ xi,t + σi,tηi,t+1 (11)

where

xi,t ≡ α0 + α1di − α2Et [ε̃i,t+1] (12)

σ2
i,t ≡ α2

2Et [ε̃i,t+1] (1− Et [ε̃i,t+1]) (13)

Note that xi,t determines Et[gi,t+1] and σi,t determines the conditional volatility of gi,t+1, given the information at

time t. Provided that Gn does not vary over time and p̃t follows a two state ergodic Markov process, the processes

that xi,t and σ
2
i,t follow can be approximated by:

xi,t+1 ≈ μ0 + μ1xi,t + μ2σi,tζp,t+1 (14)

σ2
i,t+1 ≈ ν0 + ν1σ

2
i,t + ν2σpζp,t+1 (15)

where 0 < μ1 < 1, μ2 > 0, 0 < ν1 < 1 and ν2 > 0. Variable ζp,t+1
d−→ N (0, 1) represents the uncertainty coming

from unexpected changes in p̃t+1. Variables ηi,t+1
d−→ N (0, 1) represents the uncertainty coming from idiosyncratic

productivity shocks at the firm level, with ηi,t+1 ⊥⊥ ηj,t+1, ∀ j �= i. In the baseline model, parameter q is related to

variables ηi,t+1 in the approximated solution. Provided how negative shocks are propagated, ηi,t+1 ⊥⊥ ζp,t+1, ∀ i.34

With the above definitions and approximations at hand, I now study the asset pricing implication of inter-firm

relationships. The pricing kernel equals

mt+1 ≡ θ ln(δ)− θ

ψ
gt+1 + (θ − 1)ra,t+1 (16)

I derive firm i’s price and return using the pricing kernel and the standard first order condition

Et [exp (mt+1 + ri,t+1)] = 1 (17)

I first solve for the return of the market portfolio ra,t+1 substituting ri,t+1 by ra,t+1. Then I solve for the risk-free

rate. Finally I solve for the risk premium of firm i, ∀ i ∈ {1, · · · , n}.
Return of the Market Portfolio: Following Bansal and Yaron (2004) I conjecture that firm i’s logarithm of

the price-consumption ratio follows:

zi,t = a0 + a1xi,t + a2σ
2
i,t (18)

To solve for constants a0, a1 and a2 I use equations (5), (6) and (10) into the Euler equation (17). Since ηi,t+1, ζp,t+1

34Let x̃ and ỹ be two random variables. I write x̃ ⊥⊥ ỹ to denote that x̃ is independent of ỹ.
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are conditionally normal, ∀ i ∈ {1, · · · , n}, ra,t+1 and mt+1 are also normal. Exploiting this normality, I write down

the Euler equation in terms of the state variables {xi,t, σi,t}ni=1. As the Euler equation must hold for all values of the

states variables, the terms involving xi,t must satisfy:

1

n

(
1− 1

ψ

)
− wia1 + ρma1μ1wi = 0 (19)

ASSUMPTION 3: Consider that
∑n
i=1 wixi,t ≈ 1

n

∑n
i=1 xi,t.

It is worth noting that if most firms in Gn have a similar number of connections, then assumption 3 is satisfied.

For instance, if Gn is regular, i.e. all firms have the same degree, then wi ≈ 1
n
for most firms in Gn. If assumption 3

is satisfied, I then can rewrite equation (19) as

wi

(
1− 1

ψ

)
− wia1 + ρma1μ1wi ≈ 0 (20)

as a consequence,

a1 ≈
(
1− 1

ψ

)
1− μ1ρm

(21)

ASSUMPTION 4: Assume that for most firms in Gn, σi,t ≈ σ2
i,t.

Using assumption 4 and collecting all the terms that involve σ2
i,t yields

−wia2 + ρmwia2ν1 +
θ

2

(
1

n

)2 (
1− 1

ψ

)2

+
θ

2
ρ2mw

2
i

(
a21μ

2
2 + a1μ2a2ν2σp

) ≈ 0 (22)

If assumption 3 is satisfied and n is sufficiently large, then wi ≈ w2
i for most firms. Then equation (22) can be

rewritten as

−a2 + ρma2ν1 +
θ

2

(
1− 1

ψ

)2

+
θ

2
ρ2m
(
a21μ

2
2 + a1μ2a2ν2σp

) ≈ 0 (23)

It then follows,

a2 ≈
θ
2

((
1− 1

ψ

)2
+ ρ2ma

2
1μ

2
2

)
1− ν1ρm + θ

2
ρ2ma1μ2ν2σp

(24)

Given the solution for zi,t the innovation to the return of aggregate wealth is given by

ra,t+1 − Et[ra,t+1] ≈ ρm

(
a1μ2

(
n∑
i=1

wiσi,t

)
+ a2ν2σp

)
ζp,t+1 +

1

n

n∑
i=1

σi,tηi,t+1

≈ ρm

(
a1μ2

(
n∑
i=1

wiσi,t

)
+ a2ν2σp

)
ζp,t+1 +

n∑
i=1

wiσi,tηi,t+1

= ρmΔp,tζp,t+1 +
n∑
i=1

wiσi,tηi,t+1 (25)
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where Δp,t ≡ a1μ2

(∑n
i=1 wiσi,t

)
+ a2ν2σp. The conditional variance of aggregate wealth is given by

Vart[ra,t+1] ≈ ρ2mΔ2
p,t +

n∑
i=1

w2
i σ

2
i,t (26)

Hereinafter, I assume that assumptions 3 and 4 are satisfied.

Pricing Kernel: Using equations (5) and (10), I rewrite the pricing kernel in terms of the state variables,

mt+1 ≡ θ ln(δ)− θ

ψ
gt+1 + (θ − 1)ra,t+1 (27)

≈ θ ln(δ)− θ

ψ

(
n∑
i=1

wi(xi,t + σi,tηi,t+1)

)

+ (θ − 1)

(
km − w0 −

n∑
i=1

wi
(
a0 + a1xi,t + a2σ

2
i,t

))

+ (θ − 1)ρm

(
w0 +

n∑
i=1

wi (a0 + a1μ0 + a1μ2xi,t + a1μ2σi,tζp,t+1)

)

+ (θ − 1)ρm

(
n∑
i=1

wi
(
a2ν0 + a2ν1σ

2
i,t + a2ν2σpζp,t+1

))

+ (θ − 1)

(
n∑
i=1

wi(xi,t + σi,tσi,t+1)

)

Innovations to the pricing kernel are then given by

mt+1 − Et[mt+1] ≈ λm,q

(
n∑
i=1

wiσi,tηi,t+1

)
+ λm,pΔp,tζp,t+1 (28)

where λ’s represent the aggregate market prices of risk for each source of risk, namely {ηi,t+1}ni=1 and ζp,t+1, which

are defined as

λm,q ≡ θ

(
1− 1

ψ

)
− 1

λm,p ≡ (θ − 1)ρm

It follows from equation (28) that the conditional variance of the pricing kernel is given by

Vart[mt+1] ≈ λ2
m,q

(
n∑
i=1

w2
i σ

2
i,t

)
+ λ2

m,pΔ
2
p,t (29)

Equity Premium: The risk premium of the market return (aggregate wealth) is determined by the conditional

covariance between the market portfolio and the pricing kernel. It then follows

Et[ra,t+1 − rf,t] = −Covt (mt+1 − Et[mt+1], ra,t+1 − Et[ra,t+1])− 1

2
Vart(ra,t+1) (30)

Using equations (25) and (28) into the above equation yields

Et[ra,t+1 − rf,t] ≈ −
(
λm,q +

1

2

)( n∑
i=1

w2
i σ

2
i,t

)
− ρm

(
λm,p +

ρm
2

)
Δ2
p,t (31)
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Risk-free Rate: As in Bansal and Yaron (2004) the risk-free rate satisfies

rf,t = − ln(δ) +
1

ψ
Et[gt+1] +

1− θ

θ
Et[ra,t+1 − rf,t]− 1

2θ
Vart[mt+1] (32)

Using equations (29) and (31) into the above equation yields,

rf,t ≈ − ln(δ) +
1

ψ

(
n∑
i=1

wixi,t

)

− 1− θ

θ

((
λm,q +

1

2

)( n∑
i=1

w2
i σ

2
i,t

)
+ ρm

(
λm,p +

ρm
2

)
Δ2
p,t

)

− 1

2θ

(
λ2
m,q

(
n∑
i=1

w2
i σ

2
i,t

)
+ λ2

m,pΔ
2
p,t

)
(33)

Risk Premium in the Cross-Section: As with the market portfolio, the risk premium of firm i is determined

by the conditional covariance between firm i’s return and the pricing kernel. It then follows

Et[ri,t+1 − rf,t] = −Covt (mt+1 − Et[mt+1], ri,t+1 − Et[ri,t+1])− 1

2
Vart(ri,t+1) (34)

It becomes handy to compute the innovations on firm i’s return. Using equation (9) it can be shown

ri,t+1 − Et[ri,t+1] ≈ ρi (a1μ2σi,t + a2ν2σp) ζp,t+1

+ ρi

⎛⎝ n∑
j �=i

wjσj,tηj,t+1

⎞⎠+ (1− ρi(1− wi))σi,tηi,t+1

= ρi∇p,tζp,t+1 + ρi

⎛⎝ n∑
j �=i

wjσj,tηj,t+1

⎞⎠+ (1− ρi(1−wi))σi,tηi,t+1 (35)

where ∇p,t ≡ a1μ2σi,t + a2ν2σp. It then follows from equation (35)

Vart(ri,t+1) ≈ ρ2i∇2
p,t + ρ2i

n∑
j �=i

w2
jσ

2
j,t + (1− ρi(1− wi))

2σ2
i,t (36)

Using equations (28), (35) and (36) into (34) yields

Et[ri,t+1 − rf,t] ≈ −ρi
⎛⎝ n∑
j �=i

w2
jσ

2
j,t

⎞⎠(λm,q + ρi
2

)
−

(
λm,qwi +

1

2
(1− ρi(1− wi))

)
(1− ρi(1− wi))σ

2
i,t

− ρi∇p,t

(
λm,pΔp,t +

ρi
2
∇p,t

)
(37)

Topology of Gn and the Cross-Section of Risk Premia: Let ei denote a measure of centrality of firm i

in Gn. For example, ei may represent a firm degree, closeness, betweenness or eigenvector centrality. Differentiating
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equation (37) with respect to ei yields

∂Et[ri,t+1 − rf,t]

∂ei
≈ −2ρi

⎛⎝ n∑
j �=i

wjσj,t
∂σj,t
∂ei

⎞⎠(λm,q + ρi
2

)
− 2

(
λm,qwi +

1

2
(1− ρi(1− wi))

)
(1− ρi(1− wi)) σi,t

∂σi,t
∂ei

− ρiλm,p∇p,t
∂Δp,t

∂ei
− ρi (λm,pΔp,t + ρi∇p,t)

∂∇p,t

∂ei
(38)

where
∂∇p,t

∂ei
= a1μ2

∂σi,t
∂ei

and
∂Δp,t

∂ei
= a1μ2

(∑n
k=1 wk

∂σk,t

∂ei

)
.

As Bansal and Yaron (2004), consider γ = 10 and ψ = 1.5. Thus, a1 > 0 and θ < 0. As a consequence,

• λm,p < 0

• λm,q < 0

• λm,q +
ρi
2
< 0

• λm,qwi +
1
2
(1− ρi(1− wi)) < 0

If either μ2, ν2 or σp are sufficiently large such that a2 > 0 then

• ∇p,t > 0

• λm,pΔp,t + ρi∇p,t < 0

Consider further that σk,t are weakly increasing functions of ei, ∀ k ∈ {1, · · · , n}. If the following sum

− 2ρi

⎛⎝ n∑
j �=i

wjσj,t
∂σj,t
∂ei

⎞⎠(λm,q + ρi
2

)
− ρiλm,p∇p,ta1μ2

⎛⎝ n∑
j �=i

wj
∂σj,t
∂ei

⎞⎠
is greater than

− 2

(
λm,qwi +

1

2
(1− ρi(1− wi))

)
(1− ρi(1− wi)) σi,t

∂σi,t
∂ei

− ρiλm,p∇p,ta1μ2wi
∂σi,t
∂ei

− ρia1μ2
∂σi,t
∂ei

(λm,pΔp,t + ρi∇p,t)

Then
∂Et[ri,t+1−rf,t]

∂ei
≥ 0. If the above inequality holds, then firm i is more procyclical than firms with centrality

scores smaller than ei, because shocks to firm i tend to affect a higher number of firms in the economy than do shocks

to firms with scores smaller than ei. In such an environment, an increase on firm i’s centrality increases the effect

that firm i plays on aggregate volatility, which is measured by terms
(∑n

j �=i wjσj,t
∂σj,t
∂ei

)
and

(∑n
j �=i wj

∂σj,t
∂ei

)
. The

increase in risk tends to overcompensate the increase in firm i’s growth opportunities. On the other hand, firms with

small ei tend to be less procyclical than firms with large ei, and thus they serve as a hedge to aggregate risk.

Appendix D: Tables and Figures

This section contains the tables and figures mentioned in the paper and in the appendix.
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Table I
Critical probability for different symmetric network topologies

The table reports critical probabilities for different symmetric network topologies. Besides reporting the two examples

described in Appendix A, the table reproduces a subset of the values reported in Stauffer and Aharony (1994, Table

1). The first column reports the topology of G∞. The second column reports the number of neighbors of any given

node in G∞. The third column reports the critical probability, pc(G∞). Despite that G∞ may be highly connected, if

p̃t < pc(G∞) then no infinite component emerges as n→ ∞, and thus
√
nW̃n is asymptotically normally distributed.

For illustrative purposes, figure 2(a) depicts a 2D Honeycomb lattice, figure 2(b) depicts a 2D Squared lattice; figure

2(c) depicts a 2D Triangular lattice and figure 2(d) depitcs a Bethe lattice with z = 3. The Bethe lattice of degree z

is defined as an infinite tree in which any node has degree z. For n finite such topologies are called Cayley Trees.

Topology of G∞ Number of neighbors pc(G∞)

Infinite Line (1D lattice) 2 1
Infinite Circle 2 1
2D Honeycomb lattice 3 1− 2 sin

(
π
18

)
2D Squared lattice 4 1

2

2D Triangular lattice 6 2 sin
(
π
18

)
Bethe lattice z 1

z−1

Table II
Characteristics of Customer-Supplier Networks

The table reports characteristics of customer-supplier networks generated at the annual frequency using the Cohen

and Frazzini (2008) dataset from 1980 to 2004. Two firms are connected in the network of year t if one of them

represents at least 20% of the other firm’s sales during year t. The number of components (clusters) in each network

is computed via two consecutive depth-first searches. Provided that degree distributions exhibit fat tails, one can

approximate them via power law distributions at least in the upper tail. Namely, the probability of a given degree

d in the network of year t, Pt(d), can be expressed as P
t (d) = atd

−ξt , where at > 0 and ξt > 1 are parameters to

be estimated. The last row shows the average and standard deviation of the MLE estimators for ξt, over the sample

period.

Characteristic Mean Standard Deviation

Number of firms per customer-supplier network 388 178
Number of relationships per customer-supplier network 281 154
Number of components per network 122 47
Size of the largest component 30 13
Size of the second largest component 24 11
Size of the third largest component 12 8
Size of the fourth largest component 9 7
Size of the fifth largest component 6 4
Exponent of fitted power law to the degree distribution 3.06 0.28
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Table III
Benchmark Parameterization

The table reports the list of parameter values in the benchmark parametrization. I set c̄ = 0.019/12 and x̄ = 0.038/12

so that the unconditional means of consumption and dividend growth generated by the benchmark economy are

similar to the ones found in data. I follow Bansal and Yaron (2004) and I set τ = 3. I set σx = 0.0262 to match the

volatility of dividends. I divide the rest of parameter values into three groups. Parameters in the first group define

the preferences of the representative investor: β represents the time discount factor; γ represents the coefficient of

relative risk aversion for static gambles; and ρ represents the inverse of the inter-temporal elasticity of substitution.

Parameters in the second group describe firms’ cash-flows: α0 measures the part of firms’ cash-flows unrelated to

inter-firm relationships; α1 measures the marginal benefit a firm receives from each relationship; and α2 measures

the decrease in a firm’s cash-flow if a firm faces a negative shock. Given a network topology, parameters in the

third group define the stochastic process that determines the propagation of shocks within the network economy: pL

and pH are the values that the propensity of relationships to transmit negative shocks; q measures how frequently

firms face negative idiosyncratic shocks; ψ measures how frequently relationships exhibit high propensity to transmit

negative shocks; and φ measures the persistence of the stochastic process followed by p̃t.

Preferences Firms’ Cash-flows Propagation of shocks
β γ ρ α0 α1 α2 pL pH q ψ φ
0.997 10 0.65 0.3 0.1 0.07 0.38 0.45 0.2 0.5 0.925

Table IV
Moments under the Benchmark Parameterization

The table reports the first two moments of consumption and dividend growth as well as a set of key asset pricing

moments. Column Data reports moments found in data. Column Model reports moments generated under the

benchmark parametrization described in Table III. Column BY2004 reports moments generated under the Long-

Run Risks Model of Bansal and Yaron (2004). Data on consumption and dividends is obtained from Robert Shiller’s

website http://www.econ.yale.edu/ shiller/data.htm. Moments on the return on aggregate wealth, risk-free rate,

equity premium and Sharpe ratio are based on data from 1928 to 2014 and obtained from Aswath Damodaran’s

website: http://pages.stern.nyu.edu/∼adamodar/. The annual return on aggregate wealth is approximated by the

annual return of the S&P 500 while the yield on three month T-bills is used to proxy for the return on the risk-free

asset.

Moments Data Model BY2004

Average annual log of consumption growth rate 1.9% 1.9% 1.8%
Annual volatility of log consumption rate 3.5% 4.7% 2.8%
Average annual log dividend growth rate 3.8% 3.8% 1.8%
Annual volatility of the log dividend growth rate 11.63% 14.9% 12.3%
Average annual market return (S&P 500) 11.53% 12% 7.2%
Annual volatility of the market return 19% 18.92% 19.42%
Average annual risk-free rate (3 month T-Bill) 3.53% 2.16% 0.86%
Annual volatility of risk-free rate 3% 0.7% 0.97%
Average annual equity risk premium 8% 10% 6.33%
Average annual Sharpe ratio 0.4 0.52 0.33
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Table V
Similarities between the calibrated model and the LRR model

The table reports averages and standard deviations of similarity measures between time series generated with either

the calibrated model or the benchmark parameterization in the LRR model of Bansal and Yaron (2004). To compute

these measures I assume that the propensity of inter-firm relationships to transmit negative shocks follows: p̃t+1 =

0.4 + 0.925(p̃t − 0.4) + 0.006εt+1, where εt+1 is standard normal and i.i.d over time. Such an AR(1) process can be

approximated by the 2-states Markov chain followed by p̃t in the benchmark parameterization. To compute averages

and standard deviations, I sample from the calibrated model and the LRR model to construct two finite-sample

empirical distributions for each similarity measure: one for expected consumption growth, Et [Δc̃t+1], and one for the

conditional volatility of consumption growth, Volt [Δc̃t+1]. Reported values are based on 300 simulated samples over

620 periods. The first 500 periods in each sample are disregarded to eliminate bias coming from the initial condition.

All similarity measures report scores computed as 1
1+distance

, where distance is defined according to each similarity

measure. Let XT = (X1, · · · , XT ) and YT = (Y1, · · · , YT ) denote realizations from two time series, X = {Xt} and

Y = {Yt}. The first and second similarity measures focus on the proximity between X and Y at specific points

of time. The euclidean distance (ED) is defined as
√∑T

t=1(Xt − Yt)2, whereas the dynamic time warping (DTW)

distance is defined as minr
(∑m

i=1 |Xai − Ybi |
)
, where r = ((Xa1 , Yb1), · · · , (Xam , Ybm)) is a sequence of m pairs that

preserves the order of observations, i.e. ai < aj and bi < bj if j > i. DTW seeks to find a mapping such that the

distance between X and Y is minimized. This way of computing distance allows two time series that are similar

but locally out of phase to align in a non-linear manner. The third measure focuses on correlation-based distances.

It uses the partial autocorrelation function (PACF) to define distance between time series. In particular, distance

is defined as
√

(ρ̂Xt − ρ̂Yt)
′Ω(ρ̂Xt − ρ̂Yt) where Ω is a matrix of weights, whereas ρ̂Xt and ρ̂Yt are the estimated

partial autocorrelations of X and Y , respectively. The fourth and fifth measures assume that an specific model

generates both time series. The idea is to fit the specific model to each time series and then measure the dissimilarity

between the fitted models. The fourth measure computes the distance between two time series as the Euclidean

distance between the truncated AR operators. In this case, distance is defined as
√∑k

j=1(ej,Xt − ej,Yt)2 where

eXt = (e1,Xt , · · · , ek,Xt) and eYt = (e1,Yt , · · · , ek,Yt) denote the vectors of AR(k) parameter estimators for X and

Y , respectively. The fifth measure computes dissimilarity between two time series in terms of their linear predictive

coding in ARIMA processes as in Kalpakis, Gada, and Puttagunta (2001). The last measure defines distance based

on nonparametric spectral estimators. Let fXT and fYT denote the spectral densities of XT and YT , respectively. In

this case, the dissimilarity measure is given by a nonparametric statistic that checks the equality of the log-spectra

of the two time series. It defines distance as
∑n
k=1

[
Zk − μ̂(λk)− 2 log(1 + eZk−μ̂(λk))

]
−∑n

k=1

[
Zk − 2 log(1 + eZk)

]
,

where Zk = log(IXT (λk)) − log(IYT (λk)), and μ̂(λk) is the local maximum log-likelihood estimator of μ(λk) =

log(fXT (λk))− log(fYT (λk)) computed with local lineal smoothers of the periodograms. All similarity measures are

computed using the R package TSclust (see Montero and Vilar (2014)).

Et [Δc̃t+1] Volt [Δc̃t+1]
Similarity measure Mean Standard Deviation Mean Standard Deviation

Euclidean Distance (ED) 0.958 0.012 0.974 0.008
Dynamic Time Warping 0.758 0.091 0.723 0.105
PACF 0.736 0.043 0.743 0.043
ED in AR 0.908 0.100 0.910 0.097
Linear predictive in ARIMA 0.726 0.325 0.729 0.313
Spectral distance 1.0 0.000 1.0 0.000
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Table VI
Eigenvector Centrality Summary Statistics

The table reports averages of summary statistics for log(eigenvector centrality). To compute averages in the third

and fourth columns, I use customer-supplier data on years 1982, 1987, 1992, 1997 and 2002 to be consistent with the

years used by Ahern (2013). Using data reported in Ahern (2013, Internet Appendix Table II), the second column

present averages of the statistics for log(eigenvector centrality) in inter-sectoral trade networks. The third column

presents averages in annual customer supplier networks in which two firms are connected if one firm represents at

least 10% of the other firm’s annual sales. The fourth column presents averages in annual customer supplier networks

in which two firms are connected if one firm represents at least 20% of the other firm’s annual sales. The fifth column

reports the statistics for log(eigenvector centrality) in the network of the calibrated economy.

Statistic Inter-sectoral Customer Supplier Customer Supplier Calibrated
Networks Networks (10%) Networks (20%) Network

Number of sectors/firms 474 750 382 400
Mean −6.68 −6.74 −6.62 −6.09
Standard Deviation 1.48 1.07 1.31 1.71
Skewness 0.87 4.04 3.28 1.54
Kurtosis 4.45 18.50 12.38 3.70
Minimum −10.21 −7.01 −7.01 −7.01
1st Percentile −9.39 −7.01 −7.01 −7.01
25th Percentile −7.71 −7.01 −7.01 −7.01
Median −6.85 −7.01 −7.01 −6.09
75th Percentile −5.90 −7.01 −7.01 −6.42
99th −2.27 −1.83 −1.67 −2.30
Maximum −0.17 −0.46 −0.34 −0.74
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