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Abstract

Empirical evidence shows that beliefs of households deviate from rational expecta-

tions and instead may be influenced by characteristics such as place of residence, culture,

and socioeconomic status, which can be modeled using network theory. We develop a

model where a household’s beliefs about stock returns are an endogenous outcome of its

location in a bipartite network of households and firms. We use this model to establish

the relation between households’ beliefs about stock returns, where the beliefs are un-

observable, and the portfolio weights allocated to these stocks by these households. We

use Finnish data for 125 stocks and the portfolio holdings of 405,628 households to esti-

mate our model and find that household-firm distance in the network has a statistically

and economically significant effect on household beliefs about firm-level stock returns.

Our estimates show that agents are connected to firms within a radius of about 143

miles from where they live, and geography has a strong effect on beliefs: a one standard

deviation decrease in an agent’s distance to a firm’s headquarters predicts an increase

in portfolio holdings by 165%. Our work provides a belief-based microfoundation for

the bias toward local stocks that has been documented empirically.
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1 Introduction and Motivation

Rational expectations is a mathematically convenient fiction beloved of economists. How-

ever, “the rational expectation hypothesis is strongly rejected” (Landier, Ma, and Thesmar,

2017). This finding necessitates taking a stance on how to deviate from rational expecta-

tions, while still imposing rigor on the manner in which beliefs are formed. In this paper,

we develop a theoretical framework to demonstrate how one can deviate from rational ex-

pectations in a disciplined fashion, and then establish empirically using data on Finnish

households and firms that this framework performs well in explaining belief formation.

In the framework we develop, households’ beliefs are derived endogenously based on

their location relative to firms within a bipartite network.1 Networks are ubiquitous in

modern economies: “Networks determine our information, influence our opinions, and shape

our political attitudes” (Acemoglu and Ozdaglar, 2009). Substantial evidence shows that

individuals’ beliefs are biased by location in a broad sense of the term: concrete geographical

neighborhood or a more abstract positional descriptor such as culture, economic status, and

social standing. For example, Das, Kuhnen, and Nagel (2017) show that a person’s socio-

economic status influences their beliefs about macroeconomic variables; Guiso, Sapienza,

and Zingales (2006) describe the direct impact of culture on beliefs; Kuchler and Zafar

(2018) find that when individuals form beliefs about aggregate house prices they overweight

house-price observations from their local area; Shive (2010) and Bailey, Cao, Kuchler, and

Stroebel (2018) find that investors’ expectations are influenced by the experiences of other

people within their social network.2

In our framework, each household regards its benchmark model as an approximation.

Households believe that the data come from an unknown member of a set of models where

firm-level expected returns differ from those in its benchmark model; i.e. each alternative

model is characterized by an alternative probability measure. The household’s concern

1Bipartite networks are a particular class of networks, whose nodes are divided into two sets, and only
connections between nodes in different sets are allowed. For an introduction to the theory of networks, see
the books by Easley and Kleinberg (2010) and Jackson (2010).

2There is also a large complementary literature showing that beliefs are influenced by personal experiences
over time as opposed to location; see, for example, Vissing-Jorgensen (2003), Kaustia and Knüpfer (2008,
2012), Choi, Laibson, Madrian, and Metrick (2009), Greenwood and Nagel (2009), Chiang, Hirshleifer, Qian,
and Sherman (2011), Malmendier and Nagel (2011, 2015), and Knüpfer, Rantapuska, and Sarvimäki (2017).
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about model misspecification induces it to prefer decision rules that work over the set of

alternative probability measures as opposed to one specific probability measure. At the

same time, there is an “information penalty” for deviating from the benchmark probability

measure. The household’s information penalty depends on not just the alternative proba-

bility measure; it also depends on its network location, in contrast with relative entropy.3

For instance, if the household is located further from a particular firm, this reduces the size

of the information penalty incurred for considering a given alternative probability measure.

Hence, the further a household’s location from a particular firm, the closer to zero will be

the household’s endogenous personal expectation for the firm’s risk premium (i.e., the stock

return in excess of the risk-free).

We use the network structure to represent the geographical location—broadly inter-

preted to include also cultural, social, and linguistic distance—of each household relative to

firms and use this to derive the beliefs or probability measure of the household. Once we

have derived beliefs, we derive their implications for the portfolio decisions of each house-

hold. Because beliefs cannot be observed, in our empirical work we exploit portfolio holdings

to infer these beliefs.

We consider a model with H heterogeneous households (each with its own beliefs) and

N heterogeneous firms. As in Cox, Ingersoll, and Ross (1985), the physical capital of the

N heterogeneous firms is subject to exogenous shocks. But, in contrast with Cox et al., we

have heterogeneous households with Epstein and Zin (1989) and Weil (1990) preferences

coupled with household-specific beliefs, as described above (and explained in detail below).

We solve this model in closed form and demonstrate how endogenous beliefs impact

the portfolio choices of households. In our model, each household evaluates investment

opportunities using its own personal beliefs, which depend on the household’s location

within the network of firms. Consequently, no household holds the market portfolio; instead,

3The relative entropy of an alternative probability measure with respect to a benchmark measure is the
standard way of quantifying the change in information when an alternative probability measure replaces
the benchmark measure. As such, relative entropy is based purely on information and ignores network
location. If we were to ignore the influence of network location on the size of the information penalty, then
our framework would reduce to that in Hansen and Sargent (2007).
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each household’s portfolio is biased because of its personal beliefs. We use this model to

infer household beliefs, which are unobservable, from observations on portfolio holdings.

Our work is closely related to the seminal work of Huberman (2001) and Grinblatt

and Keloharju (2001), who document that households tend to overinvest in firms that

are “familiar” to them. Huberman (2001) shows that familiarity depends on geographical

distance, while Grinblatt and Keloharju (2001) find that it can depend also on cultural and

language distance.4 There is a large subsequent “local bias” literature that documents the

tendency of households to invest in companies “close” to them. Massa and Simonov (2006)

find evidence that households bias their portfolio toward stocks that are geographically or

professionally close and argue that this bias is information driven. In contrast, Seasholes

and Zhu (2010), Døskeland and Hvide (2011), Baltzer, Stolper, and Walter (2013, 2015)

find that while portfolios are indeed biased toward local stocks, the local holdings do not

generate abnormal performance. Bodnaruk (2009) provides compelling evidence of the

effect of geographical distance by showing that as investors change their place of residence

and thereby the distance from the companies they invest in, they also adjust their portfolio

weights. In contrast to these studies that focus on individual investors, Coval and Moskovitz

(1999b,a) find that professional fund managers also bias their holdings toward local stocks

and earn abnormal returns from nearby investments. Pool, Stoffman, and Yonker (2012)

also study professional U.S. mutual-fund managers and find that they bias their portfolios

toward stocks from their home states; however, home-state stocks do not outperform other

holdings, suggesting that home-state investments are not informed.

Our work builds on this literature on local bias in portfolio holdings by providing a belief-

based microfoundation for the local bias documented in these papers. We find empirical

support for our model, by testing novel predictions that arise within our framework. For

instance, the main regression tests in Grinblatt and Keloharju (2001) arise naturally in our

framework, but their firm fixed effects now have particular economic interpretations. We

show that the firm fixed effects in their tests represent distributional properties of stock

4Lindblom, Mavruk, and Sjögren (2018) find that, in addition to local bias, individual investors who live
in their birthplace invest almost three times more in local firms than other locals. Laudenbach, Malmendier,
and Niessen-Ruenzi (2018) demonstrate that even decades after reunification, East Germans still invest
significantly less in the stock market and are more likely to hold stocks of companies in communist countries
(China, Russia, Vietnam), and less likely to invest in American companies and the financial sector.
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returns (excess return per unit of variance risk), and postal-code fixed effects represent

household preferences (risk aversion). Our belief-based model for their, and our, results is

supported by the positive relation between the estimated excess return per unit of variance

risk and out-of-sample firm performance. Novel empirical findings consistent with our model

are the strong overlap between portfolio holdings of households within the same postal code

and the strong relation between proximity and positive total portfolio holdings of a stock at

the postal code level. Our empirical results are robust to various alternative specifications,

and our modeling approach is flexible in allowing for belief-based explanations for other

types of biases, e.g., cultural and linguistic barriers.

In particular, we test our model of belief formation using Finnish data on the portfolio

holdings in 125 stocks of 405,628 households in 2,923 postal code areas. Using the portfolio

holdings of Finnish households to infer their beliefs, we find that geographical household-

firm distance within the network has a statistically and economically significant effect on

the beliefs of households about firms’ stock returns. We find that the sensitivity coefficient

representing distance is highly statistically significant in all regressions—univariate regres-

sions, regressions including risk-aversion fixed effects, regressions including risk-aversion and

stock-characteristic fixed effects, and panel regressions with robust standard errors double

clustered at the firm and postal code level. The results are also economically significant: a

one standard deviation decrease in distance to a firm’s headquarters predicts an increase in

portfolio holdings by a factor of 2.645.

A possible concern with these results is that they may be driven by households in

Helsinki, the main conurbation in Finland, and there may be differences in behavior be-

tween rural and urban households. To check if this is indeed the case, we run regressions

excluding stocks and postal codes in the Helsinki area and find that the results are still

both statistically and economically highly significant. Another potential concern is that it

may not be geographical distance per se that drives beliefs, but rather employment; i.e.

households may tend to invest in the firms they work for, which are also likely to be close

to where they live. To investigate if this is the case, we exclude observations for which the

household and firm headquarters are close to each other (under 8 miles in one specification
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and under 24 miles in another specification). We find that the results remain qualitatively

similar, and thus, an “employment” effect does not seem to be driving the results.

In addition to the literature on local bias already discussed above, our paper is related

to two other literatures. The first is the literature on robust decision making in finance and

economics, which is described in Hansen and Sargent (2007). The key idea we take from

this literature is that decision makers are uncertain about the benchmark model they use

to make decisions. Consequently, they consider a range of models around the benchmark

and make decisions that are robust with respect to the worst-case model. At the same

time, there is a penalty for deviating from the benchmark model. This penalty is the

relative entropy of the probability measure for each model that is considered with respect

to the probability measure of the benchmark model. Trojani and Vanini (2004) study the

implications of model uncertainty for portfolio choice in continuous-time economies with

heterogenous investors. Gagliardini, Porchia, and Trojani (2008) provide an application

of robust decision making in the Cox et al. (1985) model to study the implications for

the term structure of interest rates. Bhandari, Borovička, and Ho (2019) develop a model

where agents’ subjective beliefs are endogenous consequences of model misspecification.5

Our approach extends this literature by using a penalty that incorporates network effects,

in particular the location of a household relative to firms.

Our paper is therefore related to the literature on networks in economics and finance. A

growing literature explores the implications of network structure for economic variables such

as aggregate fluctuations (Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi, 2012, Gabaix,

2011), systemic risk and financial stability (Acemoglu, Ozdaglar, and Tahbaz-Salehi, 2015,

Farboodi, 2017), systematic risk and asset pricing (Ahern, 2013), return predictability (Co-

hen and Frazzini, 2008), mortgage default risk (Stanton, Walden, and Wallace, 2014, 2018),

merger waves (Ahern and Harford, 2014), information acquisition (Herskovic and Ramos,

2017), and asset pricing implications of information diffusion through networks (Walden,

2019). Allen and Babus (2009) and Jackson (2010, 2014) provide comprehensive surveys

5In contrast, Klibanoff, Marinacci, and Mukerji (2005) develop a model of “smooth” ambiguity in which
the investor uses a nonlinear function to evaluate expected utility values. Maccheroni, Marinacci, and
Rustichini (2006) show that these preferences are nested in a wider class of preferences called “divergence
preferences.” For surveys of this literature, see Hansen and Sargent (2007), Guidolin and Rinaldi (2009),
Epstein and Schneider (2010), and Gilboa and Marinacci (2016).
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of this literature. Our work contributes to this literature by showing how networks can

influence beliefs.

The rest of this paper is organized as follows. We describe the main features of our

model in Section 2. The choice problem of an individual household with subjective beliefs

is solved in Section 3. We evaluate the predictions of the model empiricallly in Section 4.

We conclude in Section 5. Proofs for all results and additional empirical results are reported

in the appendices.

2 The Model

In this section, we develop a model of a finite number of firms and households in a stochastic

dynamic equilibrium economy. The location of a household relative to all firms in the

economy is described by a network structure. The beliefs of a household are determined by

its location within the network and the network itself.

2.1 Firms

There are N firms indexed by n ∈ {1, . . . , N}. The value of the capital stock in each firm

at date t is denoted by Kn,t and the output flow by

Yn,t = αnKn,t,

for some firm-specific technology level αn > 0. The level of a firm’s capital stock can be

increased by investment at the rate In,t. We thus have the following capital accumulation

equation for an individual firm:

dKn,t = In,t dt+ σnKn,t dZn,t,

where σn, the volatility of the exogenous shock to a firm’s capital stock, is constant. The

term dZn,t is the increment in a standard Brownian motion and is firm-specific; the corre-

lation between dZn,t and dZm,t for n 6= m is given by 0 < ρ < 1, which is also assumed to

be constant over time and the same for all pairs n 6= m. Firm-specific shocks create het-

erogeneity across firms. The N ×N variance-covariance matrix of returns on firms’ capital
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stocks is given by V = [Vnm] and Ω denotes the correlation matrix, where the elements of

these matrices are

Vnm =

{
σ2
n, n = m,

ρnmσnσm, n 6= m,
and Ω =

{
1, n = m,
ρnm, n 6= m.

A firm’s output flow is divided between its investment flow and dividend flow:

Yn,t = In,t +Dn,t.

We can therefore rewrite the capital accumulation equation as

dKn,t =
(
αnKn,t −Dn,t

)
dt+ σnKn,t dZn,t.

In the Cox et al. (1985) model, the expected return on a firm’s physical capital, αn, equals

the return on its stock. Similarly, the volatility of the return on a firm’s capital, σn, equals

the volatility of the return on its stock.

2.2 The Investment Opportunities of Households

There are H households, indexed by h ∈ {1, . . . ,H}. Households can invest their wealth

in two classes of assets. The first is a risk-free asset, which has an interest rate i that we

assume is constant over time. Let Bh,t denote the stock of wealth invested by household h

in the risk-free asset at date t. Then, the change in Bh,t is given by

dBh,t
Bh,t

= i dt.

Additionally, households can invest in the N risky firms, or equivalently, in the stocks

of these N firms. We denote by Khn,t the stock of household h’s wealth invested in the n’th

risky firm. Given that the household’s wealth, Wh,t, is invested in the risk-free asset and

the N risky firms, we have that:

Wh,t = Bh,t +

N∑
n=1

Khn,t.
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The proportion of a household’s wealth invested in firm n is denoted by ωhn, and so

Khn,t = ωhnWh,t,

so that the amount of household h’s wealth invested in the risk-free asset is

Bh,t =
(

1−
N∑
h=1

ωhn

)
Wh,t.

The dividends distributed by firm n are consumed by household h according to share

of firm n that household h holds:

Chn,t = Dhn,t =
Khn,t

Kn,t
Dn,t,

where Chn,t is the consumption rate of household h from the dividend flow of firm n. Hence,

the dynamic budget constraint for household h is given by

dWh,t

Wh,t
=
(

1−
N∑
n=1

ωhn,t

)
idt+

N∑
n=1

ωhn,t

(
αndt+ σndZn,t

)
−
Ch,t
Wh,t

dt,

where Ch,t is the consumption rate of household h and Ch,t =
∑N

n=1Chn,t.

2.3 Network Structure

We endogenize household beliefs by linking them to the proximity of a household to each

firm in the economy. That is, beliefs are the consequence of differences in locations across

households, which we represent via a network structure. First, we explain the underlying

network structure. Second, we show how household beliefs are modeled. Third, we show

how household beliefs are impacted by the location of a household within a network.

The separation of household h from firm n is denoted by dhn. This could be a geo-

graphical distance or a more abstract measure of separation, such as cultural or linguistic

distance. For example, an English-speaking household would be farther away from a Ger-

man company based in Germany, than a German-speaking household that is located on the

same street as the English-speaking household. We map the measure of separation, dhn,

into a measure of proximity, φhn, which is constrained to lie in the interval [0, 1], by using
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the following function

φhn =

{
e−κdhn , dhn ≤ d,

0 , dhn > d,
(1)

where κ ≥ 0 is a measure of the sensitivity of φhn to dhn and d is a constant denoting some

threshold value. Thus, φhn = 1 when the separation measure for household h relative to

firm n is 0 and φhn = 0 when the separation measure for household h relative to firm n

exceeds the threshold d.

The exponential decrease in proximity as a function of distance in equation (1) is akin

to a setting where multiplicative noise increases the uncertainty of information. Specifi-

cally, consider a random signal x̃ that is transmitted from its origin to a recipient through

a sequence of d steps (for example word-of-mouth communication in a social network), so

that in each of the steps the signal is garbled with multiplicative, independently distributed,

noise, x̃ 7→ x̃× S̃1 × S̃2 · · · × S̃d, where x̃ and S̃i, i = 1, . . . , d, are log-normally distributed.

The variance of the garbled signal will then increase exponentially with distance, i.e., the

precision will decrease exponentially. The threshold in the specification is akin to a setting

where background noise makes a signal uninformative beyond a certain distance. We there-

fore view the functional form for the proximity specification in equation (1) as natural and

parsimonious.

In contrast with most existing work in finance, where a network consists of agents of

one type, we have a network consisting of two types: households and firms. Such a network

is known as a bipartite network. In our case, the bipartite network of households and firms

is described via the H by N matrix D, where

D = [dhn]hn, h ∈ {1, . . . ,H}, n ∈ {1, . . . , N}.

The matrix D is called the biadjacency matrix of the bipartite network. From the biadja-

cency matrix of separation measures for household h, we obtain the proximity matrix

Φ = [φhn]hn, h ∈ {1, . . . ,H}, n ∈ {1, . . . , N}.

Below, we provide two examples of bipartite networks. In our first example, illustrated

in Figure 1, we assume the number of households equals the number of firms (H = N) and
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Figure 1: First example of network

In this figure, we assume that the number of firms is equal to the number of households, N = H = 4,
and that each household has a separation measure of d ∈ (0, d) with respect to 2 firms and a
separation measure of d+ ε, where ε > 0 with respect to all other firms.

n1

n2

n3

n4

h1

h2h3

h4

that each household has a separation measure of d ∈ (0, d) with respect to 2 firms and a

separation measure of d + ε, where ε > 0 with respect to all other firms. Let the firms be

arranged in a circle, and let each household h be equally distant from the two firms nearest

to it on either side. Thus, in this case the biadjacency matrix of separation measures is

given by the following N by N matrix

D =


d d d+ ε d+ ε · · · d+ ε

d+ ε d d d+ ε · · · d+ ε
... · · · · · · · · · · · ·

...

d+ ε d+ ε · · · d+ ε d d

d d+ ε · · · d+ ε d+ ε d

 .

Hence, defining φ = e−κd, the matrix of proximity measures is given by

Φ =


φ φ 0 0 · · · 0
0 φ φ 0 · · · 0
... · · · · · · · · · · · ·

...
0 0 · · · 0 φ φ
φ 0 · · · 0 0 φ

 .

In our second example, consider Figure 2 below, which shows a map of Finland (in cyan)

decomposed into 3036 postal code regions. We will use this decomposition in our empirical

tests in Section 4. The five red squares represent five households, situated at the points

p1, . . . , p5, and the three blue circles represent three firms situated at p1, p2 and p3.
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Figure 2: Second example of network

In this figure, we assume that the number of firms N = 3, with these firms represented by the three
blue circles and the number of households is H = 5, with these households represented by the five
red squares. The underlying map (in cyan), shows 3,036 Finnish postal code regions, obtained from
the Finnish postal services company, Posti Group Corporation.

Geographical distance is used to define the firm-household network, so that

dhn = D((xh, yh), (xn, yn)) =
√

(xh − xn)2 + (yh − yn)2,

where the Euclidean distance function D is normalized so that the two postal codes that are

farthest away from each other (postal codes 2 and 3) are at unit distance, and ph = (xh, yh),

pn = (xn, yn).

The constant is κ = 0.9, and the threshold is set to d̄ = 0.5. This leads to the following

matrix of proximity measures

Φ =


0.771 0.852 0.905
0.770 0 0

0 0 0.850
0.720 0 0.736
0.676 0 0

 .
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The proximity function is the highest for household 1 and firm 3 (φ13 = 0.905), because they

represent the geographically closest household-firm pair. There are in total eight household-

firm connections; the remaining firm-household pairs are farther apart than the threshold

d̄ = 0.5, and therefore, are not connected.

To show the flexibility of our framework, we also consider a variation of this example

with a more general distance function. The distance function is now affected not only by

geographical distance, but also cultural distance, as suggested in Grinblatt and Keloharju

(2001). Culture could, for example, be measured by the main language spoken by the

firm’s CEO. Assume that the CEOs’ main language is represented by `n ∈ {0, 1}, where

0 represents a Swedish-speaking CEO and 1 a Finnish-speaking CEO. We shall assume

that `1 = `2 = 1, and `3 = 0. Also, assume similarly that `h ∈ {0, 1} represents the

predominant language spoken by households in the different postal codes. We shall assume

that `1 = `4 = 0, while `2 = `3 = `5 = 1.

Then the generalized distance function takes the form dhn = d(ph, p
n)+c|`h−`n|, where

the constant c = 0.25, leading to the following matrix of proximity measures

Φ =


0 0.680 0.905

0.770 0 0
0 0 0.679
0 0 0.736

0.676 0 0

 .

With the generalized distance function, the connections between firm 1 and households 1

and 4 no longer exist, φ11 = φ41 = 0, because the effect of their cultural distance is to

increase the distance beyond the threshold d̄ = 0.5. The connections φ12 and φ31 also

decrease, from 0.852 to 0.680 and from 0.850 to 0.679, respectively, but stay positive, i.e.,

the connections remain.

2.4 Beliefs of Households

Each household h has its own beliefs, represented by its personal probability measure Qνh ,

which differs from the physical (objective) probability measure P. We define the beliefs of

household h below.
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Definition 1. If we consider an event A which can occur at time T > t, household h’s

personal expectation that event A could occur, conditional on date-t information, is given

by

EQνh

t [IA] = EP
t

[
Mh,T

Mh,t
IA

]
,

where IA is the indicator function associated with event A, and Mh,t is given by

dMh,t

Mh,t
= ν>h,t(Ωσ)−1dZt,

where σ = diag(σ1, . . . , σN ), Zt = (Z1,t, . . . , ZN,t)
>, and

νh,t = (νh1,t, . . . , νhN,t)
> (2)

is the vector of divergences of household expectations from rational expectations.

To understand the intuition behind the above definition, observe that the expected

rate of return for firm n’s stock under household h’s expectations is αn + νhn,t. We can

thus see that the divergence in household h’s beliefs about the expected rate of return

on firm n (relative to the physical probability measure) is νhn. Collecting the divergences

of household h for all N firms, we obtain its vector of personal divergences, as defined

in equation (2). From Girsanov’s Theorem, we know that choosing a vector of personal

divergences is equivalent to a household changing the objective physical measure to a new

measure, denoted by Qνh . When its vector of personal divergences is the zero vector, then

household h’s personal beliefs coincide with the objective beliefs represented by P.

In Definition 1, the only source of different beliefs between households is the vector of

divergences, νh,t, which will be determined by a household’s location. As a consequence,

households in the same location will be predicted to hold identical portfolios. Moreover,

as we shall see, households will neither overinvest nor shortsell stocks. These features are,

of course, inconsistent with what is observed in practice, and are easily avoided with an

extended specification. Specifically, we may replace Mh,t in Definition (1) with the process

dMh,t

Mh,t
= (νh,t + ξh)>(Ωσ)−1dZt,
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where

ξh = (ξh1, . . . , ξhN )>,

and ξhn are random variables with mean zero, i.i.d. across agents and stocks. The additional

variation in individual household’s expectations introduced by this extension generates fur-

ther heterogeneity in individual household beliefs and holdings, but cancels out in aggregate

in markets with many households. For simplicity, we use the base specification in the forth-

coming derivation; the derivation under the extension is very similar.

We can use household h’s personal beliefs to understand how it forms expectations

about the rate of return on its invested wealth. Household h’s personal belief about the

expected rate of return on its wealth is
∑N

n=1 ωhn,t(αn + νhn,t) instead of
∑N

n=1 ωhn,tαn, a

change of

N∑
n=1

ωhn,tνhn,t

relative to the physical measure P. This change can be regarded as a personal divergences

in household h’s portfolio return expectations, which we can write more succinctly as

ω>h,tνh,t,

where ωh,t = (ωh1,t, . . . , ωhN,t)
> is the column vector of portfolio weights.

We now use the vector of household expectations to define the network-weighted infor-

mation loss of an individual household.

Definition 2. The network-weighted information loss for household h is given by

L̂h,t = ν>h,tσ
−1Fhσ

−1νh,t, (3)

where νh,t is household h’s vector of personal divergences and Fh is the N × N diagonal

matrix

Fh = diag

(
φh1

1− φh1
, . . . ,

φhN
1− φhN

)
, φhn ∈ [0, 1], n ∈ {1, . . . , N}.

15



To understand the motivation underlying the above definition, observe that we can

rewrite equation (3) as

L̂h,t =
N∑
n=1

φhn
1− φhn

ν2
hn,t

σ2
n

.

In the above expression, we can interpret ν2
hn,t/σ

2
n as a measure of the information about

firm n that is discarded by household h when it uses its personal belief Qνh as opposed to

the objective belief P. We then weight each of these information losses by φhn
1−φhn . Doing

so ensures that an information loss impacts L̂h,t only when a household’s proximity with

respect to a particular firm is not zero and that the impact of the information loss increases

with proximity and becomes infinitely large when φhn = 1, i.e. when the separation measure

is 0. In this manner, a household’s location within a network structure determines its

network-weighted information loss.

Our definition of a household’s network-weighted information loss is closely related to

the relative entropy per unit time of the objective belief P with respect to the personal

belief Qνh (also known as the Kullback-Leibler divergence from Qνh to P). Observe that

the relative entropy per unit time of the objective belief P with respect to the personal

belief Qνh is given by

DKL[P|Qνh ] =
1

dt
Et

[(
dMh,t

Mh,t

)2
]

= ν>h,tσ
−1[(Ω)−1]>σ−1νh,t.

In the above expression for relative entropy, we can see that when firm-level information

losses are summed up, they are weighted by the correlation structure underlying firm-

level returns, as encapsulated by the correlation matrix Ω. In contrast, our definition of a

household’s network-weighted information loss in (3) uses the household’s location in the

bipartite network of firms and households to weight the information losses.

2.5 Intertemporal Aggregator with Endogenous Beliefs

Each household maximizes its date-t utility level, Uh,t, defined as in Epstein and Zin (1989)

by an intertemporal aggregation of date-t consumption flow, Ch,t, and the date-t personal
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certainty-equivalent of date t+ dt utility:6

Uh,t = Ah(Ch,t, µ
ν
h,t[Uh,t+dt]),

where Ah(·, ·) is the time aggregator, defined by

Ah(x, y) =
[
(1− e−δhdt)x1− 1

ψh + e−δhdty
1− 1

ψh

] 1

1− 1
ψh , (4)

in which δh > 0 is the rate of time preference, ψh > 0 is the elasticity of intertemporal

substitution, and µνh,t[Uh,t+dt] is the date-t personal certainty equivalent of Uh,t+dt. We

explain below how this certainty-equivalent value is determined.

2.6 Household-Specific Certainty Equivalent

We now use the concepts of a household’s beliefs and its network-weighted information loss

to define its personal certainty-equivalent, which is fundamental to how we endogenize belief

formation as a function of household location within the network structure.

Definition 3. The date-t personal certainty-equivalent of date-t + dt household utility is

given by

µνh,t[Uh,t+dt] = µ̂νh,t[Uh,t+dt] + Uh,tLh,tdt, (5)

where µ̂νh,t[Uh,t+dt] is defined by

uγh
(
µ̂νh,t[Uh,t+dt]

)
= EQνh

t [uγh (Uh,t+dt)], (6)

uγh(x) =
x1−γh

1− γh
,

and

Lh,t =
1

2γh
L̂h,t.

The first part of the definition of the personal certainty-equivalent is just the standard

definition of a certainty-equivalent based on power utility with relative risk aversion γh, but

6The only difference with Epstein and Zin (1989) is that we work in continuous time, whereas they work
in discrete time. The continuous-time version of recursive preferences is known as stochastic differential
utility (SDU), and is derived formally in Duffie and Epstein (1992). Schroder and Skiadas (1999) provide a
proof of existence and uniqueness for the finite horizon case.
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using the personal belief Qνh . The second part of the definition hinges on the expression for

Lh,t, which is a multiple of the network-weighted information loss from using the personal

belief Qνh instead of the objective belief P.

When a household chooses its beliefs by choosing a vector of divergences νh,t, it does

so in order to minimize the impact of its information losses on its personalized certainty

equivalent. The way information losses affect a household’s personalized certainty equivalent

depends on its location within a network, so we see that a household’s beliefs depend on its

location within a network structure.

The following theorem shows how a household optimally selects its personal beliefs by

choosing a vector of divergences, νh,t.

Proposition 1. If the investment opportunity set is constant, then the date-t personal

certainty equivalent of date-t+ dt household utility based on the personal belief Qνh is given

by

µνh,t[Uh,t+dt] = µh,t[Uh,t+dt] + Uh,t ×
(
Wh,tUWh,t

Uh,t
ν>h,tωh,t + Lh,t

)
dt, (7)

where

µh,t[Uh,t+dt] = Et[Uh,t+dt]−
1

2
γh Uh,tEt

[(
dUh,t
Uh,t

)2
]

(8)

and UWh,t
=

∂Uh,t
∂Wh,t

is the partial derivative of the utility of household h with respect to

its wealth. At date t, a household optimally selects its personal belief Qνh by choosing the

vector of personal divergences νh,t which minimizes its date-t personal certainty equivalent,

µνh,t[Uh,t+dt].

The presence of the term
Wh,tUWh,t

Uh,t
ν>h,tωh,t gives a household the desire to make its di-

vergences in portfolio-return expectations, i.e. ν>h,tωh,t, as negative possible. This desire is

clearly a departure from rationality, but it is tempered by the size of its network-weighted

information losses, represented by Lh,t = 1
2γh

L̂h,t. For example, in the special case where

φhn = 1 for all n ∈ {1, . . . , N}, the network-weighted information losses from any diver-

gences become infinitely large, so a household chooses not to have any personal divergences,
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i.e. νh,t is the zero vector. In this case, its personal certainty equivalent reduces to the stan-

dard certainty equivalent, i.e. a mean with a penalty for risk that depends on risk aversion

γh and variance, as given in (8).

In general, network-weighted information losses are not infinitely large, and so a house-

hold faces a trade off between more negative personal divergences in portfolio return expec-

tations and larger network-weighted information losses. Because this optimization problem

is linear-quadratic it has the following closed-form solution.

Corollary 1. If the investment opportunity set is constant, a household’s personal diver-

gence vector is given by

νh,t = −γh
Wh,tUWh,t

Uh,t
(σ−1Fhσ

−1)−1ωh,t, (9)

i.e.

νhn,t = −γh
Wh,tUWh,t

Uh,t
σ2
n

1− φhn
φhn

ωhn,t.

We can now see how differences in network location across households create heterogene-

ity in households’ expectations. When a household’s proximity to a firm is low, it responds

by biasing downwards its point estimate for the expected return for that firm. For example,

household h will change the expected return for firm n from α to α+νhn,t, thereby reducing

the magnitude of the firm’s expected risk premium (νhn,t ≤ 0 if ωhn,t > 0 and νhn,t ≥ 0 if

ωhn,t < 0). The size of the reduction depends on each household’s proximity to a particular

firm—the reduction is smaller for firms to which the household is closer. Thus, differences

in proximity across households lead them to use different estimates of expected returns in

their decision making.

3 Portfolio-Consumption Choice with Endogenous Beliefs

In this section, we solve the portfolio problem of an individual household whose beliefs are

determined endogenously by its network location.
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3.1 The Intertemporal Choice Problem with Endogenous Beliefs

If a household’s beliefs coincided with the objective physical measure, it would choose its

consumption rate, Ch,t, and portfolio policy, ωh,t, to solve the standard choice problem,

which is:

sup
Ch,t

A
(
Ch,t, sup

ωh,t

µh,t[Uh,t+dt]
)
, (10)

where µh,t[Uh,t+dt] is the standard certainty equivalent, given in (8).

In general, with endogenous household beliefs that do not coincide with rational ex-

pectations, the time aggregator A(·) in (4) is unchanged—all we need to do is to re-

place the maximization of the standard certainty-equivalent in (10), supωh,t µh,t[Uh,t+dt],

with the combined maximization and minimization of the personal certainty equivalent,7

supωh,t infνh,t µ
ν
h,t[Uh,t+dt] to obtain

sup
Ch,t

A
(
Ch,t, sup

ωh,t

inf
νh,t

µνh,t[Uh,t+dt]
)
. (11)

A household, because of the impact of its network location, chooses νh,t to minimize

its personal certainty equivalent; i.e. the household adjusts expected returns more for firms

for which its degree of separation is larger, which acts to reduce the personal certainty

equivalent. By comparing (10) and (11), we can see that once a household has chosen the

vector of personal divergences, νh,t, to adjust the expected returns of each firm to account

for its beliefs, it makes consumption and portfolio choices in the standard way. The solution

for the choice of the vector of personal divergences, νh,t is given in terms of the portfolio

choice ωh,t in Corollary 1 in the appendix.

7Our max-min characterization of the objective function is consistent with the multi-prior approach
advocated by Gilboa and Schmeidler (1989) and developed in a static setting by Dow and Werlang (1992),
in dynamic discrete-time by Epstein and Wang (1994), and in continuous time by Chen and Epstein (2002).
The alternative approach of Hansen and Sargent (2007), which our formulation builds on, assumes that
investors allow for the possibility that their model may not be correct and hence consider deviations from the
reference model, where the relative likelihood of the two models is measured using entropy; these preferences
are called multiplier preferences. Maccheroni et al. (2006) show the relation between multiple-priors and
multiplier preferences; they also show that both are nested in a new class called “divergence preferences.”
Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio (2011) provide a common representation that
unifies these preferences.
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To solve a household’s consumption-portfolio choice problem under subjective beliefs we

use Ito’s Lemma to derive the continuous-time limit of (11), which leads to the Hamilton-

Jacobi-Bellman equation shown in the proposition below.

Proposition 2. The utility function of a household with endogenous beliefs is given by the

following Hamilton-Jacobi-Bellman equation:

0 = sup
Ch,t

(
δ uψ

(
Cht
Uht

)
+ sup
ωh,t

inf
νh,t

1

Uh,t
µνh,t

[
dUh,t
dt

])
, (12)

where the function

uψ(x) =
x

1− 1
ψ − 1

1− 1
ψ

, ψ > 0,

and

µνh,t [dUh,t] = µνh,t [Uh,t+dt − Uh,t] = µνh,t [Uh,t+dt]− Uh,t,

with µνh,t [Uh,t+dt] given in (7).

The Hamilton-Jacobi-Bellman equation can be decomposed into a portfolio-optimization

problem and an intertemporal consumption-choice problem. Given the assumption of a

constant risk-free rate, homotheticity of preferences combined with constant returns to

scale for production lead to an investment opportunity set that is constant over time. This

implies that maximized household utility is a constant multiple of the household’s wealth.

In this case, the Hamilton-Jacobi-Bellman equation can be decomposed into two parts: a

single-period mean-variance optimization problem for a household with endogenous beliefs

and an intertemporal consumption-choice problem, as shown in the proposition below.

Proposition 3. The household’s optimization problem consists of two parts, a mean-

variance optimization

sup
ωh,t

inf
νh,t

MVh(ωh,t,νh,t),

and an intertemporal consumption choice problem

0 = sup
Ch,t

(
δh uψ

(
Ch,t
Uh,t

)
−
Ch,t
Wh,t

+ sup
ωh,t

inf
νh,t

MVh(ωh,t,νh,t)

)
, (13)
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where

MVh(ωh,t,νh,t) = i+
(
α− i1

)>
ωh,t −

1

2
γω>h,tV ωh,t + ν>h,tωh,t +

1

2γh
ν>h,tσF

−1
h σνh,t, (14)

α = (α1, . . . , αN )>, and 1 denotes the N × 1 unit vector.

In the above proposition, MV (ωh,t,νh,t) is the objective function of a single-period

mean-variance household with endogenous beliefs: i+
(
α−i1

)>
ωh,t is the expected portfolio

return under the objective physical probability measure, −1
2γhω

>
h,tV ωh,t is the penalty

for portfolio variance, ν>h,tωh,t is the divergence in the portfolio’s expected return arising

from household h’s expectations, and 1
2γh
ν>h,t(σ

−1Fhσ
−1)−1νh,t is the penalty for adjusting

expected returns, i.e. the information loss incurred in deviating from the objective physical

probability measure.8

In the mean-variance problem under household h’s beliefs, the firm-level expected re-

turns are optimally adjusted downward. The magnitude of the adjustments depend on the

degrees of separation of a household from the firms in the economy. Because each house-

hold’s utility is a constant multiple of wealth and the matrices σ and Fh are diagonal, the

expression for the vector of personal divergences in equation (9) simplifies to:

νh,t = −γh σ2F−1
h ωh,t. (15)

Note that the expression for νh,t above is in terms of ωh,t; in Proposition 4 below, we will

derive also an explicit expression for the optimal vector of personal divergences νh,t.

Substituting the expression for νh,t in (15) into (14), we see that the household faces

the following mean-variance portfolio problem:

sup
ωh,t

MV (ωh,t) =

(
i+
(
α+

1

2
νh,t − i1

)>
ωh,t

)
− 1

2
γhω

>
h,tV ωh,t.

For the extreme case in which the measure of separation for a household with respect to each

firms is zero, network-weighted information loss in deviating from the physical measure P
8The vector of personal divergences adjustment is obtained from a minimization problem, so the associated

penalty is positive, in contrast with the penalty for return variance.

22



becomes infinite, and so the vector of divergences is the zero vector. Hence, the adjustment

to expected returns is zero and the portfolio weights are exactly the standard mean-variance

portfolio weights under rational expectations. For the other extreme in which the measure

of separation for a household with respect to each firm is larger than the threshold d, the

household’s personal expected risk premium for each firm becomes zero and it avoids any

investment in risky firms, i.e. ωh = 0; in this case, we obtain non-participation in the stock

market for this household.

3.2 Solution to the Choice Problem of an Individual Investor

In this section, we present the solution to the choice problem of an individual household.

Proposition 4. The optimal vector of personal divergences is

νh = −(I + V Fhσ
−2)−1(α− i1), (16)

and the vector of optimal portfolio weights is

ωh,t =
1

γh
V −1

(
α− i1 + νh

)
=

1

γh
(V + σ2F−1

h )−1
(
α− i1

)
. (17)

For the special case in which the correlation between assets ρnm = 0, the optimal diver-

gence in household h’s expected return for firm n is

νhn = −(αn − i)(1− φhn), (18)

and the optimal proportion of wealth invested in firm n by household h is

ωhn =
1

γh

αn − i+ νhn
σ2
n

=
1

γh

αn − i
σ2
n

φhn. (19)

From (18), we can see that the size of a household’s deviation in a firm’s expected

return is smaller when the proximity measure, φhn, is larger; if φhn = 1, then the deviation

vanishes altogether and the household holds the portfolio weight that would be optimal

under rational expectations. From (19), we see that the standard mean-variance portfolio

weight for firm n, 1
γh

αn−i
σ2
n

, is scaled by the proximity measure for household h with respect to
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firm n, φhn. As a household’s proximity measure with respect to a particular firm decreases,

the proportion of its wealth that it chooses to invest in that firm also decreases.

In summary, when a household is further away from a firm (a reduction in proximity),

its beliefs about the firm’s return diverge more from the objective physical expectation.

Hence, it tilts its portfolio away from the fully diversified portfolio, leading to a reduction

in portfolio diversification.

Our portfolio weight specification in equation (19) is similar to that estimated using

panel regressions in Grinblatt and Keloharju (2001). Our specification provides additional

insight about how to interpret the firm and location fixed effects in those regressions: The

firm fixed effects represent distributional properties of stock returns, and the location fixed

effects represent risk aversion, which we will measure at the postal code level. Our model

thereby provides a microfoundation for the empirical tests and results in Grinblatt and

Keloharju (2001).

It is straightforward to show that under the extended specification, which allows for

idiosyncratic variation in household beliefs, equation (19) becomes

ωhn =
1

γh

αn + ξnh − i
σ2
n

φhn.

This specification thus allows for variation of portfolio holdings between households at the

same location (with the same φhn), for some households to choose higher weights than

1
γh

αn−i
σ2
n

(those with ξhn sufficiently high), and for a some households to shortsell stock

(those with ξhn sufficiently low).

4 Empirical Results

Our belief-based portfolio-choice model leads to several testable predictions, some of which

are unique to our approach. These predictions follow immediately from our earlier results,

and therefore, are presented below without formal proofs.
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In our model, households will tend to be underdiversified in that they will hold only a

subset of the stocks in the market (those at a distance smaller than d̄). The effect will be

especially severe for households that are located far away from firms.

Prediction 1. The portfolio of a household located far away from firms is more under-

diversified—i.e., contains fewer stocks—than the portfolio of a household located close to

firms.

A related prediction is that the stocks in a household’s portfolio will be located closer to

the household than stocks that are not part of the household’s portfolio.

Prediction 2. The distances from a household to firms that are included in the household’s

portfolio are lower than the distances to firms that are not included in the portfolio.

The previous predictions relate a household’s portfolio to the locations of firms. Our

model also predicts that households which are located close to each other hold similar

portfolios.

Prediction 3. The portfolios of two nearby households contain more common stock con-

stituents than if these constituents were randomly selected among the market’s stocks.

We next turn to the full portfolio implications of the specification in equations (1) and

(19). Specifically, the sensitivity parameter κ determines how distance affects household

beliefs. The higher is κ, the more households focus on companies in their network vicinity,

whereas when κ = 0, as long as the distance is less than d̄, beliefs and portfolios are

unaffected.

We define gh = ln(γh), vhn = ln(ωhn) and sn = ln
(
αn−i
σ2
n

)
, which from (19) then implies

vhn = −gh + sn − κ dhn. (20)

Equation (20) provides a strong characterization of the portfolio holdings of individual

agents, as a function of relative risk aversion coefficients, stock return characteristics, and

distance. Given data on portfolio holdings of the households in a market, {ωhn}hn, together

with location parameters, {(xh, yh)}h and {(xn, yn)}n, equation (20) can be estimated and

the following prediction can be tested
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Prediction 4. The κ-coefficient in equation (20) is strictly positive, κ > 0.

In this estimation, {gh}h and {sn}n are treated as (unobservable) household and firm

fixed effects, respectively, both with clear economic interpretations. In particular, the esti-

mated firm fixed effects should be related to the actual return distribution of stocks in the

market.

Prediction 5. The firm fixed effects coefficients obtained when estimating equation (20)

should be informative about

ln

(
αn − i
σ2
n

)
, n = 1, . . . N.

Prediction 5 could potentially be used to separate our belief-based explanation for observed

portfolio holdings among households that are consistent with home bias from other mechan-

ical explanations for the relation between location and portfolio holdings (along the lines

“being closer to a firm implies a larger portfolio weight”).

Finally, the extended version of our model, which allows for random heterogeneity in

beliefs across households within the same location, leads to predictions about both the long-

and short-selling behavior of households.

Prediction 6.

1. Among households holding long positions in a firm, those located close to that firm

hold larger positions than those located far away.

2. Among households holding short positions in a firm, those located close to that firm

hold larger short positions than those located far away.

As is the case for the previous prediction, Prediction 6 could be used to separate our belief-

based model from other explanations of home bias. A “naive” model for how location

affects portfolio holdings would suggest that nearby households are simply “more positive”

about a firm than remote housholds for unmodelled reasons. In this case, the second part

of Prediction 6 would naturally be reversed, i.e., shortselling would mainly be an activity

among households far away from a firm.
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The prediction would also be different under a standard information-based explanation

of home bias. Specifically, if nearby households were better informed about the prospects

of a firm, they would either hold more long positions and fewer short positions than remote

households—in case the information was positive—or less long positions and more short

positions—in case the information was positive. Neither case is consistent with Prediction 6.

Our model generates this unique prediction through the effect uncertainty has on

ambiguity-averse investors. These investors become more reluctant to take on extreme

positions, both long and short, when there is high uncertainty, in contrast to the naive

model and the explanation relying on asymmetric information. We do not test Prediction 6

in this paper, because our dataset does not contain information about short-selling, but

mention it as an interesting test for future research.

In the rest of this section we test Predictions 1–5. In Section 4.1, we describe the data.

The results of our empirical analysis are reported in Section 4.2 and various robustness

checks are described in Section 4.3.

4.1 Data

Portfolio holdings for all accounts on the Helsinki Stock Exchange, as of January 2, 2003,

were obtained from Euroclear, which acquired the Finnish Central Securities Depositary

in 2008.9 It contains portfolio holdings and postal-code information, as well as further

characteristics (age and gender and sector code classification) of all account holders in the

market. There are altogether 3,036 valid postal codes in the data set and the data contains

over 60 million trades during the time period 1995-2004, and about 1.2 million accounts,

most of which represent the household sector.

We obtain geographical coordinates for each postal code area from the Finnish postal

services company, Posti Group Corporation. These postal codes make up a fine-grained

representation of Finland, as shown earlier in Figure 2. We represent each postal code

geographically by its center of gravity.

9The dataset has previously been used, e.g., in Grinblatt and Keloharju (2000, 2001) and Walden (2019).
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We obtain information about the postal codes of company headquarter from Thomson

One Reuters and exclude companies headquartered outside of Finland. We also exclude

companies with shares that were not traded within the previous month (i.e. during December

2002). Finally, we exclude the telecom firm Elisa Oyj, which had until 1999 been a privately

held mutual association with broad ownership among its association members, and therefore

had a quite different ownership history and structure than the rest of the firms.10 This leaves

us with 125 stocks, which are listed in Table 9 of Appendix B.11

We include accounts that are classified as households (these are accounts associated

with sector codes between 500 and 599), that are associated with a valid postal code, and

that owned shares in at least one of the 125 stocks on January 2, 2003. This leaves us with

405,868 households associated with altogether P = 2, 923 postal codes.

The postal code associated with household h is denoted ph. We assume that each agent

resides at the center of gravity of his/her respective postal code and also that each firm is

headquartered at the center of gravity of its postal code. Thus, all agents within a postal

code are assumed to be at the same distance from each of the firms. We can then rewrite

equation (20) at the postal-code level as

vpn = −ḡp + sn − κ dpn, (21)

where

ḡp = ln(γ̄p), and
1

γ̄p
=

∑
{h:ph=p}

1

γh
,

and γ̄p is the harmonic mean of the relative risk aversion coefficients for agents living in

postal code p, and dpn is the distance between the center of gravity of postal code area p,

10Elisa Oyj was formed on July 1, 2000, with the merger of the Helsinki Telephone Corporation (in Finnish,
“Helsingin Puhelin”) and its holding company, HPY Holding Corporation. Helsinki Telephone Corporation
had been a privately held telephone cooperative with broad ownership among its 550,000 ”association mem-
bers.” Subscribers to its telephone services automtically became association members. When the company
was listed on the Helsinki Stock Exchange in 1997, these owners became shareholders, which then carried
over to Elisa Oyj after the merger (Source: Annual Reports, 1997-2000). Most of these shareholders only
held this one stock, and thus seem to be shareholders for different reasons than the rest of the household
investor population. Except for predictions 1 and 3, on underdiversification and similarity of holdings of
individual households, the results are very similar when Elisa Oyj is included.

11Some of these stocks represent A- and B-shares in the same company. An A-share in Finland typically
come with greater voting rights compared with a B-share. There were significant differences in share prices
and returns between A- and B-shares of the same companies and we therefore include both A- and B-shares
in our sample for companies with both types of shares.
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(xp, yp), and the center of gravity of the postal code area in which firm n is located,

dpn = D((xp, yp), (x
n, yn)).

Equation (21) thus consists of P ×N postal code/company holdings.

We focus on geographical proximity as a measure of network proximity between agents

and companies. As discussed in Walden (2019), this is a reasonable assumption for the

time period and market that the data covers. One might view geographical distance as an

unimportant hurdle in the present time due to almost universal access for households to

information via the Internet. However, only about one third of the Finnish population used

the Internet in 2000. Moreover, over half of Finland’s population resides in rural areas,

making it one of the most rural countries in the European Union. It is therefore plausible

that there would be a significant link between geographical and network proximity in the

early 2000’s.

We normalize the distance function, so that all geographical coordinates lie in the unit

square, [0, 1]× [0, 1]. The household-firm that are farthest apart are therefore at a distance

somewhere between 1 and
√

2 from each other (in our sample, the maximum distance is

1.175), making the interpretation of the sensitivity coefficient κ in equation (21) straight-

forward.

The geographical coordinates of postal codes (blue dots) and firms (red circles) are

shown in Figure 3. As can be seen in the figure, most firms are headquartered in the far

south (around the capital, Helsinki, with associated postal codes between 100 and 9900),

whereas about 20% of the firms have headquarters elsewhere. Summary statistics of the

data we use are provided in Table 1.

4.2 Results

We first test Prediction 1, that households tend to be more under-diversified the farther

away they are located from stocks. We define the center of gravity (CoG) of the stocks,

(xC , yC) =
1∑N

n=1W
n

(
N∑
n=1

Wnxn,

N∑
n=1

Wnyn

)
,
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Figure 3: Center of gravity of postal codes for households and firms

Center of gravity of postal codes for households (blue dots) and firms (red circles) in dataset.
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Table 1: Summary statistics

This table gives the summary statistics for the data used in our empirical analysis.

Number of stocks 125
Number of household accounts 405,628
Number of postal codes 2,923
Average number of accounts in postal code 139
Total number of observations 364,750
Number of nonzero observations 132,811
Maximum portfolio holding FIM 178.7 million
Minimum portfolio holding FIM 0
Average stock holding by postal code FIM 30,617
Median number of stocks held by account 2
Mean number of stocks held by account 2.75

where we use both equally-weighted CoG (Wn = 1 for all firms) and value-weighted CoG,

(a firm’s weight is defined as the total value of household portfolio holdings in that firm).

We further define qp, the average number of stocks in households’ portfolios within postal
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Table 2: Test of Prediction 1: Underdiversification versus distance from firms

This table shows results from two-sample t-tests of difference in means between the distance from postal
codes with zero holdings to firm headquarter and from postal codes with positive holdings. Columns (1-2)
are based on equally weighted CoG, whereas columns (3-4) are based on value-weighted CoG. Columns (1)
and (3) are univariate, whereas columns (2) and (4) also include average portfolio size in the regressions.

(1) (2) (3) (4)

Average number of stocks, qp −1.011*** −1.024*** −0.306*** −0.313***
Standard error 0.084 0.082 0.072 0.070

Portfolio size, ln(Wp) 0.446*** 0.445***
Standard error 0.012 0.012

code area p, and dp = D((xp, yp), (x
C , yC)), the distance between households in postal code

area p and firm CoG, and estimate how they are related. The relation, shown in Table 2,

is significantly negative, both economically and statistically. A household located at a

maximum distance from the firms’ CoG is predicted to hold about one fewer stock in its

portfolio than a household located right at the CoG—a major effect because the median

number of stocks held in a household portfolio is 2. The results are very similar regardless

of whether the value-weighted or equally weighted definition of CoG is used.

We also control for portfolio size. Specifically, if wealthier households tend to be more

well diversified and are also located closer to firms, similar results would arise, but because

of this omitted variable. We therefore include the logarithm of average portfolio-size within

a postal code area, ln(Wp), in the regression. The estimated coefficient decreases by about

two thirds when ln(Wp) is included, both in the value-weighted and equally weighted CoG

specification, but still remains highly significant.

We next test Prediction 2, which at the postal code level states that postal codes with

zero portfolio holdings in a firm tend to lie geographically further away from that firm

than postal codes with positive holdings. For each stock, we perform a two-sample t-test,

comparing the average distances of postal codes with zero and with positive holdings from

the firm’s headquarter. The results are shown in Table 3.

The average distance for postal codes with zero holdings is about 0.332, whereas the

average distance for postal codes with positive holdings is about 0.224, corresponding to
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Table 3: Test of Prediction 2: Zero versus positive portfolio holdings

This table shows results from two-sample t-tests of difference in means between the distance from postal
codes with zero holdings to firm headquarter and from postal codes with positive holdings.

Zero holding Positive holding Difference

Average distance to HQ 0.332 0.224 0.108
Number of firms 6 119
Average t-stat −3.047 14.080
Average t-stat, Total 13.258

a difference of 0.108—about 85 miles. At the individual firm level, the average distance

from postal code with zero holdings is higher for 119 of the 125 stocks. For 116 of these

firms, the difference is statistically significant at the 0.01% level. For the remaining 6 firms,

for which the average distance is higher from postal codes with positive holdings, only one

is significant at the 0.01% level. The average t-statistic for the difference of means being

positive is 13.3. Thus, the data strongly support the prediction that the further away from

a firm’s headquarters, the higher the likelihood of zero portfolio holdings.

We also estimate the cutoff distance, d̄. Specifically, for each of the 125 stocks, we

choose the d̄ that maximizes the number of correctly classified postal codes with respect to

whether the stock holdings in the firm is positive or zero. The results are shown in Table 4.

The average estimated d̄ is 0.1799, corresponding to a threshold distance of about 143 miles.

Beyond this distance to a firm’s headquarter, the familiarity is thus predicted to be so low

that an investor completely avoids investing in a stock.

The fraction of holdings that are zero among all postal code/firm observations is slightly

less than two thirds, about 64%. When the estimated cutoff thresholds at the firm level are

used to predict whether a postal code/firm portfolio holding is zero, the fraction of correct

classifications is about 75%, i.e., about three quarters. The model thus captures quite well

whether investors in a postal code invest in a stock or not.

Prediction 3, formulated at the postal code level, suggests that that households located

in the same postal code should hold portfolios with more overlap (i.e., more common stocks)

than if the portfolios were randomly chosen. For example, for two households that each

randomly and independently invest in one of N stocks, with probability 1
N of choosing each
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Table 4: Estimated threshold for zero portfolio holdings

This table shows results the estimated thresholds, d̄, for when portfolio holdings become zero.

Value

Average threshold, d̄ 0.1799
Standard deviation 0.2165
Fraction of zero holdings 0.6359
Fraction correctly classified 0.7534

stock, the probability that the two portfolios overlap would also be 1
N . In other words, the

expected value of the random value Ñ c which denotes the number common stocks in their

portfolios would be 1
N . More generally, if household h1 randomly chooses Nh1 stocks and

household h2 randomly and independently chooses Nh2 stocks, then the expected overlap is

E
[
Ñ c
h1,h2

]
=
Nh1Nh2

N
.

Prediction 3 can then be tested by studying the actual versus expected overlap of the

portfolios of all households located within the same postal code area, and sum up these

overlaps over all postal codes, i.e., by calculating the actual total overlap

N c
TOT =

∑
p

∑
h1,h2∈Hp
h1 6=h2

N c
h1,h2 ,

where Hp = {h : ph = p} is the set of households in postal code area p, and comparing it

with expected total overlap.

The actual total overlap in the data is N c
TOT = 51, 604, 247, whereas the expected total

overlap under the independent, 1
N probability-per-stock, assumption is 3, 478, 029. Thus,

the likelihood that two randomly chosen households within the same randomly chosen postal

code area invest in the same stock is almost 15 times higher than expected.

A limitation of the above test is that it assumes that each stock is chosen with the same

probability, 1
N , whereas in practice some stocks (for example, the telecommunications com-

pany Nokia in our dataset) are much more broadly held than others. The higher overlap will

therefore partly be a consequence of the 1
N assumption. We therefore use a more sophisti-

cated bootstrapping method, based on the actual distribution of portfolio holdings among

the households to test the prediction. Briefly, we assume that the empirical distribution of
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Table 5: Test of Prediction 3: Overlap of portfolios within a postal code area

This table tests whether portfolio overlaps within a postal code area is higher than expected if households
were randomly assigned to the area. Column (1) shows the maximum portfolio size included in test, column
(2) the number of households included in the sample, column (3) the expected number of overlaps, column
(4) the actual number of overlaps, and column (5) the ratio between actual and expected overlaps.

Max. portf. size Number of households Actual overlap Expected overlap Ratio
1 188,535 6,324,570 2,649,371 2.387
2 268,268 12,989,232 6,096,314 2.130
5 357,772 28,450,235 16,782,239 1.695
10 393,606 42,315,889 27,935,744 1.515
20 404,277 49,978,463 34,481,911 1.449
125 405,628 51,604,247 35,952,390 1.436

household portfolio holdings represent the underlying data generating process, and compare

the expected overlap if households and their portfolios were randomly assigned to postal

codes with what is observed in the data. An interesting property of this test is that the max-

imum portfolio size, measured by number of stocks in the portfolio, can be capped, so that

the test is applied to a subpopulation of households whose portfolios contain no more than

1, 2, 5, etc., stocks. Because location, via personal beliefs, drive both underdiversification

and the choice of similar portfolios for nearby households, we expect higher-than-expected

overlaps to be more pronounced among households that hold few stocks.12 Further details

of the test are provided in Appendix B.

The results of the bootstrapping method are shown in Table 5. The ratio of actual-

to-expected overlap (the right-most column in the table) is the highest, 2.387, when only

households holding one stock are included in the test, and then gradually decreases as the

maximum portfolio size increases. The ratio is 1.436 when the full sample of households

is included. These ratios are thus lower than the ratio based on the 1
N assumption, but

remain highly significant, in support of Prediction 3.

Next, we test Prediction 4, our empirical specification of belief formation in equa-

tion (21), which can be viewed as a panel with fixed effects for postal codes (representing the

12There is also a purely mechanical effect in that the actual overlap cannot be much higher than the
expected overlap when households hold large portfolios. For example, if a household holds all stocks in
its portfolio, every stock in the other household’s portfolio is common for the two portfolios, so actual and
expected overlap must coincide in that case.
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log-risk aversion coefficients, gp) and companies (representing the log-return characteristics,

sn). We therefore use panel regressions.

The model is not completely identified because the mapping gh 7→ gh + c, sn 7→ sn + c

yields the same household portfolio weights for an arbitrary constant c. Intuitively, higher

risk aversion coefficients are offset by more favorable investment opportunities. We obtain

unique identification by normalizing the results so that the average sn coefficient is 0 (sn = 0

is, for example, obtained with αn − i = 0.09, σn = 0.3).

Finally, we consider two approaches for handling portfolio weights of zero, for which

the logarithm is not defined. There are a large number of such observations in the data,

even with aggregation at the postal code level. Under the first approach, we include these

observations but replace the zero with a small positive threshold, namely one Finnish Mark

(corresponding to about USD 0.17). Under the second approach, we exclude such obser-

vations and run unbalanced panel regressions. The disadvantage of the former approach is

that it introduces an arbitrary lower threshold, whereas the disadvantage of the latter is

that it does not use information about zero holdings.

The results are shown in Table 6. We see that the sensitivity coefficient, κ, is highly

significant in all regressions (univariate, including risk-aversion fixed effects, including risk-

aversion and stock-characteristic fixed effects, and panel regression with robust standard

errors double clustered at the firm and postal code level).

The results are also economically significant. The standard deviation of the distance

between headquarter and household is 0.312. For the coefficient estimate that includes risk-

aversion, stock distribution, and all observations (first row in Panel A, column 4, κ = 3.118),

a one standard deviation decrease in distance to a firm’s headquarters predicts an increase

in portfolio holdings by a factor e3.1880×0.312 = 2.645. The R2 for the univariate regression

in Panel A is 0.0654, corresponding to a correlation between network proximity and log-

portfolio holdings of about 0.26.

Finally, we test Prediction 5, whether the estimated sn coefficients (the firm fixed effects)

from the belief-based model are informative about stocks return distributions out-of-sample.
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Table 6: Test of Prediction 4: Estimated sensitivity coefficient, κ

This table estimates the sensitivity coefficient, κ. Panel A includes observations with ωpn = 0 replaced
with ωpn = 1 (one Finnish Mark, corresponding to about USD 0.17). Panel B excludes observations with
ωpn = 0. Univariate in column 2, including risk aversion in column 3, including risk aversion and stock
distributions in column 4, panel regression with postal code and stock fixed effects and robust standard
errors double-clustered at the postal code and firm level in column 5. Statistical significance levels: * =
0.01, ** = 0.001, *** = 0.0001.

(1) (2) (3) (4) (5)
Panel A
Sensitivity coefficient, κ 5.873*** 3.861*** 3.188*** 3.185***
Standard error 0.037 0.058 0.056 0.434

log risk aversion, g
-average −4.330 −4.120
-max −0.382 −0.325
-min −12.887 −12.834

log distribution, s
-average 0
-max 7.258
-min −2.658

R2 0.065 0.385 0.591 0.591
Adj. R2 0.065 0.380 0.588 0.588
N = 368, 298

Panel B
Sensitivity coefficient, κ 2.251*** 2.123*** 2.669*** 2.669***
Standard error 0.035 0.061 0.046 0.403

log risk aversion, g
-average −8.572 −7.979
-max −4.563 −2.638
-min −12.845 −12.883

log distribution, s
-average 0
-max 4.166
-min −3.985

R2 0.030 0.210 0.626 0.626
Adj. R2 0.030 0.191 0.618 0.618
N = 134, 902

We calculate daily mean excess returns, α̂n− i, and volatility, σ̂n, over a three-year period,

from 2003-2005.

The results are shown in Table 7. We first compare the relation between estimated sn

and realized volatility, σ̂n because realized volatility is the part of α̂n−i
σ̂2
n

that is easiest to

estimate. This relation should be negative. As shown in Column (1) in Panel A of the table,

the relation is strongly negatively significant, with an R2 of over 50%. We compare this
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Table 7: Test of Prediction 5: Predictive power of estimated sn coefficients

This table tests whether the sn coefficients estimated from portfolio holdings predict realized volatility (Panel
A) and return over variance (Panel B) in subsequent 5-year period. Column (1) uses the belief-based model,
column (2) the rational expectations model, and column (3) both models. Realized volatility and returns
measured using daily data over 3-year period, 2003-2005. Statistical significance levels: * = 0.01, ** = 0.001,
*** = 0.0001.

(1) (2) (3)
Panel A: ln(σ̂n)
Rational expectations, sREn −0.149*** 0.036
Belief-based, sBBn −0.185*** −0.219***
R2 0.506 0.356 0.510
N 125

Panel B : ln
(
α̂n−i
σ̂2
n

)
Rational expectations, sREn 0.075 −0.296*
Belief-based, sBBn 0.149** 0.426***
R2 0.068 0.019 0.121
N 108

with the prediction of the rational expectations model. In the rational expectations model,

all households choose the same risky portfolio, φhn ≡ 1 for all h and n, and by summing

(20) over households, it follows that sn is directly related to a firm’s log-size. Column (2) in

Panel A of Table 7 shows that log-firm size also is informative about volatility in our data,

but with lower explanatory power than the belief-based model. Moreover, when both the

belief-based and rational-expectations estimates are included in a bivariate regression, as

done in Column (3) of Panel A, the belief-based estimate dominates, remaining significant,

whereas the log-firm size coefficient switches sign and becomes insignificant.

In Panel B of the table, we do the same estimation for ln
(
α̂n−i
σ̂2
n

)
, including the 108

stocks that had positive excess realized returns during the period (for which the logarithm

is defined). The explanatory power is much lower both for the belief-based coefficient and

the coefficient based on the rational expectation model, due to the well-known challenges

of estimating stocks’ expected returns from realized returns. However, the belief-based

estimate remains significant at the 0.1% level in the univariate regression, and at the 0.01%

level in the bivariate regression, while the rational-expectations coefficient switches sign

in the bivariate regression. As a robustness check, we also run the same tests using five

years of returns. The results (not reported) are similar, the main difference being that the
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belief-based coefficient in the bivariate regression in panel B is significant only at the 10%

level.

We stress that only data on portfolio holdings and location is used in the estimation of

the sn’s. That these are informative about out-of-sample stock return distributions therefore

lends significant support for our belief-based explanation of observed home bias.

4.3 Robustness

A possible concern with the previous results is that they may be driven by different behaviors

of households in urban areas (specifically, around Helsinki) relative to rural areas. For

example, households in the Helsinki area may have a preference for stocks headquartered

in an urban area for some other reason than network proximity, which will then lead to

results similar to those reported above. To check if this is indeed the case, we run the

regressions excluding stocks and postal codes in the Helsinki area (postal codes with fewer

than 5 digits). The results are reported in Table 10 in Appendix B. We see that the results

are qualitatively similar as before, and specifically, still both statistically and empirically

highly significant. We also exclude households in the Helsinki area but not stocks, with

similar results (not reported).

A potential alternative explanation for the results is that it may not be geographical

distance per se that drives beliefs, but rather employment. That is, if households tend to

invest in the firms they work for—which they likely also live close to—similar results may

arise. To rule out such an explanation, we exclude observations for which the postal codes

of account holder and firm headquarter are close. Specifically, we exclude all observations

for which the normalized distance is less than some d0. Table 11 in Appendix B, shows

that the results remain qualitatively similar when d0 = 0.01 (corresponding to a minimal

distance of about 8 miles between postal code of account holder and firm headquarter for

an observation to be included), and d = 0.03 (corresponding to a minimal distance of about

24 miles). Thus, an employment effect does not seem to be driving the results.

Our approach provides a tightly specified model that links “local bias” to familiarity,

through adjustments of investors’ beliefs about a firm as a function of distance—in our
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empirical specification captured by geographical distance. Other explanations for local bias

that have been put forward in the literature are transaction costs and hedging demand.

We argue that transaction costs are unlikely to play a major role in explaining home

bias within a country, especially when all stocks are traded on the same exchange. With

respect to hedging demand, an alternative explanation for why agents prefer to invest in

nearby stocks is that they provide a hedge against local shocks. For example, if a local firm

performs well, prices of services and goods (e.g., housing) may increase because of increased

demand from the employees at the firm who are now wealthier. Investing in the local firm

provides a hedge against such price shocks. Inasmuch as such hedging demand is related

to the age and gender of the population, we can assess its affect, because account level

information is available in the data. For example, younger investors—who are less likely

to own their home—are likely to be more exposed to real estate price shocks than older

investors.

We create variables for the average birth year (YOB) of the investors in a specific stock

and postal code, and for their gender (GEN, which is 1 for male and 2 for female). The

correlations between the distance to firm headquarter and these variables are both low,

ρd,YOB = −0.049, and ρd,GEN = −0.056, suggesting that any hedging demand that varies

with age and/or gender is not captured by the distance to firm headquarter. To further

explore a potential relation, we rerun the tests from Table 6, Panel B, but including birth

year and gender, and also from Table 11 with d0 = 0.05, to rule out hedging demand for

local shocks within a 40-mile radius.

As seen in Table 8, the coefficient estimates for κ barely change and are still highly

significant. We conclude that it is unlikely that our results are driven by hedging demand

against local shocks, at least within a 40-mile radius of the investor, and against shocks

that are related to age and/or gender.

A concern may be that headquarter provides a very rough measure of a firm’s location.

For example, some firms have operations spread out over the whole country and will be

familiar to households far away from its headquarter. The challenges of developing an

objectively superior alternative measure of firm location are significant though, which is
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Table 8: Estimate of sensitivity coefficient with additional controls

This table estimates the sensitivity coefficient, κ, when including investor year of birth (YOB) and gender
(GEN). Panel A sets d0 = 0, whereas Panel B sets d0 = 0.05, corresponding to a threshold distance of about
40 miles. No fixed effects in column 2, including risk aversion in column 3, including risk aversion and stock
distributions in column 4, panel regression with postal code and stock fixed effects and robust standard
errors double-clustered at the postal code and firm level in column 5. Statistical significance levels: * =
0.01, ** = 0.001, *** = 0.0001.

(1) (2) (3) (4) (5)

Panel A
Sensitivity coefficient, κ 2.298*** 2.056*** 2.658*** 2.658***
Standard error 0.034 0.060 0.046 0.398

Year of birth coefficient, YOB −0.031*** −0.040*** −0.013*** −0.013***
Standard error 0.001 0.001 0.001 0.001

Gender coefficient, GEN 0.597*** 0.445*** −0.157*** −0.157***
Standard error 0.019 0.018 0.013 0.033

R2 0.065 0.249 0.630 0.630
Adj. R2 0.065 0.233 0.622 0.622
N = 134, 825

Panel B
Sensitivity coefficient, κ 0.809*** 0.704*** 1.377*** 1.377***
Standard error 0.040 0.073 0.056 0.263

Year of birth coefficient, YOB −0.031*** −0.037*** −0.012*** −0.012***
Standard error 0.001 0.001 0.001 0.001

Gender coefficient, GEN 0.461*** 0.345*** −0.169*** −0.169***
Standard error 0.019 0.019 0.014 0.033

R2 0.039 0.200 0.606 0.606
Adj. R2 0.039 0.180 0.596 0.596
N = 115, 256

why we use the well-established headquarter measure of location. As a robustness check,

we ensure that the results do not change when excluding the two “least local” companies

during the period: the global telecommunication company Nokia, which made up over half

of the stock market value in the early 2000s, and the retail store chain Stockmann, which

had stores all over Finland. The results (not reported) are very similar when excluding

those two companies.
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5 Conclusion

Motivated by empirical evidence that rejects the rational expectations hypothesis and finds

instead that beliefs of individuals are influenced by characteristics such as place of residence,

culture, and socioeconomic status, we develop a model where a household’s beliefs are an

endogenous outcome of its location in a bipartite network of households and firms. We

then evaluate the model empirically using data on portfolio holdings to infer household

beliefs. The empirical evidence indicates that geographical distance between the locations

of households and firms has a statistically and economically significant effect on the beliefs

households have about firm-level stock returns and hence on their portfolio holdings.
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A Proofs

In this appendix, we provide all derivations for the results in the main text.

Proof of Proposition 1

The definition of the certainty equivalent in (6) implies that

µ̂νh,t[Uh,t+dt] = EQνh

t

[
U1−γh
h,t+dt

] 1
1−γh .

Therefore

µ̂νh,t[Uh,t+dt] = EQνh

t

[
U1−γh
h,t+dt

] 1
1−γh = EQνh

t

[
U1−γh
h,t + d(U1−γh

h,t )
] 1

1−γh .

Applying Ito’s Lemma, we obtain

d(U1−γh
h,t ) = (1− γh)U−γhh,t dUh,t −

1

2
(1− γh)γhU

−γh−1
h,t (dUh,t)

2

= (1− γh)U1−γh
h,t

[
dUh,t
Uh,t

− 1

2
γh

(
dUh,t
Uh,t

)2
]
.

Therefore

µ̂νh,t[Uh,t+dt] = EQνh

t

[
U1−γh
h,t+dt

] 1
1−γh = Uh,t

(
Et

[
1 + (1− γh)

[
dUh,t
Uh,t

− 1

2
γh

(
dUh,t
Uh,t

)2
]]) 1

1−γh

= Uh,t

(
1 + (1− γh)

[
EQνh

t

[
dUh,t
Uh,t

]
− 1

2
γhE

Qνh

t

[(
dUh,t
Uh,t

)2
]]) 1

1−γh

= Uh,t

(
1 + (1− γh)

[
EQνh

t

[
dUh,t
Uh,t

]
− 1

2
γhEt

[(
dUh,t
Uh,t

)2
]]) 1

1−γh

.

Hence,

µ̂νh,t[Uh,t+dt] = Uh,t

(
1 + EQνh

t

[
dUh,t
Uh,t

]
− 1

2
γhEt

[(
dUh,t
Uh,t

)2
])

+ o(dt).

Therefore, in the continuous time limit, we obtain

µ̂νh,t[dUh,t+dt]

dt
=
µ̂νh,t[Uh,t+dt]− Uh,t

dt
= Uh,t

(
1

dt
EQνh

t

[
dUh,t
Uh,t

]
− 1

2
γh

1

dt
Et

[(
dUh,t
Uh,t

)2
])

.
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From Girsanov’s Theorem

EQνh

t

[
dUh,t
Uh,t

]
= Et

[
dUh,t
Uh,t

]
+ Et

[
dUh,t
Uh,t

dMh,t

Mh,t

]
.

Therefore

µ̂νh,t[dUh,t]

dt
=
µ̂νh,t[Uh,t+dt]− Uh,t

dt

= Uh,t

(
1

dt
Et

[
dUh,t
Uh,t

]
− 1

2
γh

1

dt
Et

[(
dUh,t
Uh,t

)2
]

+
1

dt
Et

[
dUh,t
Uh,t

dMh,t

Mh,t

])
.

It follows from the above expression that the certainty equivalent operator, µh,t[·], is given

by

µh,t[dUh,t]

dt
=
µh,t[Uh,t+dt]− Uh,t

dt

= Uh,t

(
1

dt
Et

[
dUh,t
Uh,t

]
− 1

2
γh

1

dt
Et

[(
dUh,t
Uh,t

)2
])

.

Therefore

µ̂νh,t[dUh,t]

dt
=
µh,t[dUh,t]

dt
+

1

dt
Uh,tEt

[
dUh,t
Uh,t

dMh,t

Mh,t

]
,

i.e.

µ̂νh,t[dUh,t] = µh,t[dUh,t] + Uh,tEt

[
dUh,t
Uh,t

dMh,t

Mh,t

]
,

which implies

µ̂νh,t[Uh,t+dt] = µh,t[Uh,t+dt] + Uh,tEt

[
dUh,t
Uh,t

dMh,t

Mh,t

]
.

If the investment opportunity set is constant, then Uh,t is a function solely of Wh,t – there

are no other state variables. Hence

Et

[
dUh,t
Uh,t

dMh,t

Mh,t

]
=
Wh,tUWh,t

Uh,t
ν>h,tωh,tdt,

and so

µ̂νh,t[Uh,t+dt] = µh,t[Uh,t+dt] + Uh,t
Wh,tUWh,t

Uh,t
ν>h,tωh,tdt.

From the above expression and (5), (7) follows.
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Proof of Corollary 1

If the investment opportunity set is constant, then the personal divergence vector is obtained

from the following optimization problem:

inf
νh,t

(
Wh,tUWh,t

Uh,t
ν>h,tωh,t +

1

2γh

N∑
n=1

φhn
1− φhn

ν2
hn,t

σ2
n

)
.

The FOC for the above problem is

0 =
Wh,tUWh,t

Uh,t
ωhn,t +

1

γh

φhn
1− φhn

νhn,t
σ2
n

.

(9) follows from the above equation.

Proof of Proposition 2

Writing out (11) explicitly gives

U
1− 1

ψh
h,t = (1− e−δhdt)C

1− 1
ψh

h,t + e−δhdt
(
µνh,t[Uh,t+dt]

)1− 1
ψh ,

where for ease of notation sup and inf have been suppressed. Now(
µνh,t[Uh,t+dt]

)1− 1
ψh =

(
Uh,t + µνh,t[dUh,t]

)1− 1
ψh

= U
1− 1

ψh
h,t

(
1 + µνh,t

[
dUh,t
Uh,t

])1− 1
ψh

= U
1− 1

ψh
h,t

(
1 +

(
1− 1

ψh

)
µνh,t

[
dUh,t
Uh,t

])
+ o(dt).

Hence

U
1− 1

ψh
h,t = δC

1− 1
ψh

h,t dt+ U
1− 1

ψh
h,t

(
1 +

(
1− 1

ψh

)
µνh,t

[
dUh,t
Uh,t

])
− δhU

1− 1
ψh

h,t dt+ o(dt),

from which we obtain (12).
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Proof of Proposition 3

µνh,t [dUh,t] = Et [dUh,t]−
γh
2
Uh,tEt

[(
dUh,t
Uh,t

)2
]

+ Uh,t inf
νh

(
Wh,t

Uh,t

∂Uh,t
∂Wh,t

ν>h,tωh,t + Lh,t

)
dt

= Wh,t
∂Uh,t
∂Wh,t

Et

[
dWh,t

Wh,t

]
+

1

2
W 2
h,t

∂2Uh,t
∂W 2

h,t

Et

[(
dWh,t

Wh,t

)2
]
− γh

2
Uh,t

Wh,t

Uh,t

∂Uh,t
∂Wh,t

Et

[(
dWh,t

Wh,t

)2
]

+ Uh,t inf
νh

(
Wh,t

Uh,t

∂Uh,t
∂Wh,t

ν>h,tωh,t + Lh,t

)
dt

= Wh,t
∂Uh,t
∂Wh,t

(
it + (α− i1)>ωh,t −

Ch,t
Wh,t

)
dt+

1

2
W 2
h,t

∂2Uh,t
∂W 2

h,t

ω>h,tV ωh,t

− γh
2
Uh,t

Wh,t

Uh,t

∂Uh,t
∂Wh,t

ω>h,tV ωh,t + Uh,t inf
νh

(
Wh,t

Uh,t

∂Uh,t
∂Wh,t

ν>h,tωh,t + Lh,t

)
dt

Substituting (9) into
Wh,t

Uh,t

∂Uh,t
∂Wh,t

ν>h,tωh,t + Lh,t gives

inf
νh

(
Wh,t

Uh,t

∂Uh,t
∂Wh,t

ν>h,tωh,t + Lh,t

)
= −1

2
γh
Wh,t

Uh,t

∂Uh,t
∂Wh,t

ω>h,tσF
−1
h σωh,t

Therefore
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[
dUh,t
Uh,t
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(
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)
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1

2
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=
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(
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− 1

2
γhω

>
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(
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h σ
)
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)
dt

+
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(
W 2
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1
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Equation (12) can therefore be rewritten as

0 = sup
Ch,t

δ uψ

(
Cht
Uht

)
+ sup
ωh,t

Wh,t

Uh,t

∂Uh,t
∂Wh,t

(
it + (α− i1)>ωh,t −

Ch,t
Wh,t

− 1

2
γhω

>
h,t

(
V + σF−1

h σ
)
ωh,t

(A1)

−
(
−
W 2
h,t

∂2Uh,t
∂W 2

h,t

Wh,t
∂Uh,t
∂Wh,t

)
ω>h,tV ωh,t

)
.

We seek a solution to the above Hamilton-Jacobi-Bellman equation of the form

Uh,t = κhWh,t, (A2)

where κh is a constant. Equation (A1) thus reduces to

0 = sup
Ch,t

δ uψ

(
Cht
Wht

)
+ sup
ωh,t

(
it + (α− i1)>ωh,t −

Ch,t
Uh,t

− 1

2
γhω

>
h,t

(
V + σF−1

h σ
)
ωh,t

)
.

(A3)

We can rewrite the expression −1
2γhω

>
h,tσF

−1
h σωh,t as ν>h,tωh,t + 1

2γν
>
h,tσF

−1
h σνh,t, and so

we obtain (13).

Proof of Proposition 4

Substituting (A2) into (9) and exploiting the fact that σ and Fh are diagonal matrices and

hence commute with each other, we obtain

νh,t = −γhσ2F−1
h ωh,t. (A4)

Again, exploiting the commutativity of diagonal matrices, we can write the portfolio choice

problem in (A3) as

sup
ωh,t

(α− i1)>ωh,t −
1

2
γhω

>
h,t

(
V + σ2F−1

h

)
ωh,t.

The above linear-quadratic problem has a unique interior solution given by (17). Substi-

tuting (17) into (A4) and simplifying gives (16). We can also rewrite the expression for ωh

in (17) in terms of the personal divergence measure:

ωh =
1

γh
V −1(α+ νh − i1),

where

νh = −(I + V Fhσ
−2)(α− i1).
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B Empirical Results

In this appendix, we provide additional information about the empirical tests and results.

The stocks in our sample are shown in Table 9. The estimate sensitivity coefficient when

excluding the Helsinki area is shown in Table 10. The estimated sensitivity coefficient when

including only distant observations are shown in Table 11.
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Table 9: Stocks in sample

This table lists the 125 stocks issued by companies that are headquartered in Finland and are included in
our sample. For companies with A- and B-shares, both shares are included in our sample.

1 Bank of Aland Plc A 2 Pohjola Group Plc
3 Norvestia Plc 4 Kesko Corporation B
5 Stockmann Plc A 6 Stockmann Plc B
7 Tieto Corporation 8 Amer Sports Corporation
9 Fiskars Corporation 10 Fiskars Corporation K
11 Huhtamki Oyj 12 Instrumentarium
13 Kone Corporation B 14 Metsa Board Oyj A
15 Metsa Board Oyj B 16 Nokia Corporation
17 Tamro Oyj 18 Tamfelt Corp.
19 Tamfelt Corporation Ord. shares 20 Bank of Aland Plc B
21 Uponor Oyj 22 Outokumpu Oyj
23 Citycon Oyj 24 Polar Real Estate Corp.
25 Raisio Plc Vaihto-osake 26 Birka Line Abp B
27 Pohjola Bank A 28 Finnair Oyj
29 Sampo Plc A 30 Stromsdal Corporation
31 Apetit Plc 32 Rautaruukki Corporation
33 Finnlines Plc 34 Silja Oyj Abp
35 Wartsila Corporation A 36 Wartsila Corporation
37 Tiimari Plc 38 Kemira Oyj
39 Ponsse Oyj 40 Viking Line Abp
41 Nokian Tyres Plc 42 Biohit Oyj B
43 Konecranes Plc 44 Stora Enso Oyj A
45 Stora Enso Oyj R 46 UPM-Kymmene Corporation
47 HKScan Oyj A 48 PKC Group Oyj
49 Incap Corporation 50 Atria Plc A
51 Payry PLC 52 Sponda Plc
53 Technopolis Plc 54 Valoe Oyj
55 Alma Media Corporation 1 56 Alma Media Corporation 2
57 Ramirent Plc 58 Fortum Corporation
59 Bittium Corporation 60 Yomi Plc
61 Rapala VMC Corporation 62 Sonera Oyj
63 Eimo Oyj 64 Innofactor Plc
65 Marimekko Corporation 66 SanomaWSOY Corporation A
67 Sanoma Corporation 68 Teleste Corporation
69 Oral Hammaslakarit Plc 70 Perlos Corporation
71 Metso Corporation 72 Talentum Oyj
73 Kesko Corporation A 74 Aldata Solution Oyj
75 Digia Plc 76 Solteq Oyj
77 Ixonos Plc 78 Aspo Plc
79 Aspocomp Group Plc 80 Dovre Group Plc
81 Trainers House Plc 82 Comptel Corporation
83 SSH Communications Security Oyj 84 Basware Corporation
85 Wulff Group Plc 86 Saunalahti Group Oyj
87 Etteplan Oyj 88 QPR Software Plc
89 eQ Oyj 90 Tekla Corporation
91 Sievi Capital plc 92 Sentera Plc
93 Okmetic Oyj 94 CapMan Plc B
95 Vacon Plc 96 eQ Oyj
97 Evox Rifa Group Plc 98 Componenta Corporation
99 Glaston Corporation 100 Tecnotree Corporation
101 Lassila & Tikanoja Plc 102 Suominen Oyj
103 Revenio Group Corporation 104 Biotie Therapies Corp.
105 Ilkka-Yhtyma Oyj 2 106 Neo Industrial Oyj
107 Orion Corporation A 108 Orion Corporation B
109 Raisio Plc K 110 Saga Furs Oyj C
111 YIT Corporation 112 Stonesoft Corporation
113 F-Secure Corporation 114 Chips Corporation B
115 Efore Plc 116 Hackman Oyj Abp
117 Honkarakenne Oyj B 118 Lemminkainen Corporation
119 Evia Oyj 120 Martela Oyj A
121 Olvi Plc A 122 Cramo Oyj
123 Tulikivi Oyj A 124 Elecster Oyj A
125 Vaisala Corporation A
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Table 10: Estimate of sensitivity coefficient excluding Helsinki area

This table estimates the sensitivity coefficient, κ, using only firms and households outside of the Helsinki
area (with 5-digit postal codes). Panel A includes observations with ωpn = 0, replacing with ωpn = 1 (one
Finnish Mark, corresponding to approximately USD 0.17). Panel B excludes observations with ωpn = 0.
Univariate in column 2, including risk aversion in column 3, including risk aversion and stock distributions
in column 4, panel regression with postal code and stock fixed effects and robust standard errors double-
clustered at the postal code and firm level in column 5. Statistical significance levels: * = 0.01, ** = 0.001,
*** = 0.0001.

(1) (2) (3) (4) (5)

Panel A
Sensitivity coefficient, κ 4.228*** 3.868*** 3.771*** 3.771***
Standard error 0.069 0.071 0.073 0.630

log risk aversion, g
-average −3.806 −3.771
-max −1.097 −1.073
-min −12.393 −12.355

log distribution, s
-average 0
-max 5.418
-min −1.797

R2 0.051 0.308 0.487 0.487
Adj. R2 0.051 0.283 0.469 0.469
N = 69, 368

Panel B
Sensitivity coefficient, κ 1.824*** 1.892*** 2.754*** 2.754***
Standard error 0.074 0.082 0.071 0.325

log risk aversion, g
-average −8.072 −8.084
-max −2.681 −2.282
-min −12.392 −12.757

log distribution, s
-average 0
-max 1.787
-min −3.197

R2 0.028 0.249 0.501 0.501
Adj. R2 0.028 0.159 0.440 0.440
N = 20, 787

49



Table 11: Estimate of sensitivity coefficient including only distant observations

This table estimates the sensitivity coefficient, κ, including only postal code/firm observation at distances
larger than d0, and excluding ωpn = 0 observations. Panel A sets d0 to 0.01, corresponding to a minimum
distance between postal codes of account holder and firm headquarter of about 8 miles, whereas in Panel
B d0 = 0.03, corresponding to a minimal distance of about 24 miles. Univariate in column 2, including
risk aversion in column 3, including risk aversion and stock distributions in column 4, panel regression with
postal code and stock fixed effects and robust standard errors double-clustered at the postal code and firm
level in column 5. Statistical significance levels: * = 0.01, ** = 0.001, *** = 0.0001.

(1) (2) (3) (4) (5)

Panel A
Sensitivity coefficient, κ 1.772*** 1.844*** 2.397*** 2.397***
Standard error 0.036 0.063 0.048 0.392

log risk aversion, g
-average −8.480 −7.899
-max −4.543 −2.282
-min −12.415 −12.609

log distribution, s
-average 0
-max 4.142
-min −3.952

R2 0.018 0.186 0.614 0.614
Adj R2 0.018 0.168 0.605 0.605
N = 129, 802

Panel B
Sensitivity coefficient, κ 0.931*** 0.991*** 1.662*** 1.662***
Standard error 0.039 0.070 0.053 0.326

log risk aversion, g
-average −8.187 −7.680
-max −4.000 −2.561
-min −11.798 −12.117

log distribution, s
-average 0
-max 4.067
-min −3.977

R2 0.005 0.160 0.599 0.599
Adj. R2 0.005 0.139 0.589 0.589
N = 119, 874
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Kaustia, Markku, and Samuli Knüpfer, 2008, Do investors overweight personal experience?

Evidence from IPO subscriptions, The Journal of Finance 63, 2679–2702.
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