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Abstract

We propose a method to extract individual firms’ risk-neutral return distributions by
combining options and credit default swaps (CDS). Options provide information about
the central part of the distribution, and CDS anchor the left tail. Jointly, but not
in isolation, options and CDS span the intermediate part of the distribution, which is
driven by exposure to the risk of large but not extreme returns. We study the returns
on a trading strategy buying (selling) stocks that are more (less) exposed to such risk.
Controlling for many known factors, this strategy earns a 0.5% premium per month.
The results are robust to using CDS of different maturities.
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1 Introduction

We develop a new method to extract the risk-neutral distribution of a firm’s stock returns by

combining the information contained in option prices and credit default swap (CDS) spreads.

The joint use of option prices and CDS spreads allows us to shed light on the risk-neutral

properties of returns that are large but not extreme (henceforth, intermedate returns). These

returns go beyond the returns implied by the strike prices of actively traded options, but are

not the catastrophic returns typically associated with a default that triggers CDS.

The literature on extracting option-implied return distributions has traditionally fo-

cused on broad equity indexes rather than on individual stocks, although interest in the

latter has increased steadily in recent years. Unlike index options, single-stock options tend

to trade actively at strikes concentrated around the current price, hence they provide limited

information about the non-central part of the risk-neutral distribution.1

We apply our method to a sample of U.S. firms, and we conduct a series of asset pric-

ing tests to document the economic value of extracting risk-neutral distributions using both

option prices and CDS spreads. First, we compare our parametric approach with the es-

tablished non-parametric methodology of Bakshi, Kapadia, and Madan (2003) (henceforth,

BKM). We find that our procedure generally performs as well as BKM, and that it outper-

forms BKM in times of financial market stress. In addition, we focus on the contribution

of CDS by studying a portfolio that buys (sells) stocks for which the options/CDS-implied

skewness is higher (lower) than the option-implied skewness. The portfolio is long (short)

on stocks that are sensitive to the risk of negative (positive) intermediate returns. This risk

is not spanned by options or CDS in isolation. We conduct time-series and cross-sectional

asset-pricing tests to measure the economic significance of the factor, and find that it com-

mands a 0.5% per month risk premium. We find that our results are robust to a large set of

1 A partial list of studies on extracting option-implied distributions for equity indexes includes Bates (1991),
Madan and Milne (1994), Rubinstein (1994), Longstaff (1995), Jackwerth and Rubinstein (1996), Aı̈t-Sahalia
and Lo (1998), Bates (2000), Bliss and Panigirtzoglou (2002), Figlewski (2010), Birru and Figlewski (2012),
and Andersen, Fusari, and Todorov (2015). Investors are net buyers of index options (Gârleanu, Pedersen,
and Poteshman, 2009), and index options trade with more out-of-the-money (OTM) strikes than single-stock
options since they provide hedge against increases in correlation that reduce the benefits of diversification
(see Driessen, Maenhout, and Vilkov, 2009).
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asset pricing factors, stock characteristics, and different assumptions about key inputs of the

method, such as CDS tenor and default thresholds.

Importantly, the robustness to different default thresholds also speaks to the robustness

of our results to different recovery rates. Changing the recovery rate alters the probability

of default extracted from CDS spreads. Changing the default threshold also alters this

probability of default. For all practical purposes, changes to the recovery rate or to the

default threshold are observationally equivalent in terms of how they affect the CDS-implied

default probability. In our analysis, we assess the effect of seven different thresholds, four of

which depend on company-specific characteristic (leverage and size) and three that do not

vary across companies.

Studies of individual-stock risk-neutral distributions often build on the popular method

of Bakshi and Madan (2000) and Bakshi, Kapadia, and Madan (2003) to calculate higher-

order risk-neutral moments from option prices. Examples include Dennis and Mayhew (2002),

Rehman and Vilkov (2012), Bali and Murray (2013), Conrad, Dittmar, and Ghysels (2013),

DeMiguel, Plyakha, Uppal, and Vilkov (2013), and Stilger, Kostakis, and Poon (2017). Some

implementations of this method rely on a potentially small number of options (e.g., Dennis

and Mayhew, 2002, among others) or on interpolated option prices (e.g., An, Ang, Bali, and

Cakici, 2014).

Our proposed method takes advantage of the availability of CDS contracts that were

thinly traded in early 2000s. Since the mid-2000s, both the number and the liquidity of CDS

contracts for U.S. companies have increased significantly. A potential concern is that observed

CDS spreads may embed a liquidity premium, which would distort our implied probabilities

of default. Qiu and Yu (2012) provide the primary evidence for this concern. Using a sample

encompassing 2001 to 2008, they find that CDS spreads contain a liquidity premium and

that this premium is higher for smaller companies. Our sample includes companies that are,

on average, about four times as large as those studied by Qiu and Yu (2012) because we

require that both options and CDS data are available.2 As such, the presence of a liquidity

2 Table 1 shows selected summary statistics for the 275 companies in our sample as of 2006. Compare the
average total assets figure in this table (about $63 billion) against the average total assets figure (about $17
billion) in Table 1 of Qiu and Yu (2012).

3



premium is less of a concern in our study. Nevertheless, we control for liquidity risk in our

asset-pricing tests by including a broad liquidity risk factor and CDS index spreads. Besides

credit risk, CDS index spreads also reflect broad liquidity conditions in the CDS market, just

as equity returns reflect liquidity risk (see, for instance, Pastor and Stambaugh, 2003).

The estimation of risk-neutral distributions with options and CDS instead of just op-

tions can be advantageous for two reasons. First, CDS contain information about extreme

events that liquid options, with strikes close to the current stock price, do not. This feature

is especially valuable because we anchor the left tail of the risk-neutral distribution through

default probabilities embedded in CDS spreads. Second, CDS and options jointly provide

information that neither options nor CDS can convey individually. Using CDS and options

together provides information about returns that, in absolute value, are large but not ex-

treme.3 The trade off we face is that we need data for both options and CDS, which reduces

the sample size both in the cross section and in the time series. In addition, we need to

estimate the return threshold where we transition from using options data to using CDS

data.

A number of studies investigate the link between the pricing of options and CDS.4 Carr

and Wu (2011) derive a no-arbitrage relation between CDS and out-of-the-money (OTM)

put options that builds on the existence of a default corridor for stock prices. They assume

that stock prices remain above a certain threshold before default, and jump below a second

threshold upon default. A simple trading strategy that buys and sells options with strike

prices within the default corridor has a payoff which replicates that of a CDS, thus establishing

a no-arbitrage link between the prices of options and CDS. Carr and Wu (2010) develop a

model for the joint valuation of options and CDS, where the default rate is affected by stock

3 Extreme negative returns are associated with default, and in the company-specific context of our study,
are accounted for by CDS-implied probabilities of default.
4 Several contributions also focus on the interaction between options or stocks and CDS or corporate bonds.
The spreads on bonds and CDS are in theory linked through a no-arbitrage restriction. Friewald, Wagner, and
Zechner (2014) show the CDS spread-term structure contains information about the equity premium. Cao,
Yu, and Zhong (2010) document the covariation of CDS spreads and the volatility risk premium. Cremers,
Driessen, and Maenhout (2008) and Cremers, Driessen, Maenhout, and Weinbaum (2008) find that option
implied volatilities explain credit spreads. Acharya and Johnson (2007) find that information expressed in
CDS spreads is reflected in stock prices with a lag. Ni and Pan (2011) study short-sale bans and highlight
information flows from CDS to stock prices, while Han and Zhou (2011) document that the slope of the CDS
term structure is related to subsequent returns, in particular for stocks for which arbitrage is more difficult.
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volatility. They explicitly model the stock and default dynamics, which entails estimating a

relatively large set of parameters.

Aı̈t-Sahalia and Lo (1998) highlight that risk-neutral distributions can be extracted with

a variety of techniques, ranging from specifying the data generating process and obtaining

closed-form expressions for option prices, to non-parametric methods that do not restrict

the asset price dynamics or the family to which the risk-neutral distribution belongs. In our

approach, we do not model the stock price dynamics and, each day independently, we extract

three parameters that characterize a skewed Student-t distribution.5

Parametric models of asset price dynamics are widely used for index options,6 for which

relatively liquid data are available daily. This is not the case for individual-stock options.

As we detail in Section 4, in line with other studies that focus on individual-stock options,

the representative firm in our study has observations for one third of the sampling period.

This constraint implies a tradeoff, since structural estimation that requires a dense set of

data is only feasible for the largest companies with the most observations. Alternatively,

one may concentrate on a larger cross-section of companies, for which dense data are not

necessarily available. Indeed, Carr and Wu (2010) apply their structural estimation to a set

of 8 large firms, while we expand the cross-section to 275 companies. This larger cross-section

allows us to conduct asset pricing tests on certain features of the risk-neutral distributions.

An advantage of cross-sectional tests is that portfolio characteristics can be included easily,

and they control for the changing composition of the portfolios. By extracting risk-neutral

distributions independently for each day and each company, our method also responds quickly

to the arrival of higher-frequency information. As discussed in Birru and Figlewski (2012),

high-frequency information is particularly useful to undestand investor behavior at times of

elevated market volatility.

In order for our method to be feasible, stock prices need to be positive just before

default. If stock prices always approach zero before default, bankruptcy would not span a

5 The skewed Student-t distribution is often used to model financial time series, as in Hansen (1994) and
Patton (2004).
6 A partial list of contributions includes Andersen, Fusari, and Todorov (2017b), Andersen, Fusari, and
Todorov (2017a), Christoffersen, Du, and Elkamhi (2017), Andersen, Fusari, and Todorov (2015), Benzoni,
Collin-Dufresne, and Goldstein (2011), and Du (2011).
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meaningful set of a firm’s equity return space, and the CDS-implied default probability could

not be used to anchor the left tail of the risk neutral distribution of returns. There is evidence

that debtholders generally have an incentive to strategically force a default before the value

of assets approaches zero, in order to maximize the recovery rate on the debt (see Fan and

Sundaresan, 2000, Carey and Gordy, 2016, Garlappi and Yan, 2011, and other references in

Carr and Wu, 2011).

Our approach of using stock-specific moments to investigate the cross-section of returns

contributes to an active line of research. In particular, our work is close to Stilger, Kostakis,

and Poon (2017), Conrad, Dittmar, and Ghysels (2013) and Rehman and Vilkov (2012).

These studies use the method developed in BKM to calculate risk-neutral higher moments

for individual stocks and document the relation between the extracted moments and future

returns. Our results are in line with the findings of Stilger, Kostakis, and Poon (2017),

Conrad, Dittmar, and Ghysels (2013) and Rehman and Vilkov (2012), but the design of our

study differs from these papers along this important dimension: they are focused on the

direct contribution of risk-neutral higher moments on future return predictability, while we

are focused on the differential between options/CDS-implied and option-implied skewness.

The voluminous literature on index options has highlighted the importance of higher

order moments for asset pricing since the mid-2000s. The literature on risk-neutral skewness

is predated by studies on skewness extracted from historical returns. Harvey and Siddique

(2000) find that systematic skewness helps explain the cross section of returns. Account-

ing for skewness is also important to identify the sign of the risk-return relation, see Fe-

unou, Jahan-Parvar, and Tédongap (2013). Amaya, Christoffersen, Jacobs, and Vasquez

(2015) find that realized skewness generates cross-sectional predictability in stock returns.

Recently, Colacito, Ghysels, Meng, and Siwasarit (2016) investigate the effect of skewness

in firm-level and macroeconomic fundamentals on stock returns. As documented by Kim

and White (2004), measuring historical higher moments is difficult. Feunou, Jahan-Parvar,

and Tédongap (2016), examine alternative parametric structures for skewness models, and

Neuberger (2012) develops a realized estimator for skewness based on high-frequency data.

Ghysels, Plazzi, and Valkanov (2016) use quantile-based measures of skewness to overcome
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data constraints in emerging markets. Khozan, Neuberger, and Schneider (2013) analyze the

skewness risk premium with a trading strategy that replicates a skew swap whose payoff is

the difference between option-implied skewness and realized skewness. They find that vari-

ance risk and skewness risk are closely related, in that trading strategies which load on one

of the two and hedge the other do not earn a risk premium.

The rest of the paper is organized as follows. Section 2 describes the data used in

our study. In Section 3 we present the method for extracting the options/CDS-implied

risk-neutral distributions. Section 4 discusses our empirical investigation and findings, and

Section 5 concludes.

2 Data

Our sample encompasses option prices, CDS spreads, and company stock returns from Jan-

uary 2006 to December 2015. We choose to focus on this period due to CDS data availability

and reliability: while CDS spreads are available from Markit starting in 2001, the number of

companies for which CDS trade increases rapidly in the early years and it only starts to level

off in 2006. Options and interest rate data are from OptionMetrics through Wharton Re-

search Data Services (WRDS). We collect American options (with an “A” exercise style flag)

written on individual common stocks (CRSP share codes 10 and 11) that trade on AMEX,

NASDAQ, or NYSE (CRSP exchange codes 1, 2, and 3). As is customary with options data,

we apply a series of filters to discard thinly-traded options and likely data errors. We keep

observations with positive volume, positive bid and ask prices, and an ask price higher than

the bid price. Following Santa-Clara and Saretto (2009), we drop options with a bid-ask

spread smaller than the minimum tick (0.05 if the ask is less than 3, and 0.1 if the bid is

more than or equal to 3). Finally, we discard options with missing observations for implied

volatility.

The CDS data are from Markit. They include the term structure of CDS spreads

between 6 months and 30 years, in addition to recovery rates and restructuring clauses.

Moreover, Markit provides information on the reference obligation, including seniority and
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country of domicile for the issuer. We focus on U.S. Dollar-denominated CDS contracts

on senior unsecured obligations issued by U.S.-based entities. We consider CDS spreads

pertaining to contracts with an XR restructuring clause. Restructuring clauses determine

what credit events trigger the payout of the CDS, and the XR clause excludes all debt

restructuring as trigger events.7

The bankruptcy data that we use to compute the default thresholds are from CapitalIQ.

We consider Chapter 7 and Chapter 11 bankruptcy filings (event code 89) between 1990 and

2015 for companies with common stock trading on large exchanges, with market capitalization

in excess of 100 million one year before the filing, and with a delisting payment within 30 days

of bankruptcy. When a company defaults multiple times, only the first instance is included

unless the bankruptcies are at least five years apart. The final number of companies we

consider is 112. This figure is smaller than the typical sample in the bankruptcy literature

because we need to ensure that we calculate the thresholds using firms comparable to those

with traded options and CDS. For instance, Subrahmanyam, Tang, and Wang (2014) consider

1,628 filings between 1997 and 2009. We start with 1,827 filings and we are left with 367

firms simply by focusing on companies with common stock trading on AMEX, NASDAQ or

NYSE. The remaining filters eliminate a smaller number of observations each and yield the

set of companies we use in computing the default thresholds.

We obtain stock returns from the Center for Research on Security Prices (CRSP) and

balance-sheet items through Compustat. We manually match companies in Markit and

CRSP by name, and we merge Compustat and OptionMetrics using the the lpermno and

cusip variables.

On any given day, we select the cross section of options with maturity closest to 90

calendar days, as long as the maturity is between 15 and 180 days. We require that the CDS

spread and at least five option observations are available for each company/day combination.

Table 1 shows selected summary statistics for the resulting 275 companies as of 2006. These

7 As discussed in Markit (2009, pg. 18), “Over time, certain credits have come to trade on a market defined
convention. For example, [...] North American High Yield names trade without restructuring.” The so-
called 2009 CDS Big Bang acknowledged the market practice of using MR restructuring clauses for North
American high yield reference entities, rather than prescribing the use of MR restructuring clauses in a break
with existing market practice.
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companies are large, with median book assets equal to about $13 billion. The average of

book assets is about $63 billion, which indicates the presence of several very large companies.

The remaining summary statistics are financial and balance sheet ratios, all scaled by book

assets at the end of 2005, and show that there is substantial heterogeneity in our sample

along several dimensions, including cash flows, sales, investment, research and development

expense, and stock and debt issuance.

Although the companies in our sample are typically large, the strike coverage and traded

volume of options written on their stocks remain pervasively low. The summary statistics

in Table 2 highlight the differences in the availability of strike prices between options on the

S&P 500 index and on the companies we study. We apply the filters described earlier in this

section to both index and stock options, and we define a call (put) option as OTM if the

strike is above (below) the stock price. A put option is considered deep OTM if its strike

price is less than 80% of the stock price.

The top panel of Table 2 shows that, for the S&P 500, OTM options trade more often

than their in-the-money (ITM) counterparts, with the average number of OTM options equal

to 14.69 (puts) and 12.02 (calls) and the corresponding averages for ITM options equal to

4.29 (puts) and 5.40 (calls). The average daily number of deep OTM put options is about 8,

or roughly half the average number of OTM put options. Turning to individual-stock options

in the bottom panel, the average number of option prices is considerably lower across both

moneyess and call/put types, and there is little difference in availability between ITM and

OTM options. The average number of deep OTM put options is roughly 2, and the median

equals 1.

Additionally, the two rightmost columns of Table 2 report summary statistics for op-

tion volume along moneyness and call/put types. We observe the same patterns that we

discussed for the number of available options. Trading volumes are one order of magnitude

smaller for individual-stock options compared to index options, and the difference is even

more pronounced for OTM puts. Overall, the evidence in Table 2 point to the value of incor-

porating left-tail information from CDS spreads when studying the risk-neutral distributions

of individual stocks.
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3 Options/CDS-implied return distributions

Our method for estimating risk-neutral distributions is based on three ingredients: option

prices, CDS spreads, and a default threshold. Option prices provide information about the

central part of the distribution, while CDS spreads anchor the left tail. The probability of

default embedded in the CDS contract is the cumulative density up to the default threshold.

The default threshold pins the transition point between option- and CDS-based information.

Figure 1 illustrates graphically how options and CDS information are combined to yield the

risk-neutral distribution.

As highlighted in the previous section, options with a strike price close to the default

threshold are very thinly traded. On the other hand, CDS contracts, especially since the

mid-2000s, have an active market. By definition, CDS with an XR restructuring clause pay

upon default, which means that their “strike price” is at the default threshold. Table 3

provides a hypothetical example of the typical availability of CDS and options with different

strikes, and of the informativeness about default risk of CDS and options with different

strikes. The current stock prices is $100 and default happens when the stock price drops to

$20. Options with strike price close to the underlying price (strikes equal to $110 and $90)

are actively traded but they are not informative about the probability of default. The reason

is that these options speak to the probability of moderate price changes (±10%), however

they do not provide information about large price drops that are associated with company

default. Single-name options with a strike price significantly below the current stock price

and close to the default threshold ($20, in this case) rarely trade. Thus, while potentially

informative, they are not readily available. CDS, on the other hand, have an implicit strike

price that is equal to the default threshold and they are actively traded, hence they meet

both requirements.

For each stock/day pair, we estimate the parameters of a skewed Student-t distribution

(Hansen, 1994 and Patton, 2004) by minimizing the squared deviations between the empirical

and parametric cumulative probability functions measured at the default threshold and at the

option strike prices. The empirical cumulative probability at the default threshold is equal
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to the CDS-implied default probability, while the option-implied probabilities are computed

using standard methods that build on the link between the call pricing function and the

probability distribution highlighted in Breeden and Litzenberger (1978).

The probability density function of the skewed Student-t distribution is given by:

f(zj) =


bc

(
1 + 1

η−2

(
bzj+a
1−λ

)2
)−(η+1)/2

if zj < −a/b

bc

(
1 + 1

η−2

(
bzj+a
1+λ

)2
)−(η+1)/2

if zj ≥ −a/b
(1)

where λ (|λ| < 1) is the shape parameter, η (2 < η < ∞) are the degrees of freedom, and

zj = rj−rf
σj is the standardized return for company j with expected return rf and volatility

σj. Setting the expected return equal to the risk-free rate rf for all companies enforces the

martingale restriction under the risk-neutral measure.

The skewness sk and kurtosis ku of the skewed Student-t distribution are defined as

follows (Feunou, Jahan-Parvar, and Tédongap, 2016):sk = (m3 − 3am2 + 2a3)/b3

ku = (m4 − 4am3 + 6a2m2 − 3a4)/b4
(2)

where a = 4λcη−2
η−1

, b =
√

1 + 3λ2 − a2, c = Γ((η+1)/2)

Γ(η/2)
√
π(η−2)

, m2 = 1 + 3λ2, m3 = 16cλ(1 +

λ2) (η−2)2

(η−1)(η−3)
(for η > 3), and m4 = 3η−2

η−4
(1 + 10λ2 + 5λ4) (for η > 4).

Our goal is to recover risk-neutral distributions of three-month ahead returns. Options

with a maturity of exactly three months are generally not available. As a result, for each day

and for each company we choose the cross section of options with maturity closest to three

months, as long as the maturity is between 15 and 180 days. Note that the risk-neutral cumu-

lative density function (CDF) of returns is the first derivative of the European price function,

but exchange-traded options on individual companies are American options. We convert

American prices into their European equivalent with three-month maturity by calculating

the Black-Scholes price based on the implied volatility provided by OptionMetrics, which

is computed according to a Cox, Ross, and Rubinstein (1979) binomial tree and does not

incorporate the early exercise premium. In that, we follow Broadie, Chernov, and Johannes
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(2007).

3.1 Option-implied return probabilities

A number of contributions to the literature on option-implied distributions exploit the equal-

ity of the density to the scaled second derivative of the call price function with respect to the

strike price (Breeden and Litzenberger, 1978). Other studies use binomial trees (Rubinstein,

1994, Jackwerth and Rubinstein, 1996) and kernel regressions (Aı̈t-Sahalia and Lo, 1998).

Once away from at-the-money strikes, there are fewer options and those that are avail-

able are less liquid. Existing studies often obtain a denser set of option prices by interpo-

lating/extrapolating the cross-section of implied volatilities (relative to strike prices) and

inverting the set of traded and interpolated implied volatilities back to prices. The interpo-

lation is often based on non-parametric techniques, like parabolic functions (Shimko, 1993)

or cubic and quartic splines. The shape of the tails of the implied distributions depends

crucially on the extrapolation method and on the leverage exerted by the implied volatilities

at the extremes of the set of traded strikes. The literature has proposed to model the tails

parametrically in order to limit this sensitivity (Shimko, 1993, Figlewski, 2010).

Our method for extracting the risk-neutral distribution of stock returns builds on the

established literature that uses the first derivatives of the European call pricing function,

relative to the strike price, to approximate the CDF of stock returns. We follow Figlewski

(2010) when calculating the option-implied cumulative probabilities at the traded strikes, and

we compute the cumulative probability at the default threshold using CDS spreads and the

technique discussed in Section 3.3. We then estimate the parameters of a skewed Student-t

distribution by minimizing the squared deviations between the skewed Student-t CDF and

the cumulative probabilities extracted from options and CDS.

For each company/day combination we have a cross section of call and put options with

the same maturity. If both a call and a put option are available for the same strike price i,

we compute the volume-weighted implied volatility as follows:

IVi =
vi,C · IVi,C + vi,P · IVi,P

vi,C + vi,P
, (3)
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where vi,C and vi,P are the call and put volumes, and IVi,C and IVi,P are the call and put

implied volatilities. The volume associated with the weighted implied volatility is:

vavi =
v2
i,C + v2

i,P

vi,C + vi,P
. (4)

Compared with a simple average, this formula ensures that the relative liquidity of the call

and put options is appropriately taken into account.8

In line with the literature, we refer to implied volatilities as a function of strike prices as

the volatility smile. Following Bliss and Panigirtzoglou (2002), we interpolate the volatility

smile with a natural smoothing cubic spline before converting the implied volatilities to Black-

Scholes call prices. We use weights based on log-volume in the interpolation. We obtain the

option-implied cumulative probabilities by taking finite differences of the interpolated Black-

Scholes European price function. We approximate the first derivative using points 0.1% to the

left and right of the traded strikes. Since the strikes of the interpolated implied volatilities are

very close to the strikes of the traded options, the effect of alternative interpolation methods

on our results is minimal. The trade off for achieving this robustness is that we impose a

parametric specification on the risk-neutral distribution.

3.2 CDS-implied default probability

In order to extract risk-neutral default probabilities, we need a model that links CDS spreads

to the expected loss of the party selling default insurance. Building on Duffie (2003), we use

a model where default risk has a constant hazard rate.

We can express the CDS spread in terms of a fee and a contingent leg. The fee leg is the

expected value of the payments received by the protection seller. The contingent leg is the

expected value of the losses incurred by the protection seller. As detailed below, we observe

the CDS spread and all the variables that determine the value of the fee and contingent legs,

with the exception of the hazard rate. This rate is computed numerically by equating the

8 For instance, if the call-option volume is 100 and the put-option volume is 1, the volume-weighted implied
volatility mostly reflects the information contained in the call implied volatility. Taking the average of the
option volumes would yield 50.5, while Equation 4 yields 99.02, which better represents the liquidity of the
option that drives the average implied volatility.
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CDS spread to the ratio of the contingent and fee legs.

The value of the fee leg of a CDS with maturity TN and payment dates {Ti}Ni=1 can be

expressed as a function of the spread, s, the hazard rate, λ, the risk-free discount rate, rfi ,

and of the time between Ti−1 and Ti (∆i):
9

Vf (λ, TN) = s · ΣN
i=1

{
∆ie

−λTi−1

[
e−λ∆i +

(
1− e−λ∆i

) λ−1 − e−λ∆i (∆i + λ−1)

1− e−λ∆i

]
e−r

f
i Ti

}
= s · ΣN

i=1

{
∆ie

−λTi−1
[
e−λ∆i + λ−1 − e−λ∆i

(
∆i + λ−1

)]
e−r

f
i Ti
}

(5)

The first exponential in curly brackets is the survival probability up to time Ti−1. The

expression in square brackets gives the expected fee between time Ti−1 and time Ti: the

firm survives one more period, in which case the full fee is collected; or the firm defaults,

so that only the accrued premium is collected. The accrued premium is given by the spread

times the expected time of default, conditional on default taking place in the interval ∆i, as

captured by the fraction next to the closing square bracket. The last term in the formula is

the discount factor.

The expected time of default, conditional on default taking place in the interval ∆i, is:

E [x|0 < x ≤ ∆i] =

∫ ∆i

0

x
f(x)∫ ∆i

0
f(x)dx

dx =

∫ ∆i

0

x
λe−λx

1− e−λ∆i
dx

=
1

1− e−λ∆i
λ

[
−xe−λx

λ

∣∣∣∣∆i

0

+
−e−λx

λ2

∣∣∣∣∆i

0

]

=
λ−1 − e−λ∆i(∆i + λ−1)

1− e−λ∆i
(6)

Note that we make the expected time of default a function of the hazard rate, rather

than assuming it takes place in the middle of the quarter, because companies with high

default risk are likely to default earlier. In expectation, the final CDS payment should be

discounted for a shorter period of time when default risk is higher.

9 Our specification builds on Duffie (2003) and JPMorgan (2001). See the ISDA “Standard North American
Corporate CDS Contract Specification” for details on the pricing and timing conventions for corporate CDS.
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The value of the contingent leg is:

Vc(λ, TN) = L · ΣN
i=1

[
e−r

f
i Ti
(
e−λTi−1 − e−λTi

)]
(7)

The par spread sets the value of the contract equal to zero at initiation, which means

that the fee and the default legs have the same value. It follows that:

s =
L · ΣN

i=1

[
e−r

f
i Ti
(
e−λTi−1 − e−λTi

)]
ΣN
i=1

{
∆ie−λTi−1 [e−λ∆i + λ−1 − e−λ∆i (∆i + λ−1)] e−r

f
i Ti

} (8)

Assuming that the loss given default L is equal to 1 minus the recovery rate provided by

Markit, all the variables in the equation except λ are observable. We then recover the hazard

rate as the value of λ which verifies equation 8. Note that Markit’s recovery rates are, for our

sample of companies, virtually constant at 40%, which is an often-used industry convention.

Of the company/date combinations for which we extract risk-neutral distributions, 89.17%

have a recovery rate of 40%, 8.38% between 35% and 40%, and 0.61% between 40% and 45%.

Only in 1.84% of the cases is the recovery rate outside of this narrow range.

In the baseline estimation we use the appropriately compounded spread on CDS with

five years to maturity. The reason is that trading in corporate CDS is concentrated in the

five-year tenor (Chen, Fleming, Jackson, Li, and Sarkar, 2011), which implies that spreads

corresponding to CDS with other maturities are more likely to have a lower signal-to-noise

ratio. Zhang, Zhou, and Zhu (2009) also focus on five-year CDS, for the same liquidity-

related reasons. In order to evaluate the sensivity of our results to the slope of the CDS

spread term structure, we also repeat our analysis using one-year CDS spreads and three-

month CDS spreads. The three-month CDS contract, however, is not traded. We recover

the three-month spread by linearly extrapolating from log-spreads with maturities between

six months and ten years.

In principle, CDS spreads incorporate compensation for counterparty credit risk, which

could induce downward bias in the measured default risk. However, Arora, Ghandi, and

Longstaff (2012) [pg. 1] find that the effect is “vanishingly small and is consistent with [...]

collateralization of swap liabilities by counterparties”.
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3.3 Combining CDS- and option-implied probabilities

We define the default threshold (RD) as the cumulative return over the three-month period

leading to a bankruptcy filing. We first compute four different default thresholds by double

sorting companies on the basis of market capitalization and leverage one year and one quar-

ter before the bankruptcy filing. The market capitalization breakpoint is $1 billion, and the

leverage breakpoint is the bankruptcy-sample median. The rationale for using a five-quarter

gap is that we need one quarter to calculate the default threshold, and we lag the firm charac-

teristics by one year to limit the impact of the looming bankruptcy on market capitalization

and leverage.

For robustness, we also consider three additional default thresholds. First, we take

the average of the thresholds obtained by double sorting companies on the basis of size and

leverage. Second, we use a threshold equal to 120% of the this average. Third, we set the

threshold to 80% of the average. Evaluating the robustness to different default thresholds is

also informative about the robustness of our results to different recovery rates, since changing

the threshold and changing the recovery rate are observationally equivalent in their impact

on the default probability extracted from CDS spreads.

Panel A in Table 4 reports the four default thresholds estimated by double sorting

companies on size and leverage. The thresholds are expressed in both log and arithmetic

returns, for expositional clarity. Large companies with low leverage experience noticeably

more negative returns than small companies with high leverage in the run up to bankruptcy

(-0.90 vs -0.70).

As shown in Panel B of Table 4, the mean of the four log-return thresholds equals -1.85,

corresponding to -0.84 in arithmetic returns. The 120% and 80% of the mean are -2.23 and

-1.48, respectively. The corresponding arithmetic returns are -0.89 and -0.77.

Sections 3.1 and 3.2 describe how we calculate the option-implied cumulative return

probabilities and the CDS-implied default probability. Now we discuss how to combine these

probabilities to estimate a parametric risk-neutral distribution of returns. We assume that,

under the risk-neutral measure, returns follow a skewed Student-t distribution. Hansen (1994)
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and Patton (2004) study financial applications of the skewed Student-t distribution under

the physical measure.

The skewed Student-t CDF with parameter set Φ = {σ, λ, η} under the risk-neutral

measure is represented by Fsk(.; Φ). The CDS-implied cumulative probability up to the

default threshold is CPcds, and the option-implied cumulative probability up to strike si is

CPsi . For each company/day combination, we estimate the parameters of a skewed Student-t

distribution by minimizing the squared deviations between the skewed Student-t CDF and

the cumulative probabilities extracted from options and CDS:

Φ̂ = argmin
Φ

{
wcds · [Fsk (RD,Φ)− CPcds]2 + ΣN

i=1wsi [Fsk (si,Φ)− CPsi ]
2} , (9)

where wcds is the weight assigned to the CDS-implied cumulative probability and wsi is the

weight assigned to the cumulative probability corresponding to strike i. If no option trades

with a strike below RD, each observation is equally weighted. If options trade with strikes

below RD, wcds is equal to the volume of these options divided by the total option volume,

and wsi are equal weights scaled so that wcds + ΣN
i=1wsi sums to one. We do not use options

with strikes below the default threshold in computing risk-neutral densities. The reason is

that it is very unual for single-name options to trade this far from at-the-money, and prices

are likely to contain a considerable level of noise. The mean of the risk-neutral distribution

is set to the risk-free rate to enforce the martingale restriction.10

We repeat the above procedure (equation 9) using only option-implied cumulative prob-

abilities, effectively setting the term [Fsk (RD,Φ)− CPcds]2 equal to zero. As a result, on a

given day and for a given company, we recover one risk neutral distribution based on options

and CDS, and another distribution based on options only.

We recover the skewed Student-t parameters by first estimating 10 sets of parameters

from randomized starting values. We then carry out a grid search centered around the pa-

rameter set Φ̃ = {σ̃, λ̃, η̃} which yields the smallest squared deviations. The skewed Student-t

distribution is characterized by three parameters (as discussed above, the mean is set to the

10 In order to reduce the influence of outliers, we discard options with strikes that imply a return below RD
and, for symmetry, options with strikes that imply a return above the opposite of RD.
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risk-free rate to satisfy the martingale restriction). We constrain the volatility, shape, and

degrees of freedom parameters to be between [0.05,1.25], [-0.995,0.995], and [2.1,100], respec-

tively. For the volatility and shape parameters, the grid search is focused on ±0.05 around σ̃

and λ̃, in 0.005 steps. For the degrees of freedom, we focus on ±0.1 around η̃, in 0.01 steps.

4 Empirical investigation

In this section, we present the empirical evidence in support of our proposed method. To

do so, we proceed as follows. First, we discuss the properties of the skewed Student-t mo-

ments extracted using options and options and CDS, and of the moments based on the

non-parametric method of Bakshi, Kapadia, and Madan (2003), which is the standard ap-

proach in this literature. We evaluate which risk-neutral moment is more directly affected

by the inclusion of CDS. We find it to be skewness. Second, we focus on skewness and, in

order to assess the economic value of our method, we perform a set of asset pricing tests on

portfolios formed on the basis of various skewness measures and on the difference between

the options/CDS and options-only skewness. Our analysis is in line with other studies in

this literature, which investigate the asset-pricing implications of option-implied skewness

(Stilger, Kostakis, and Poon, 2017, Conrad, Dittmar, and Ghysels, 2013, and Rehman and

Vilkov, 2012, among others). Third, we conduct robustness tests that evaluate the impact of

choosing alternative CDS tenors and of using different default thresholds.

We choose to evaluate our method with asset pricing tests for three reasons. First,

studying risk-adjusted returns is a simple way of evaluating the economic significance of the

method we propose because risk-adjusted returns are a direct measure of how much investors

care about the risk expressed by our measure of skewness differences. Second, due to data

limitations, our panel of firm/day risk-neutral moments is unbalanced. For the median

company, we can calculate risk-neutral moments on 34% of the business days.11 At the 10th

and 90th percentiles, we can calculate risk-neutral moments on 12% and 68% of the business

days, respectively. By forming portfolios and studying returns, we obtain continuous time

series that also smooth out estimation noise. As a final step, as clear from the summary

11 We follow the New York Stock Exchange convention for the number of business days each year.
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statistics we discuss below, the risk neutral moments we estimate contain a certain number

of extreme observations. These observations are bound to exert significant leverage in, for

instance, a comparison of risk-neutral moments with future realized moments. Using skewness

to form stock portfolios and studying the returns of these portfolios avoids econometric issues,

since stock returns are well behaved. We could discard extreme observations. However they

could contain economic information about investment opportunities – our sample includes

the 2008 financial crisis and the ensuing high-volatility years. In portfolio-based tests, we let

these observations inform portfolio formation without worrying about econometric issues.

We conduct asset-pricing tests using monthly returns. We assign companies to portfolios

based on moments as of the end of the previous month. In order to reduce potential estimation

noise, while also retaining timely information, we average the moments over the last three

days of the month (Stilger, Kostakis, and Poon, 2017 also use end-of-month moments).

Including CDS in the estimation of the risk-neutral distributions does not necessarily

lead to very large changes in the shape of the density function. Figure 2 provides an example.

This figure plots the options-only and options/CDS risk-neutral densities for Citigroup Inc.

on July 20, 2009. As is clear from the figure, the inclusion of CDS has a noticeable, though

not outsized, effect on the shape of the risk-neutral distribution.

4.1 Risk-neutral moments and the inclusion of CDS

In order to understand which moment of the risk-neutral distributions is primarily affected

by the inclusion of CDS, we compare the moments of options/CDS and options-only risk-

neutral distributions. We expect CDS to affect kurtosis and skewness more than volatility,

since the latter is well characterized by options with strike prices around the current stock

price. Kurtosis, on the other hand, measures the thickness of tails, which is directly linked

to the default probability expressed by CDS spreads. Skewness measures the shape of a

distribution, which is influenced by both the central part and the tails.

For each moment (volatility, skewness, and kurtosis), we construct the absolute differ-

ence between the options/CDS moment and the options-only moment, scaled by the absolute
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value of the options-only moment (
|momopt/CDS−momopt|

|momopt| ). Panel A of Table 5 shows the aver-

age and upper percentiles of the absolute relative differences’ distribution. It is immediately

clear that, first, the moment most affected by the inclusion of CDS is skewness, followed

by kurtosis. Second, we observe that meaningful differences between the options/CDS and

options-only skewness are concentrated above the 75th percentile.

The estimation of risk-neutral distributions with options and CDS instead of just op-

tions can be advantageous for two reasons. First, CDS contain information about extreme

events that liquid options, with strikes close to the current stock price, do not. This informa-

tion directly affects the estimation of kurtosis. Second, considering CDS and options jointly

can provide information that neither options nor CDS can convey individually. Figure 1

illustrates that the default probability implied by CDS spreads pins down the far left tail,

and that options are informative about the central part of the distribution. The intermediate

part of the distribution is not spanned by either CDS or options in isolation. However, using

CDS and options together provides information about the likelihood of intermediate returns.

This information affects the estimation of skewness.

The information about probabilities of default embedded in CDS spreads directly affect

kurtosis. This information indirectly affect skewness, and only in conjunction with options

data. As a result, we expect CDS spreads to explain the difference between options/CDS and

option-only kurtosis to a larger extent than they explain the difference between options/CDS

and options-only skewness. We expect this to be the case even though skewness is the

moment that changes the most with the inclusion of CDS, as shown in Panel A. In Panel

B of Table 5, we report the results of regressing skopt/CDS − skopt or kuopt/CDS − kuopt on

5-year CDS log spreads, with standard errors clustered by date since the data is pooled and

innovations to CDS spreads could be correlated in the cross-section. The regression results

point to stronger direct influence of CDS on kurtosis than on skewness. When focusing on

non-zero differences, the slope parameter for CDS spreads is statistically significant only

for kurtosis. This coefficient becomes statistically significant for skewness only when the

differences become increasingly larger. The magnitude and statistical significance of the

slope coefficient, as well as the R2s, are always larger for kurtosis than for skewness.
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Considering the evidence presented in Panels A and B, one can conclude that the joint

consideration of options and CDS influences skewness more than kurtosis. As a result, in the

remainder of the paper we focus on skewness. Moreover, Stilger, Kostakis, and Poon (2017),

Conrad, Dittmar, and Ghysels (2013), and Rehman and Vilkov (2012) find that firm-specific

risk-neutral skewness is priced in the cross-section of stock returns, which makes skewness of

particular interest to the finance community.

We interpret our results in terms of intermediate-return risk, a risk which is unspanned

by options or CDS individually. We provide empirical evidence to this effect in Section 4.3.

An active line of research in financial economics studies the link between conditional skewness

and jumps. Recent examples include Patton and Sheppard (2015), Bandi and Renò (2016),

and Feunou, Jahan-Parvar, and Okou (2017). These studies focus on aggregate stock market

returns, and as such, investigate both extreme and intermediate returns. In our framework,

we consider the link between intermediate returns and skewness, since the risk of extreme

reurns that can push a company into bankruptcy is captured by CDS spreads.

4.2 Evaluating measures of risk-neutral skewness

In Panel A of Table 6, we report summary statistics for skewness measures extracted from

options and CDS, from options only, and for the difference between the two. These moments

are recovered using our parametric method. In Panel B, we compare the non-parametric

skewness measure of BKM, as implemented by Conrad, Dittmar, and Ghysels (2013), to

our options/CDS and options-only measures. As shown in Panel A, differences between the

options/CDS and options-only measures are concentrated in the tails. Panel B highlights that

the BKM skewness measure is generally comparable to ours. However, there are noticeable

differences between BKM’s measure and ours, especially in the tails.

In what follows we compare the BKM, options-only, and options/CDS skewness using

the returns on portfolios formed on each measure. Each portfolio is long (short) stocks in the

top (bottom) 25% of the skewness distribution at the end of the previous month. Figure 3

shows the cumulative returns on the three skewness portfolios and the UMD momentum port-

folio of Carhart (1997). The returns on the options/CDS (SKEWopt/CDS) and options-only
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(SKEWopt) portfolios are similar, but not identical. The BKM portfolio (SKEWBKM) tracks

the two other skewness portfolios closely until early 2009. However, the portfolios based on

our parametric skewness measures outperform the non-parametric BKM portfolio through

2009. This performance gap only starts to close in late 2014. Since the options/CDS and

options-only portfolios have similar cumulative returns, the outperformance of the portfolios

based on our method relative to BKM is not driven by the inclusion of CDS. The sub-

stantive difference seems to lie with our use of a parametric method to recover risk-neutral

distributions.

We test the relationship between the BKM and options/CDS portfolio returns formally,

by regressing options/CDS-portfolio returns on BKM-portfolio returns and a set of additional

risk factors, including the five Fama and French (2015) factors, changes in the spread of the

CDS-index CDX High Yield (to capture economy-wide default risk), and a factor-mimicking

portfolio for changes in the implied volatility index (VIX). Using a factor-mimicking portfolio

for VIX changes allows us to interpret the intercepts of the time-series regressions as risk-

adjusted average returns.12 We report our findings in Panel A of Table 7. The coefficients

on the BKM portfolio are statistically significant both in the full sample and in the 2008-

2011 sample, which focuses on the global financial crisis and its immediate aftermath. The

statistical significance of the estimated intercept in the 2008-2011 period implies that the

returns on the options/CDS factor are not fully explained by the other factors included in

the regression model. This result is consistent with the evidence presented in Figure 3, which

shows that the options/CDS factor outperforms the BKM factor precisely in the aftermath

the 2008 financial crisis.

A possible reason for the options/CDS and options-only portfolios outperforming the

BKM portfolio throughout 2009 is that the parametric nature of our method enables us to

12 The factor mimicking portfolio is built using stocks for which we can calculate the volatility spreads of
Bali and Hovakimian (2009) and the implied-volatility smirk of Xing, Zhang, and Zhao (2010). These stocks
are also used to replicate the 25 size/book-to-market portfolios of Fama and French (1993) that we use in
the cross-sectional asset pricing tests discussed in Section 4.4. We regress monthly stock returns in excess of
the risk-free rate on the three Fama and French (1993) factors plus momentum, and changes in VIX, changes
in VIX squared, and the variance risk premium of Bollerslev, Tauchen, and Zhou (2009) over the 2006-2015
time period. The equally-weighted replicating portfolio is long (short) stocks whose factor loadings on VIX
changes are in the top (bottom) 25% of the distribution.
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more efficiently extract information about future investment opportunities. Indeed, early

2009 is when the stock market bottomed out and a sustained recovery commenced. We can

make an interesting comparison of the returns on the options/CDS and options-only portfolios

with the momentum strategy. As discussed by Barroso and Santa-Clara (2015) and Daniel

and Moskowitz (2016), and as shown in Figure 3, the momentum strategy experienced very

poor returns through 2009. Momentum is a backward-looking strategy that performs poorly

when confronted with sharp changes in the business cycle. At the end of a long recession, like

the one that began in December 2007, the momentum strategy would buy stocks that have

performed well (e.g., low-beta stocks) and sell stocks that have performed poorly (e.g., high-

beta stocks). After a sharp change in the business cycle and in the stock market trend, and

for a length of time that depends on the portfolio-formation period, the momentum strategy

would keep buying (selling) stocks that have done relatively well during the recession but

that will perform relatively poorly with the new upward trend (e.g., the strategy would keep

buying low-beta stocks and selling high-beta stocks).

To the extent that our method extracts information about future investment opportu-

nities efficiently, the returns on the portfolios based on the options/CDS and options-only

skewness measures should be negatively correlated with the returns on the momentum strat-

egy during the year 2009. The top panel in Figure 4 shows that such is the case. The returns

on the options/CDS portfolio are clearly negatively correlated with momentum returns, and

the most negative momentum return (April 2009) corresponds to the largest return on the

options/CDS portfolio. The bottom panel of this figure shows that the correlation between

momentum and BKM skewness portfolio returns is far less pronounced.

We formally test the relationship between the momentum strategy and options/CDS

or the BKM skewness, by regressing momentum portfolio returns on options/CDS or the

BKM portfolio returns, along with the same risk factors used to evaluate the relationship

between the two skewness portfolio returns. Panel B of Table 7 reports these results. As

expected, the estimated slope parameters for options/CDS portfolio returns are statistically

different from zero and negative-valued in the full sample and in the 2008-2011 sub-sample.

Estimated intercepts for the regression models that include options/CDS portfolio returns
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as a factor are statistically indistinguishable from zero both for the full sample and the

2008-2011 sub-sample. Conversely, the estimated slope coefficients for the BKM portfolio

returns are statistically insignificant regardless of the sample used. The estimated intercept

parameter for the model containing the BKM portfolio returns as an independent variable

is statistically different from zero at the 10% significance level only in the 2008-2011 sub-

sample. These results support the visual evidence presented in Figure 3. The BKM portfolio

returns are not significantly correlated with the momentum factor. Moreover, particularly

during the global financial crisis and its immediate aftermath, BKM portfolio returns and

other risk factors used in this testing exercise do not fully span the momentum factor. On

the other hand, the momentum factor is fully spanned, regardless of the sample used, by the

options/CDS portfolio returns and the additional risk factors.

Since the philosophy behind the construction of the momentum and options/CDS skew-

ness portfolios are completely different, these findings cannot be attributed to data mining –

a serious concern in recent studies of factors aiming to explain the cross-sectional variations

of stock returns (see Harvey, Liu, and Zhu, 2016). We discuss this issue in greater detail after

presenting our time-series and cross-sectional evidence in support of our proposed method.

The skewness-based portfolios earn a steady positive returns between mid-2012 and

mid-2014 (the S&P 500 increased by about 50% over the same period), while they experience

a consistently negative return in the remainder of the sample through 2015 (when the S&P

500 remained virtually unchanged). The BKM portfolio displays less stark returns, especially

later in the sample, but it shares the same broad pattern as the the options/CDS and options-

only portfolios. By construction, and as illustrated in Figure 8, the skewness portfolios buy

stocks that are expected to earn modest returns but that have the potential to outperform

(the probability mass is shifted to the left, but the right tail is thicker). At the same time,

the skewness portfolios sell stocks that are expected to earn good returns but that can

underperform (the probability mass is shifted to the right, but the left tail is thicker). Over

prolonged periods of strong market performance (mid-2012 to mid-2014), stocks with high

upside potential are likely to do especially well, earning positive returns to the skewness

strategies. At times of sideways market moves (mid-2014 through 2015), stocks shorted by
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the skewness portfolios are unlikely to see a realization of left-tail risk, yet they probably

do better than the stocks in the long portfolio, whose right-tail upside is also unlikely to

materialize. As such, the skewenss portfolios would earn a negative return.

4.3 Benefits of including CDS: Rationale for asset-pricing tests

Thus far we have conducted a comparison of different skewness measures using the returns

on portfolios based on each measure. We have shown that our parametric approach compares

well to the established BKM method, and it outperforms BKM during times of high volatility.

We now turn to evaluating the economic significance of the contribution of CDS to the

computation of risk-neutral skewness.

As shown in Figure 3, the cumulative returns on the SKEWopt/CDS and SKEWopt portfo-

lios are fairly close, with SKEWopt/CDS outperforming SKEWopt only slightly over the sample

period. In order to evaluate the economic significance of the CDS contribution, however, one

should not focus on the difference between SKEWopt/CDS and SKEWopt. Rather, the focus

should be on a portfolio that explicitly loads on the differences between the options/CDS and

options-only skewness measures. By doing so, the dynamics of portfolio returns are driven

specifically by skewness differences that arise from the inclusion of CDS. In tests that use

portfolios based on skewness levels, the contribution of CDS is likely to be overshadowed by

broad skewness-related dynamics.

We investigate whether differences between the options/CDS and options-only skewness

give rise to a priced factor in the cross-section of stock returns. The battery of tests that we

conduct revolve around a factor-mimicking portfolio that buys and sells stocks on the basis of

differences between options/CDS and options-only risk-neutral skewness (henceforth, the DS

factor). This factor is defined as the returns on a portfolio that buys (sells) the stocks in the

top (bottom) 25% of the distribution of options/CDS and options-only skewness differences

in month t-1. In unreported results, we define the DS factor using a top/bottom 10% cutoff,

with similar conclusions. For each company, we discard the return on the first day of the

month to avoid possible issues with non-synchronous trading between options, CDS, and

stocks.
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The cumulative return on the DS factor is shown in Figure 5, together with the cumula-

tive return on the broad market factor of Fama and French (1993) (henceforth, MKT). As it

is clear from the figure, the DS factor is distinct from the market factor. Figure 5 also shows

the cumulative returns on a strategy that is long SKEWopt/CDS and short SKEWopt. This

strategy tracks the gap between the solid blue line and the dashed red line in Figure 3. The

return profile on the difference between the skewness-based portfolios (SKEWopt/CDS and

SKEWopt) and the DS factor confirms that, in order to evaluate the contribution of CDS to

risk-neutral skewness, the trading strategy needs to focus explicitly on skewness differences

as the sorting variable.

As mentioned in Section 4.1, we interpret our results in terms of intermediate-return

risk. If DS were indeed expressing this type of risk, a high (in absolute value) difference

between options/CDS and options-only skewness should foreshadow a higher incidence of

intermediate returns in the near future. Additionally, in the same section we highlighted

the literature on the link between the conditional skewness of index returns and jumps.

In our framework, jumps large enough to result in default are captured by CDS spreads.

However, intermediate returns are influenced by intermediate jumps, i.e. jumps observable

in the intermediate part of the return distribution outside of the central portion (where local

volatility captured by at-the-money options is important) and outside of the tails (where

large jumps captured by CDS are important).

In Figure 6, we show, across DS deciles, the fraction of intermediate-return variance that

is explained by jumps. In this instance, we define intermediate returns as those comprised

between the 10th–40th and 60th–90th percentiles of the distribution. Variance (σ2) is the

rolling sum of squared 15-minute returns between 9:30-16:00 daily in months t+1 to t+3.

The non-jump component of variance (σ2
nj) is given by the MedRV estimator of Andersen,

Dobrev, and Schaumburg (2012), and the fraction of variance due to jumps is φ =
σ2−σ2

nj

σ2 . We

expect the fraction of intermediate-return variance explained by jumps to be higher when the

absolute value of DS is larger. As a result, the fraction of variance explained by jumps should

have a U-shaped pattern across DS deciles, which is what Figure 6 shows. In unreported

results, we find that the U-shaped pattern is not present when considering the three months
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up to the DS formation period, which implies that we are not simply capturing a persistent

stock characteristic.

We provide additional evidence that the DS factor is related to intermediate jumps

in Figure 7. We compute the change in the probability of intermediate returns under the

options/CDS distribution relative to the options-only distribution, and we present the average

(top chart) and the 90th percentile (bottom chart) of this change in probabilities across DS

deciles.13 If the DS factor were influenced by intermediate jumps, the increase in intermediate-

returns probabilities should be larger in the top and bottom DS deciles. As shown in Figure

7, this is the case. The probability of intermediate returns is, on average, slightly more

than 2% higher in the bottom DS decile, and about 1% higher in the top DS decile. At the

90th percentile, the increase is more than 5% and about 3% in the bottom and top deciles,

respectively.

The sign of the difference between options/CDS and options-only skewness indicates

whether intermediate returns are likely to be positive or negative. As illustrated in Figure 8,

a lower skewness translates into a shift of the probability mass to the right. This shift is also

evident in Figure 2, which corresponds to a day when the options/CDS skewness is much

more negative than the options-only skewness, hence the DS measure is large and negative.

The options/CDS distribution indicates a higher likelihood of intermediate positive returns.

Figure 7 illustrates the relation between the sign of the DS measure and the sign

of realized intermediate returns by showing the increase in the probability of positive and

negative intermediate returns separately. To the extent that stocks in the top (bottom)

DS decile are exposed to negative (positive) intermediate-return risk that is unspanned by

options and CDS individually, the increase in the probability of intermediate returns should

13 Intermediate returns are defined as those in the intervals [−2σ,−0.5σ] and [0.5σ, 2σ], where σ is the
volatility of the distribution. The probability of intermediate returns under the options/CDS distribution is
P intopt/CDS = P [r < 2σopt/CDS ] − P [r < 0.5σopt/CDS ] + P [r < −0.5σopt/CDS ] − P [r < −2σopt/CDS ], where

r indicates returns. The probability of intermediate returns under the options-only distribution (P intopt ) is
defined in a similar way, with σopt replacing σopt/CDS . The increase in the probability of intermediate

returns under the options/CDS distribution is defined as ∆P = ln
P int

opt/CDS

P int
opt

. When computing the increase in

the probability of intermediate positive returns, the interval we consider is [0.5σ, 2σ]. For the increase in the
probability of intermediate negative returns, the interval is [−2σ,−0.5σ]. The DS deciles and the probability
increases are as of month t.
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be more pronounced for negative (positive) returns in the top (bottom) DS decile. This is

what we find.

The size of the effect is not particularly large but, together with the U-shaped pattern

of the increase of intermediate-return probability across DS deciles, this evidence clearly

supports our interpretation that DS measures intermediate-return risk that is unspanned by

options or CDS in isolation. Since the DS factor is long (short) stocks that are more likely

to experience negative (positive) intermediate returns, the risk premium on DS should be

positive. This is what we find in the tests we detail in Sections 4.4 and 4.5.

We provide additional details on the companies in the short and long legs of the DS

factor. In Figure 9, we show two company characteristics, averaged by DS decile. DS is

measured in month t, and the two characteristics are measured in the year preceding month

t. The variables are realized daily volatility and average standardized earnings surprises

(Chan, Jegadeesh, and Lakonishok, 1996, p. 1685). The variables exhibit the same U-shaped

patterns across DS deciles that we found for the fraction of intermediate-return variance

explained by jumps. Companies with high DS, in absolute value, have higher volatility

and relatively low profitability. In the first and tenth deciles, realized volatility is about 5

percentage points higher than in the other deciles. In line with the higher volatility, the

profitability also indicates that these companies tend to grow less than the other firms in our

sample.

Note that, while the companies in the top and bottom DS deciles have noticeably

higher volatility and lower SUE than other companies in the sample, the variation across DS

deciles is relatively small when compared to sample variation. Specifically, realized volatility

for high-DS companies is about 5 percentage points higher than for the other deciles and

equal to about 37%. Before averaging by DS decile, the sample median and 75% percentile

volatilities are about 28% and 40%, respectively. As for SUE, the averages in the first and

tenth DS deciles are about 0 and -0.07. Before averaging by DS decile, the sample median

and the 25% percentile are about 0.25 and -0.29. These figures confirm that the companies

in the top and bottom DS deciles are only moderately riskier than those in the remainder of

the sample.
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Before turning to the asset-pricing tests, we investigate the drivers of large DS ob-

servations. As shown in Tables 5 and 6, noticeable gaps between the options/CDS and

options-only skewness measures are concentrated in the tails of the distribution of differ-

ences. Understanding the drivers of these large gaps is important, to ensure that they reflect

economically meaningful information rather than statistical noise.

We consider five observations with the largest positive DS and five observations with

the largest negative DS. For each company and date, in Table 8 we report firm-specific events

that occurred on the same or previous day as the large DS observation. We identify the events

by searching business news and corporate filings, and often the news we report are the only

ones we could find for a given company on a given date. Based on the discussion earlier in this

section, negative (positive) DS observations should correspond to positive (negative) news,

because negative (positive) DS corresponds to a higher probability of positive (negative)

intermediate returns. Indeed, we find such a correspondence. The fact that we satisfy this

theoretically-grounded constraint is further evidence that large DS observations are not the

result of statistical noise, but of economically meaningful events. In two cases (Commercial

Metals and Lexmark International) we were unable to find relevant news, but the companies’

stock prices moved by substantial amounts and in the direction expected from the sign of the

respective DS observation. Importantly, there is no mechanical relation between stock prices

and skewness mesures, because we do not use stock returns when extracting risk-neutral

densities.

4.4 Benefits of including CDS: Time-series evidence

The tests we conduct in this section focus on whether existing asset-pricing factors can explain

the returns of the DS factor. In the context of asset pricing tests, the intercept of a time

series regression represents a risk-adjusted average return, which can be interpreted as a risk

premium. If the estimated intercept is statistically different from zero, then we conclude that

the factors included in the time-series regression cannot fully account for the returns of the

DS factor.
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We fit the following regression model to the data:

DSt = α +
N∑
i=1

βif
i
t + εt, (10)

where α is the intercept (our parameter of interest), f it are the factors discussed below, and

εt is the error term. We report heteroskedasticity-consistent standard errors for all estimated

parameters, following White (1980).

We use a large number of relevant asset-pricing factors, including the five Fama and

French (2015) factors (the market, MKT, size, SMB, book-to-market, HML, profitability,

RMW, and investment, CMA), the Carhart (1997) momentum factor (UMD), Pastor and

Stambaugh (2003) liquidity factor (LIQ), and the changes in the spread of the CDX high-yield

CDS index (∆CDXHY ) to control for aggregate default risk.14

The long run and short run reversals factors, LT REV and ST REV respectively, capture

the effect of past and recent stock performance on current stock returns (see, among others,

Fama and French, 1996 and Novy-Marx, 2012, and references therein). ∆VIX and ∆VIX2

are replicating portfolios for changes and squared changes in the implied volatility index

VIX, VRP is the replicating portfolio for Bollerslev, Tauchen, and Zhou (2009)’s variance

risk premium.15 We also include the SKEWopt/CDS factor to ensure that the results are not

driven by skewness.

The DS factor has a moderate positive correlation (0.27) with the market factor (MKT)

and a negative correlation with ∆VIX (-0.33), UMD (-0.38), and ∆CDXHY (-0.38). The skew-

ness factors SKEWopt/CDS and SKEWopt are highly correlated (0.99), though the correlation

of DS with both SKEWopt/CDS (0.52) and SKEWopt (0.53) is only moderate. The BKM-

skewness factor SKEWBKM is weakly correlated with DS (0.28) and moderately correlated

with SKEWopt/CDS (0.52) and SKEWopt (0.53).

14 Qiu and Yu (2012) document that CDS liquidity affects CDS spreads, especially for smaller companies.
As noted earlier, the companies in our sample are much larger than in Qiu and Yu (2012)’s. In addition, the
liquidity factor LIQ directly controls for broad market liquidity, and ∆CDXHY likely reflects CDS-market
liquidity.

15 The replicating portfolio for VIX changes is described in footnote 12. The replicating portfolios for squared
VIX changes and for the variance risk premium are built in exactly the same manner. The only difference is
that stocks are sorted into portfolios using the coefficients on squared VIX changes and on the variance risk
premium, respectively, rather than on VIX changes.
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We report the time series test results in Tables 9 (for the full sample) and 10 (for

2008 to 2011). The first column of Table 9 shows that, when using a small set of factors

that includes MKT, SMB, HML, UMD, LIQ, and ∆VIXrepl, the intercept – the risk-adjusted

average return – is about 0.3% per month and is statistically significant at the 10% level. The

intercept remains about the same as we include progressively more factors, and the statistical

significance improves to the 5% level. The inclusion of the SKEWopt/CDS factor improves the

adjusted R2 from 39% to 44%. When we substitute the factor with SKEWBKM , the R2

declines back to 39%. A pertinent question is which leg of the DS portfolio is delivering

the results. In columns (6) and (7) of Table 9, we regress the returns of the long leg and

of the short leg, respectively, on the full set of factors. We observe the following. First, the

risk-adjusted average return of the DS portfolio is driven by the long leg. Second, both legs

load heavily on the MKT factor, which results in high adjusted R2s. Finally, both legs are

highly correlated with ∆VIX2
repl and the SKEWopt/CDS factor.

In Table 10, we restrict our sample to the 2008-2011 period. Focusing on this period of

heightened financial uncertainty, we find that the risk-adjusted average return is noticeably

higher, ranging between 0.8% to 1.1% per month. The statistical significance is about the

same or stronger, with the exception of the specification with the smallest set of risk factors.

While larger, the adjusted R2 pattern is similar to what we observed in Table 9. In contrast

to what we observe in the previous table, columns (6) and (7) imply that the short leg is

driving the results.

Our estimates of the risk-adjusted average returns for the DS factor are comparable to

the skewness premium estimated by Rehman and Vilkov (2012) and Stilger, Kostakis, and

Poon (2017) . Both studies find positive skewness premia in the neighborhood of 0.5% per

month.

Finally, we would like to emphasize that the returns on the DS portfolio are gross of

transaction costs, and shorting fees might be elevated for risky stocks, especially at times

of market stress. As such, the estimated risk premia should be considered an upper bound

to the actual risk premium. However, we should also emphasize that our asset pricing tests

are meant to evaluate whether combining option prices and CDS spreads provides additional
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information relative to the standard methods for extracting risk-neutral distributions for

individual stocks. The presence of transaction costs does not detract from our finding that

combining options and CDS spreads does provide information about the cross-section of

stocks. Transaction costs affect whether one can profitably trade on the information.16

In this section, we examined the economic significance of the DS factor through the lens

of time-series asset pricing tests. Our findings show that the standard factors do not fully

account for the DS factor, since the estimates for the intercept are statistically significant.

4.5 Benefits of including CDS: Cross-sectional evidence

In this section, we carry out a second set of tests where we use the two-stage method of

Fama and MacBeth (1973). This method allows us to introduce stock-level characteristics.

Including characteristics in asset-pricing tests is crucial, since they can proxy for risk exposure

(see, for instance, Daniel and Titman, 1997 and Daniel, Titman, and Wei, 2001).

The first stage of the Fama and MacBeth (1973) procedure estimates the sensitivity of

the portfolio returns to the factors with a series of portfolio-specific time-series regressions:

rjt − r
f
t = αj +

N∑
i=1

βji f
i
t + εjt , ∀j (11)

where rjt is the return on portfolio j, rft is the risk-free rate, and f it is one of the N factors

included. We consider 35 portfolios: 10 decile portfolios based on the distributions of DS in

month t-1, and the replication of the 25 size/book-to-market portfolios of Fama and French

(1993) using stocks for which we can calculate the volatility spreads of Bali and Hovakimian

(2009) and the implied-volatility smirk of Xing, Zhang, and Zhao (2010).

The second step of the Fama and MacBeth (1973) methodology uses cross-sectional

16 D’Avolio (2002) finds that, betwen April 2000 and September 2001, 91% of stocks have a shorting fee
below 1% per year, with a value-weighted average of 0.17%. Using a more comprehensive sample that spans
January 2004 through December 2013, Drechsler and Drechsler (2016) report meaningful time variation in
shorting fees. In 2008 and 2009, the average fees were 1.34% ad 0.81%, respectively. As shown in Figure 5,
the DS factor earns a substantial return at the very end of 2008 and in the first half of 2009. As such, we
evaluate the effect of transaction costs using a 1% shorting fee, together with a $5 transaction cost per trade.
Under assumptions that are conservative for our results (every stock in the long and short legs is bought and
sold each month, and a 1% per year fee applies to the short leg), $2,500,000 invested in the DS strategy yield
a net-of-fees risk premium of 0.42% with a t-statistic of 1.70.
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regressions to evaluate how differences in the estimated factor loadings explain excess returns:

rjt − r
f
t = λ0

t +
N∑
i=1

λitβ̂
j
i +

K∑
k=1

φkγ
j
t−1,k + εj,∀t, (12)

where λ0
t is the pricing error at time t, λit is the risk premium on factor i at time t, β̂jt

are the estimates from the first step, γjt−1,k is characteristic k for portfolio j as of time t-1

(calculated as the average of stock-level characteristics), and φk is the regression coefficient

for characteristic γjt−1,k. The risk premium on factor f it is computed as the average of the

coefficients from the T cross-sectional regressions, and its statistical significance is assessed

with Shanken (1992)-adjusted standard errors with Newey-West correction:

λ̂i =
1

T

T∑
t=1

λ̂it. (13)

The characteristics we consider are related to higher-moment risks in stock and option

returns, and have been shown to explain the cross sections of equity and option returns:

idiosyncratic volatility (Ang, Hodrick, Xing, and Zhang, 2006), volatility spreads (Bali and

Hovakimian, 2009), the implied-volatility smirk of Xing, Zhang, and Zhao (2010), the changes

in call and put implied volatility of An, Ang, Bali, and Cakici (2014), and the tail covariance

between stock market returns and company-specific returns introduced by Bali, Cakici, and

Whitelaw (2014). In addition, we include the 5-year CDS spread to evaluate whether the

contribution of the DS factor to the cross-section of returns is explained by default risk.

In the Fama-MacBeth procedure, the risk premia are identified from cross-sectional

variations in factor sensitivities, and our cross section includes 35 portfolios. As such, each

specification we discuss includes only a subset of the factors we use in the time series tests,

and we study various combinations of factors and characteristics to ensure that our findings

are robust. We present the first set of results in Table 11, where we keep the factors constant,

but change the set of characteristics included in the regression. In the full sample, the risk

premium on DS is statistically significant at the 5% level and equal to 0.5% per month. It

is comparable to the intercept in the time-series regressions of DS on other factors.17 In

17 The risk premia on most factors are statistically not different from zero. This is not surprising, since the
test portfolios we use are designed to generate cross-sectional dispersion in risk sensitivity to the DS factor.
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line with Ang, Hodrick, Xing, and Zhang (2006), we find that stocks with high idiosyncratic

volatility have lower returns. In addition, controlling for skewness using either SKEWopt/CDS

or SKEWBKM factors does not affect our findings. In the 2008-2011 sub-sample, the DS

factor commands a higher premium, around 1% per month, which is in line with our time-

series results. We find that the estimated coefficients for ∆cvol and ∆pvol (changes in call

or put implied volatilities) have the same signs as in An, Ang, Bali, and Cakici (2014) and

are statistically significant in several instances during this period.

Studies such as Acharya and Johnson (2007), Ni and Pan (2011), and Han and Zhou

(2011) indicate the presence of information flows from the CDS market to the equity market.

Our results about the DS factor are unlikely to be driven by such flows. We include CDS

spreads in our cross-sectional regression and do not observe a statistically significant coeffi-

cient for the spreads. Moreover, we skip the first return of the month in building the test

portfolios, which eliminates the observation most likely affected by the delayed information

flow.

In Table 12 we keep the set of characteristics constant and change the factors. We use

either the three or the five Fama-French factors; see Fama and French (1993, 2015). In both

the full sample and in the 2008-2011 sub-sample, the estimated DS risk premium remains

comparable to the values reported in Table 11. In model (3), the estimated DS premium is

statistically zero. However, the asset pricing test is rejected for model (3), since the estimated

pricing error is significantly different from zero.

The cross-sectional evidence presented in this section corroborate the time-series evi-

dence reported in Section 4.4. In addition, our cross-sectional results demonstrate robustness

of DS premia to the inclusion of stock characteristics in asset pricing tests.

Hence the test is designed to capture whether the risk premium on the DS factor is absorbed by other factors.
The 25 Fama-French portfolios are meant to generate cross-sectional sensitivity to SMB and HML factors.
However, since the mean returns to these two factors are statistically not different from zero over the sample
period, we do not expect to observe a risk premium for either factor.
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4.6 Robustness

We evaluate the sensitivity of our findings to changes in default thresholds and to two addi-

tional CDS tenors. We report these results in Table 13. So far, we have presented empirical

evidence based on the thresholds shown in Panel A, Table 4. In columns 1 to 6 of Table

13, we report results based on the default thresholds shown in Panel B, Table 4. The es-

timated time-series intercepts are slightly smaller than those reported in Tables 9 and 10.

When compared with the findings presented in Sections 4.4 and 4.5, these results highlight

the importance of choosing default thresholds based on company characteristics, such as size

and leverage. The intercepts for 120% of the mean for 2008-2011 sub-sample and 80% of the

mean in the full sample are statistically significant, and most of the remaining marginally fail

the statistical significance test. The adjusted R2s are comparable to our previously reported

values. The size of the DS risk premium is similar to those shown in Tables 11 and 12 in

both full sample and in the 2008-2011 sub-sample.

As noted by Chen, Fleming, Jackson, Li, and Sarkar (2011), trading liquidity in the CDS

market is concentrated in the five-year tenor. Therefore, we focus on risk-neutral distribu-

tions extracted using options and the appropriately compounded five-year CDS spread, even

though the horizon to which the distribution refers is three months. Even if five-year spreads

are the most liquid and thus more likely to have a higher signal-to-noise ratio, Friewald, Wag-

ner, and Zechner (2014) find that the term-structure of CDS spreads is informative about

the equity risk premium. We repeat our analysis using either one-year CDS spreads from

Markit or three-month CDS spreads, obtained by linearly extrapolating log-CDS spreads

with maturities between six months and 10 years. The last four columns of Table 13 show

that the results are robust to using alternative CDS tenors. In both time-series and cross-

sectional regressions, the size of the estimated intercepts and DS premia are comparable to

our reported results. The estimated intercepts have larger t statistics compared with those

reported in Tables 9 and 10. In the Fama-MacBeth regressions, we slightly lower t statistics

for the DS premia.

Harvey, Liu, and Zhu (2016) document the pervasive presence of data mining in many
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cross-sectional results in the asset pricing literature. They recommend setting a higher bar for

asset-pricing tests evaluating cross-sectional factors, a t statistics in excess of 3, translating

into statistical significance between 97.5% and 99% for cross-sectional tests with four factors.

Increasing the number of factors implies far more stringent significance criteria. However,

they limit their recommendation to new and purely empirical results. They explicitly state

that micro-founded, theoretically-motivated results – like those, in our opinion, pertinent to

the literature on risk-neutral skewness – need not pass their proposed bar.

In this study, we contribute to a mature literature. The link between skewness and

equity returns is empirically and theoretically well established. There are a number of papers

– we have cited Rehman and Vilkov (2012), Conrad, Dittmar, and Ghysels (2013), and Stilger,

Kostakis, and Poon (2017), among others – that specifically investigate the link between risk-

neutral, firm-specific skewness and the cross-section of returns. In addition, studies such as

Chabi-Yo, Leisen, and Renault (2014), Feunou, Jahan-Parvar, and Tédongap (2013), and

Feunou, Jahan-Parvar, and Okou (2017) explicitly derive equilibrium asset pricing models

for skewness preferences.18 As such, we contribute to a clearly theoretically-founded line of

research.

In addition, the relation between the momentum strategy returns and the options/CDS

portfolio returns discussed in Section 4.2 is relevant to address Harvey, Liu, and Zhu (2016)

concerns. The evidence we find on the relation between momentum and skewness returns is

incidental to the central topic of our work, yet it fits naturally in the overall discussion. It is

unlikely that both our main difference-in-skewness results and the link between momentum

and skewness returns are the outcome of data mining.

5 Conclusions

We develop a new method to extract the risk-neutral distribution of firm-specific stock re-

turns. Traditionally, risk neutral distributions are based on option prices. In the case of

stock indexes, like the S&P 500, the number of actively traded options with out-of-the-

18 Guidolin and Timmermann (2008) contribute to this literature in an international, multi-country context.
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money strikes is large enough that risk-neutral distributions are informative about tail risks.

For individual companies, however, only options with strike prices close to the current stock

price are actively traded. Our method combines options and credit default swaps (CDS)

to extract risk-neutral distributions. By construction, the options/CDS-implied risk-neutral

distributions reflect the default risk embedded in CDS spreads. In addition, the combina-

tion of options and CDS is also informative about the intermediate part of the risk-neutral

distribution, which is unspanned by options and CDS individually. As a result, combining

options and CDS can yield a more informative skewness measure.

We evaluate our method with a series of asset pricing tests that revolve around a

factor that buys (sells) stocks with large differences between options/CDS and options-only

skewness. This factor is long (short) stocks exposed to negative (positive) intermediate-

return risk that is unspanned by options and CDS individually. After controlling for a large

set of asset pricing factors and stock characteristics, we find that the factor commands a risk

premium of 0.5% per month. While the results are robust to different assumptions about

key inputs of the method – including, crucially, the tenor of the CDS – we find that it is

important to choose default thresholds that reflect the size and leverage of a company.
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Figure 1: The contribution of options and CDS to risk-neutral return distributions

The figure provides a stylized illustration of the contribution that options and CDS give to the risk-neutral

distribution of returns. The cumulative probabilities extracted from option prices (Section 3.1) drive the

central part of the distribution. The red markers correspond to traded strikes, which are normally clustered

close to the current stock price. The location of the markers on the density function indicates which part of

the distribution each option is informative about. The CDS-implied default probability (Section 3.2) drives

the distribution up to the default threshold (Section 3.3).
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Figure 2: Example of risk neutral density estimated with and without CDS

The top chart shows the risk-neutral distribution of returns for Citigroup Inc. on July 20, 2009. The

distribution in solid red is estimated using options and CDS, while the one based on options only is in

dashed blue. On the same day and for the same company, the bottom chart shows the probability density

of the options/CDS distribution when this probability density is higher than the probability density of the

options-only distribution.
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Figure 3: Cumulative returns of momentum and skewness-related factors

The solid blue line is the return on the portfolio based on options/CDS-skewness (SKEWopt/CDS). The port-

folio is long stocks in the top 25% of the distribution of average skewness in month t-1 and short those in the

bottom 25%. The dashed red line is the return on the portfolio based on options-only skewness (SKEWopt).

The black dash-dot line is the return on a third skewness-based portfolio, with skewness computed according

to the Bakshi, Kapadia, and Madan (2003) methodology (SKEWBKM ). The grey solid thick line is the

return on the UMD momentum factor. The shaded area shows the December 2007–June 2009 recession. The

sample period is February 2006 to December 2015.

.5
1

1.
5

2
C

um
ul

at
iv

e 
re

tu
rn

s

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
Year

Skewness factor (options) Skewness factor (options/CDS)
Skewness factor (BKM) Momentum factor
2007-2009 recession

46



Figure 4: Covariation of the momentum and skewness portfolios

The top chart is a scatter plot of the monthly returns on the UMD momentum portfolio and of the returns

on the options/CDS skewness-based portfolio. The portfolio is long stocks in the top 25% of the distribution

of average skewness in month t-1 and short those in the bottom 25%. In the bottom chart, the skewness is

calculated according to the Bakshi, Kapadia, and Madan (2003) methodology. In both charts, linear fit lines

are shown in solid red. The vertical dashed lines center the plots on zero returns for the skewness portfolios.

Solid blue markers correspond to 2009, with months as labels. The sample covers February 2006 to December

2015.
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Figure 5: DS factor and market factor, cumulative returns

The difference-in-skewness (DS) factor is a long/short portfolio that, in month t, buys (sells) stocks in the top

(bottom) 25% of the month t−1 distribution of skewness differences between the options/CDS- and options-

only distributions. End-of-month values for skewness are the average of the last three daily observations

within each month. The market factor is the return of the Fama-French market portfolio (Fama and French,

1993) over the risk-free rate. Cumulative returns for the DS factor are shown in solid red, and cumulative

returns for the market factor are in dashed blue. The dash-dot black line shows the cumulative returns for

a trading strategy that buys the portfolio based on options/CDS-skewness and sells the portfolio based on

options-only skewness. The sample period is February 2006 to December 2015.

.5
1

1.
5

2
C

um
ul

at
iv

e 
re

tu
rn

s

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
Year

DS factor Option/CDS factor minus option factor
Market factor 2007-2009 recession

48



Figure 6: Contribution of jumps to the variance of medium-sized returns

We compute the portion of intermediate-return variance that is explained by jumps for the 275 stocks in our

sample. The charts show the average by month-t DS decile, together with a fractional polynomial fit and 90%

confidence intervals. Variance (σ2) is the rolling sum of squared 15-minute returns between 9:30-16:00 daily

in months t+1 to t+3. The non-jump component of variance (σ2
nj) is computed with the MedRV estimator

of Andersen, Dobrev, and Schaumburg (2012), and the portion of variance due to jumps is φ =
σ2−σ2

nj

σ2 . The

variance measures are based on intermediate returns, that is returns between the 10th–40th and 60th–90th

percentiles of the daily distribution of returns. The full sample includes 2006 to 2015.
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Figure 7: Increase in the probability of intermediate returns under the options/CDS
distribution, by DS decile

The figure shows the average (top chart) and 90th percentile (bottom chart) increase in the probability of

intermediate returns from the options-only distribution to the options/CDS distribution. See footnote 13 for

the definition of intermediate returns and for the calculation of the increase in probability. The DS deciles

and the probability increases are as of month t. The sample period is 2006 to 2015.
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Figure 8: Skewed-t distribution for different levels of skewness

The figure illustrates the shape of the skewed Student-t distribution for different levels of skewness. Each

distribution has a volatility of 15%, 5 degrees of freedom, and the shape parameter is equal to -0.5 (negative

skewness, blue dash-dot line), 0 (zero skewness, black solid line), and 0.5 (positive skewness, red dashed

line).
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Figure 9: Realized volatility and standardized earnings surprises across DS deciles

The charts show the DS-decile average of two stock characteristics. DS deciles are recalculated each month t.

The two stock characteristics are realized daily stock volatility one year prior to month t (top), and average

standardized earnings surprises (SUE) in the year up to month t (Chan, Jegadeesh, and Lakonishok, 1996,

p. 1685) (bottom). The sample period is 2006 to 2015.
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Table 1: Selected balance-sheet characteristics

The table presents descriptive summary statistics for the 275 companies for which we estimate the op-
tions/CDS risk-neutral return distributions. Book assets are reported in $ million. Ratios are calculated
with respect to book assets at the end of the previous year. The data is as of the end of fiscal year 2006.

Average 75th perc. 50th perc. 25th perc.

Book assets 62,899 31,777 12,864 6,590

Sales ratio 114.59 143.85 95.42 53.56

Cash flow ratio 16.45 21.81 15.97 9.91

Investment ratio 6.38 8.03 4.51 2.27

R&D ratio 4.00 4.87 1.75 0.15

Stock issuance ratio -3.51 0.03 -1.88 -5.71

Debt issuance ratio 3.38 3.66 0.00 -0.99
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Table 2: Summary statistics on option-data availability

The table reports the average and median number of daily option observations, and the associated volumes,
after applying the filters discussed in Section 2. The statistics are reported separately for S&P 500 index
options and for options on the 275 companies for which we estimate options/CDS risk-neutral distributions.
The statistics are shown by call and put option types (C and P, respectively), and for different moneyness
levels. A call (put) option is out-of-the-money (OTM) if the strike price is above (below) the stock price. A
put option is deep OTM if the strike price is less than 80% of the stock price. The sample period is 2006 to
2015.

Options on the S&P 500 index
Call/Put Moneyness Average obs. Median obs. Av. volume Med. volume

C ITM 5.40 4 6,541 788
C OTM 12.02 11 10,772 5,825

P ITM 4.29 3 5,023 709
P OTM 14.69 13 19,702 11,942
P Deep OTM 8.11 6 4,074 1,312

Options on the firms we study
Call/Put Moneyness Average obs. Median obs. Av. volume Med. volume

C ITM 2.91 2 393 66
C OTM 3.24 3 701 173

P ITM 2.21 2 256 48
P OTM 2.51 2 427 92
P Deep OTM 1.82 1 219 30
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Table 4: Default thresholds

The table shows the default thresholds we use when extracting the options/CDS risk-neutral distributions.
The thresholds are average cumulative returns over the three-month period leading to bankruptcy. In Panel
A, they are calculated after double sorting firms based on size and leverage. Low/high leverage means leverage
below/above the sample median. Large firms are those with market capitalization in excess of $1 billion.
Panel B shows the average of the four thresholds in Panel A (the average is taken over log returns), and
120% and 80% of the average. We use these thresholds in robustness tests.

Panel A – Characteristics-based thresholds

Log returns
Low leverage High leverage

Market cap < 1bn -1.68 -1.21
Market cap ≥ 1bn -2.29 -2.24

Arithmetic returns
Low leverage High leverage

Market cap < 1bn -0.81 -0.70
Market cap ≥ 1bn -0.90 -0.89

Panel B – Fixed thresholds

Log returns Arithmetic returns
Average of Panel A -1.85 -0.84
120% of average -2.23 -0.89
80% of average -1.48 -0.77
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Table 9: Time series intercept of the DS factor: full sample

The table reports coefficients, intercepts, t-statistics, number of observations, and adjusted R2s from regres-
sions of the DS factor on the listed factors: DSt = α+

∑N
i=1 βif

i
t + εt. MKT, SMB, HML, RMW, and CMA

are the market, size, book-to-market, profitability, and investment factors of Fama and French (2015). UMD
is the Carhart (1997) momentum factor. LT REV and ST REV are the long run and short run reversals
factors (see, among others, Fama and French, 1996 and Novy-Marx, 2012, and references therein). LIQ is the
Pastor and Stambaugh (2003) liquidity factor. ∆VIXrepl, ∆VIX2

repl, and VRPrepl are replicating portfolios
for changes and squared changes in the implied volatility index VIX, and for the variance risk premium of
Bollerslev, Tauchen, and Zhou (2009). ∆CDXHY is changes in the spread of the CDX high-yield CDS index.
The t-statistics are based on heteroskedasticity-consistent standard errors. ***, **, and * indicate statistical
significance at the 1, 5, and 10 % levels, respectively. The sample includes February 2006 to December 2015.

(1) (2) (3) (4) (5) (6) (7)
long leg short leg

MKT 0.060 0.081 0.078 0.021 0.071 0.943*** 0.921***
(1.23) (1.62) (1.09) (0.35) (0.99) (11.48) (12.12)

SMB -0.016 0.015 -0.004 -0.056 0.000 -0.022 0.034
(-0.22) (0.21) (-0.05) (-0.78) (0.00) (-0.22) (0.34)

HML 0.001 0.191 0.202 0.145 0.209 0.114 -0.031
(0.01) (1.44) (1.49) (1.16) (1.53) (0.86) (-0.24)

UMD -0.164*** -0.146*** -0.132*** -0.098** -0.138*** -0.075 0.023
(-3.42) (-3.72) (-2.64) (-2.10) (-2.78) (-1.37) (0.43)

LIQ 0.045 0.031 0.039 0.030 0.040 -0.000 -0.030
(0.82) (0.52) (0.62) (0.50) (0.63) (-0.00) (-0.40)

RMW -0.110 -0.147 -0.089 -0.134 0.167 0.257
(-0.79) (-1.14) (-0.73) (-0.97) (1.16) (1.59)

CMA -0.177 -0.141 -0.059 -0.145 0.027 0.085
(-1.02) (-0.84) (-0.35) (-0.86) (0.13) (0.40)

LT REV -0.199** -0.241*** -0.184* -0.215** -0.089 0.095
(-1.99) (-2.63) (-1.83) (-2.03) (-0.62) (0.76)

ST REV -0.126* -0.135* -0.118* -0.132* 0.029 0.147*
(-1.68) (-1.82) (-1.69) (-1.78) (0.37) (1.78)

∆VIXrepl -0.235*** -0.248*** -0.212*** -0.219*** -0.216*** -0.195* 0.025
(-4.15) (-3.96) (-3.64) (-4.22) (-3.76) (-1.97) (0.32)

∆VIX2
repl 0.132 0.006 0.112 0.330** 0.323***

(0.99) (0.06) (0.91) (2.27) (2.67)
VRPrepl -0.061 -0.119 -0.089 -0.062 0.058

(-0.50) (-1.43) (-0.63) (-0.43) (0.40)
∆CDXHY 0.001 -0.000 0.000 0.005 0.006

(0.14) (-0.11) (0.08) (1.11) (1.32)
SKEWopt/CDS 0.197*** 0.372*** 0.175**

(3.00) (5.63) (2.43)
SKEWBKM 0.070

(0.59)

Intercept 0.003* 0.004** 0.004** 0.003** 0.004** 0.003 -0.000
(1.86) (2.07) (2.17) (1.98) (2.17) (1.46) (-0.07)

Obs. 119 119 119 119 119 119 119
Adj.R2 0.329 0.397 0.389 0.440 0.385 0.904 0.865
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Table 10: Time series intercept of the DS factor: between 2008 and 2011

The table reports coefficients, intercepts, t-statistics, number of observations, and adjusted R2s from regres-
sions of the DS factor on the listed factors: DSt = α+

∑N
i=1 βif

i
t + εt. MKT, SMB, HML, RMW, and CMA

are the market, size, book-to-market, profitability, and investment factors of Fama and French (2015). UMD
is the Carhart (1997) momentum factor. LT REV and ST REV are the long run and short run reversals
factors (see, among others, Fama and French, 1996 and Novy-Marx, 2012, and references therein). LIQ is the
Pastor and Stambaugh (2003) liquidity factor. ∆VIXrepl, ∆VIX2

repl, and VRPrepl are replicating portfolios
for changes and squared changes in the implied volatility index VIX, and for the variance risk premium of
Bollerslev, Tauchen, and Zhou (2009). ∆CDXHY is changes in the spread of the CDX high-yield CDS index.
The t-statistics are based on heteroskedasticity-consistent standard errors. ***, **, and * indicate statistical
significance at the 1, 5, and 10 % levels, respectively.

(1) (2) (3) (4) (5) (6) (7)
long leg short leg

MKT 0.070 0.056 0.132 0.025 0.118 0.959*** 0.933***
(0.88) (0.69) (1.18) (0.24) (1.19) (6.48) (6.22)

SMB -0.082 -0.043 0.011 -0.110 -0.023 0.066 0.176
(-0.54) (-0.29) (0.08) (-0.78) (-0.18) (0.36) (1.03)

HML 0.008 0.243 0.338 0.281 0.463* 0.045 -0.236
(0.03) (1.03) (1.47) (1.52) (1.95) (0.19) (-0.97)

UMD -0.210*** -0.140** -0.129* -0.075 -0.170** -0.101 -0.026
(-4.25) (-2.60) (-2.00) (-1.19) (-2.48) (-1.18) (-0.35)

LIQ 0.049 0.055 0.097 0.075 0.136 -0.067 -0.142
(0.57) (0.57) (1.11) (0.91) (1.58) (-0.56) (-1.25)

RMW -0.334 -0.440* -0.311 -0.419* 0.555* 0.867***
(-1.19) (-1.86) (-1.24) (-1.79) (1.89) (3.63)

CMA -0.508** -0.565* -0.433 -0.694** -0.072 0.362
(-2.05) (-1.96) (-1.51) (-2.70) (-0.19) (1.18)

LT REV -0.074 -0.183 -0.102 0.022 -0.036 0.066
(-0.47) (-1.35) (-0.61) (0.14) (-0.18) (0.45)

ST REV -0.169 -0.210* -0.177 -0.218** 0.171 0.348***
(-1.55) (-1.87) (-1.56) (-2.05) (1.32) (3.60)

∆VIXrepl -0.235*** -0.263*** -0.201*** -0.215*** -0.249*** -0.146 0.069
(-3.78) (-4.33) (-3.31) (-3.73) (-3.70) (-1.45) (0.79)

∆VIX2
repl 0.315** 0.109 0.161 0.370* 0.262*

(2.31) (0.70) (1.09) (1.90) (1.73)
VRPrepl -0.191 -0.204** -0.406*** 0.070 0.274*

(-1.49) (-2.06) (-3.01) (0.47) (1.94)
∆CDXHY 0.008 0.004 0.007 0.011* 0.007

(1.24) (0.85) (1.14) (1.76) (1.13)
SKEWopt/CDS 0.256*** 0.423*** 0.166

(3.03) (3.87) (1.53)
SKEWBKM 0.427**

(2.35)

Intercept 0.004 0.008** 0.008** 0.006* 0.011*** -0.001 -0.008*
(1.33) (2.05) (2.05) (1.95) (3.06) (-0.27) (-1.98)

Obs. 48 48 48 48 48 48 48
Adj.R2 0.455 0.513 0.546 0.623 0.590 0.929 0.908
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Table 11: Fama-MacBeth regressions (1/2)

The table shows the second-stage coefficients from Fama and MacBeth (1973) regressions. The test assets
are 25 book-to-market/size portfolios replicated using the stocks with available volatility spreads (Bali and
Hovakimian, 2009) and smirks (Xing, Zhang, and Zhao, 2010), and 10 decile portfolios based on the DS
measure in month t-1. The characteristics (portfolios averages in month t-1), are idiosyncratic volatility (Ang,
Hodrick, Xing, and Zhang, 2006) (ivol), average 5-year CDS log-spread (sprd5yr), hybrid tail covariance (Bali,
Cakici, and Whitelaw, 2014) (covtail), changes in call/put implied volatility of An, Ang, Bali, and Cakici
(2014) (∆cvol and ∆pvol), and volatility spreads (vspread) and smirks (smirk). Adj.R2

cr is the average adj.
R2 of the second-stage regressions. The sample covers February 2006 to December 2015.

2006-2015 2008-2011
(1) (2) (3) (4) (5) (6) (7) (8)

λ0 0.034 0.023 0.027 0.019 0.003 0.004 0.023 0.020
(1.37) (0.94) (1.61) (1.16) (0.07) (0.10) (0.87) (0.63)

ivol -0.251* -0.215* -0.154* -0.153* -0.293 -0.168 -0.285** -0.234
(-1.83) (-1.77) (-1.71) (-1.70) (-1.35) (-0.93) (-2.17) (-1.58)

sprd5yr 0.354 0.235 0.248 0.133 -0.015 0.058 0.259 0.170
(1.04) (0.72) (0.94) (0.52) (-0.03) (0.11) (0.72) (0.39)

covtail -0.007 -0.007 -0.010 -0.011* -0.012* -0.012* -0.010** -0.008
(-0.96) (-0.97) (-1.55) (-1.87) (-1.93) (-1.99) (-2.08) (-1.18)

∆cvol 0.098 0.100 0.121 0.215 0.194* 0.214
(0.93) (1.13) (1.31) (1.51) (1.85) (1.51)

∆pvol -0.027 -0.049 -0.066 -0.223 -0.200* -0.206
(-0.27) (-0.58) (-0.77) (-1.47) (-1.78) (-1.39)

vspread 0.034 0.028 0.008 0.007
(0.80) (0.69) (0.10) (0.09)

smirk 0.079 0.080 0.205* 0.139
(0.92) (0.94) (1.94) (1.40)

MKT 0.003 0.007 0.002 0.005 0.012 0.013 0.010 0.005
(0.37) (0.78) (0.25) (0.56) (0.98) (1.14) (0.79) (0.39)

SMB 0.002 0.002 0.002 0.002 0.002 -0.001 0.001 -0.001
(0.46) (0.64) (0.46) (0.59) (0.43) (-0.20) (0.33) (-0.33)

HML -0.007 -0.008 -0.005 -0.004 0.006 0.004 0.003 0.005
(-1.36) (-1.62) (-1.11) (-0.88) (0.77) (0.53) (0.44) (0.64)

UMD -0.002 0.004 -0.004 -0.006 -0.006 0.007 -0.002 -0.001
(-0.20) (0.31) (-0.40) (-0.59) (-0.27) (0.32) (-0.13) (-0.09)

LT REV -0.006* -0.005 -0.003 -0.003 -0.001 0.002 0.001 0.001
(-1.71) (-1.32) (-1.03) (-0.77) (-0.18) (0.26) (0.21) (0.10)

ST REV -0.008 -0.009 -0.008 -0.009 -0.003 -0.005 0.000 -0.002
(-1.26) (-1.21) (-1.11) (-1.28) (-0.19) (-0.31) (-0.02) (-0.12)

LIQ 0.000 0.000 0.000 0.000 0.012 0.010 0.009 0.005
(-0.04) (0.00) (0.04) (0.03) (0.65) (0.54) (0.55) (0.31)

∆VIX 0.001 0.001 0.004 -0.002 -0.020 -0.017 -0.015 -0.016
(0.07) (0.11) (0.34) (-0.19) (-1.44) (-1.20) (-1.06) (-1.06)

∆VIX2 0.003* 0.003* 0.002 0.002 0.003 0.003 0.002 0.003
(1.85) (1.84) (1.63) (1.65) (1.27) (1.25) (1.00) (1.24)

SKEWopt/CDS 0.008 0.007 0.007 0.017 0.012 0.013
(1.08) (0.97) (1.09) (1.23) (0.96) (1.12)

SKEWBKM 0.002 -0.001
(0.46) (-0.16)

DS 0.005** 0.005* 0.004** 0.005** 0.011* 0.010 0.010* 0.010*
(2.01) (1.82) (2.01) (2.22) (1.99) (1.64) (1.90) (1.92)

Adj.R2
cr 0.529 0.497 0.498 0.489 0.653 0.644 0.633 0.626
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Table 12: Fama-MacBeth regressions (2/2)

The table shows the second-stage coefficients from Fama and MacBeth (1973) regressions. The test assets
are 25 book-to-market/size portfolios replicated using the stocks with available volatility spreads (Bali and
Hovakimian, 2009) and smirks (Xing, Zhang, and Zhao, 2010), and 10 decile portfolios based on the DS
measure in month t-1. The characteristics (portfolios averages in month t-1), are idiosyncratic volatility
(Ang, Hodrick, Xing, and Zhang, 2006) (ivol), average 5-year CDS log-spread (sprd5yr), hybrid tail covariance
(Bali, Cakici, and Whitelaw, 2014) (covtail), and changes in call/put implied volatility of An, Ang, Bali, and
Cakici (2014) (∆cvol and ∆pvol). Adj.R2

cr is the average adj. R2 of the second-stage regressions. The sample
covers February 2006 to December 2015.

2006-2015 2008-2011
(1) (2) (3) (4) (5) (6) (7) (8)

λ0 0.026 0.017 0.027* 0.018 0.017 0.012 0.015 0.003
(1.60) (1.12) (1.67) (1.08) (0.64) (0.45) (0.60) (0.13)

ivol -0.138 -0.134 -0.155 -0.143 -0.249* -0.266* -0.282** -0.236*
(-1.54) (-1.55) (-1.64) (-1.53) (-1.78) (-1.96) (-2.02) (-1.74)

sprd5yr 0.243 0.120 0.204 0.053 0.142 0.078 0.122 0.010
(0.91) (0.48) (0.78) (0.20) (0.37) (0.20) (0.32) (0.03)

covtail -0.009 -0.011* -0.010 -0.013** -0.009** -0.006 -0.008** -0.006
(-1.44) (-1.85) (-1.55) (-2.06) (-2.03) (-1.08) (-2.04) (-1.17)

∆cvol 0.112 0.136 0.118 0.167* 0.156 0.173 0.197 0.134
(1.22) (1.49) (1.37) (1.83) (1.22) (1.23) (1.55) (1.02)

∆pvol -0.066 -0.094 -0.076 -0.128 -0.170 -0.199 -0.239* -0.149
(-0.74) (-1.09) (-0.89) (-1.46) (-1.28) (-1.33) (-1.77) (-1.10)

MKT 0.001 0.004 0.001 0.002 0.008 0.008 0.008 0.011
(0.18) (0.50) (0.07) (0.23) (0.64) (0.60) (0.58) (0.77)

SMB 0.000 0.001 0.000 0.001 0.001 0.000 0.001 0.000
(0.05) (0.31) (0.01) (0.40) (0.15) (-0.10) (0.14) (0.11)

HML -0.007* -0.006 -0.005 -0.004 0.002 0.004 0.003 0.005
(-1.71) (-1.45) (-1.27) (-1.10) (0.26) (0.56) (0.51) (0.70)

RMW 0.000 -0.001 -0.002 -0.004
(0.00) (-0.23) (-0.58) (-0.74)

CMA 0.000 0.000 0.000 -0.002
(-0.03) (0.03) (-0.09) (-0.30)

UMD -0.005 -0.008 -0.004 -0.008 -0.005 -0.005 -0.010 -0.010
(-0.49) (-0.84) (-0.42) (-0.83) (-0.31) (-0.28) (-0.57) (-0.56)

LIQ 0.003 0.002 0.000 0.000 0.010 0.009 0.008 0.010
(0.38) (0.20) (0.05) (-0.02) (0.71) (0.61) (0.53) (0.60)

∆VIX 0.005 0.000 0.005 0.002 -0.012 -0.016 -0.016 -0.023
(0.43) (-0.04) (0.42) (0.11) (-0.78) (-1.03) (-1.08) (-1.47)

∆VIX2 0.002 0.001 0.002 0.002 0.002 0.002 0.002 0.001
(1.17) (1.07) (1.16) (1.15) (1.05) (0.98) (0.87) (0.57)

SKEWopt/CDS 0.006 0.006 0.011 0.013
(0.93) (0.95) (0.96) (1.08)

SKEWBKM 0.002 0.003 0.000 -0.002
(0.54) (0.59) (-0.07) (-0.23)

DS 0.004* 0.005** 0.004 0.005* 0.010* 0.010 0.011** 0.010**
(1.75) (2.05) (1.51) (1.85) (1.88) (1.64) (2.04) (2.09)

Adj.R2
cr 0.461 0.453 0.487 0.475 0.568 0.560 0.609 0.613
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