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Abstract

This paper offers an explanation for the properties of the nominal term structure

of interest rates and time-varying bond risk premia based on a model with rare

consumption disaster risk. In the model, expected inflation follows a mean reverting

process but is also subject to possible large (positive) shocks when consumption

disasters occur. The possibility of jumps in inflation increases nominal yields and

the yield spread, while time-variation in the inflation jump probability drives time-

varying bond risk premia. Predictability regressions offer independent evidence for

the model’s ability to generate realistic implications for both the stock and bond

markets.
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1 Introduction

Empirical work has documented the failure of the expectations hypothesis. The average

nominal term structure of interest rates on government bonds is upward-sloping, and the

excess bond returns are predictable by variables such as yield spread. This indicates that

bond risk premia are on average positive and vary over time. This paper presents a repre-

sentative agent asset pricing model in which the aggregate endowment is subject to large

negative shocks (disasters). Earlier work has shown that models with time-varying disaster

risk can account for the high equity premium, high stock market volatility and aggregate

market return predictability observed in the aggregate stock market.1 In addition to the

aggregate market results shown in previous work, my model accurately captures the shape

of the nominal yield curve and the time-varying bond risk premia.

This paper provides an explanation for these features of the nominal bonds in a time-

varying rare disaster model. In particular, consumption disasters may co-occur with high

inflation, implying that nominal bonds are risky because their real values during bad times

can be very low. Table 1 provides evidence for the co-occurrence of consumption disaster

and high inflation. In this paper, a consumption disaster is defined as a consumption

decline of more than 10%, and I consider a period as having high inflation if the average

annual inflation rate during the period is greater than 10%. In recorded history, 17 of the 53

consumption disasters in OECD countries, and 30 of the 89 consumption disasters among

all countries, were accompanied by inflation rates greater than 10%.2 Furthermore, in 18 of

the 30 inflation disasters, inflation rates exceeded the real consumption declines.3 Figure 1

1For example, Rietz (1988), Longstaff and Piazzesi (2004), and Barro (2006) obtain high equity pre-

mium, Gabaix (2012), Gourio (2008), and Wachter (2012) also obtain high volatility and predictability.
2One might argue that consumption disasters are accompanied by large deflation. However, only 10 of

the OECD disasters, and 17 of all disasters coincide with deflation. Furthermore, none of these disasters

had an abnormally large annual deflation rate; for example, the Great Depression had an annual deflation

rate of 6.4%.
3One of the most extreme examples is the hyperinflation that occurred in Germany after World War

I. Between 1922 and 1923, real consumption declines by 12.7%, but the inflation rate in the corresponding
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shows that the historical distribution of annual inflation rates has a fat tail. Furthermore,

these jumps in inflation rates do not happen all at once, they were gradual processes that

lasted a number of years.

Motivated by this evidence, I model the aggregate endowment in the model as subject

to two types of disasters. These disasters are modeled as negative jumps in the realized

consumption process. When the first type of disaster occurs, aggregate endowment drops,

but expected inflation is unaffected. When the second type of disaster occurs, not only does

aggregate endowment drop, but expected inflation increases. There were no consumption

disasters in the United States in the period following World Was II. In the 1970s, however,

the U.S. experienced a period of high inflation. To accommodate this possibility in the

model, I allow for a third type of jump, one which affects expected inflation but not

aggregate consumption growth.

Because government bonds are nominally denominated, they are subject to inflation

jump risks. Investors require compensation for bearing these risks. The shape of the

nominal yield curve in the model is mostly determined by the inflation jump risk since

bonds with longer maturities are more sensitive to these risks. In particular, the yield

spread increases in inflation jump risks, thus the model accurately predicts an upward-

sloping nominal yield curve. Furthermore, the time-varying nature of disaster probability

implies a time-varying bond risk premium.

This paper makes two main contributions to the existing literature. First, it provides

a parsimonious model that jointly explains the stock and bond markets. Second, it can

account for the time-series behavior of the bond premium and its relation to the equity

premium. While the model is only calibrated to match aggregate consumption growth,

inflation, and aggregate stock market moments, it generates realistic implications for the

nominal term structure. Similar to the findings of Litterman and Scheinkman (1991),

the first three principal components explain almost all the variations in nominal yields in

the model, furthermore, each of these three principal component is highly correlated with

period is 3450%.
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one of the three state variables in the model. This model also generates bond premium

predictability because bond premium are mainly affected by the time-varying risk of the

co-occurrence of a consumption disaster and high inflations. In particular, this model is

able to reproduce the findings in Campbell and Shiller (1991) and Cochrane and Piazzesi

(2005). Nominal bond excess returns are predictable by the yield spread and a linear

combination of forward rates.

Besides the shape of the nominal term structure and the time-series behavior of the bond

risk premium, this model can also account for the interaction between the stock and nominal

bond markets. Duffee (2012) suggests that while term structure variables can predict the

bond premium, they are not good predictors for the equity premium. In particular, I show

that the price-dividend ratio predicts excess returns on the aggregate market (Campbell

and Shiller (1988)) and that it has some predictive power for excess returns on the bond

market. Term structure variables predict excess returns on the nominal bond market (Fama

and Bliss (1987)) yet they are less effective at predicting excess returns on the aggregate

market. In this model, the prices of risk have a two-factor structure, and the model is thus

capable of explaining these results.

Several other papers also provide joint explanations for stock and bond market prices.

Gabaix (2012) also considers a model with rare disasters. In that model, rather than

time-variation in the disaster probability, it is time-variation in the expected size of an

inflation jump that drives the bond premium. Furthermore, I allow fewer degrees of freedom

in the calibration so that none of the parameters are chosen to match the yield curve.

Wachter (2006), Bekaert, Engstrom, and Grenadier (2010) and Buraschi and Jiltsov (2007)

consider extensions to the model with external habit formation (Campbell and Cochrane

(1999)).Bakshi and Chen (1996) study monetary models in which the money supply directly

enters the utility function. The economic mechanisms behind this model differ from those

in the papers mentioned here. The shape of the nominal term structure is driven by

the time-varying probability of the co-occurrence of a large consumption decline and high

inflations. Furthermore, this paper provides evidence of the interaction between stock and
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bond markets by studying cross-market predictability. It is likely that the term structure

of interest rates and bond premia are affected by multiple mechanisms, and this paper

provides another possible way to jointly explain the aggregate market and bond market in

a single model.

This paper is also related to a stream of literature that focuses on the term structure

of interest rates, but does not address equity prices. Piazzesi and Schneider (2006) focus

on the negative effects of surprise inflation on future consumption growth. Bansal and

Shaliastovich (2012) build on the Bansal and Yaron (2004) long-run risk framework with

stochastic volatility. Similar to Piazzesi and Schneider (2006) and Bansal and Shalias-

tovich (2012), in this model, when the risk of the co-occurrence of a consumption disaster

and high inflations is high, expected consumption growth is low and expected inflation

is high. However, high inflations and low consumption growth only co-occur when this

type of consumption disasters are realized. Bekaert, Hodrick, and Marshall (2001) evaluate

the violation of the expectations hypothesis using a Peso problem explanation. Ehling,

Gallmeyer, Heyerdahl-Larsen, and Illeditsch (2012) study the effect of differences in beliefs

about expected inflation when investors have habit-formation preferences.

Finally Dai and Singleton (2002) study three-factor term structure models in the es-

sentially affine class (Duffee (2002)) and show that a statistical model of the stochastic

discount factor can resolve the expectations hypothesis puzzle. Many other recent papers

also consider the role of macroeconomic variables in the term structure by introducing

macroeconomic time series into the stochastic discount factor (Ang and Piazzesi (2003),

Ang, Dong, and Piazzesi (2007), Bikbov and Chernov (2010), Duffee (2006), and Rudebusch

and Wu (2008)).

The remainder of the paper is organized as follows. Section 2 describes and solves the

model. Section 3 discusses the quantitative results of the model. Section 4 concludes.
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2 Model

2.1 Endowment, inflation, and preferences

The economy is populated with a representative agent. Assume that aggregate real con-

sumption solves the following stochastic differential equation:

dCt
Ct−

= µ dt+ σC dBCt + (eZct − 1) dNct + (eZcq,t − 1) dNcq,t,

where BCt is a standard Brownian motion. Aggregate consumption is subject to two types

of large shocks, and the arrival times of these shocks have a Poisson distribution, given by

Nct and Ncq,t. I will discuss the size and intensity of these Poisson jumps after I specify the

inflation process.

To model nominal assets, I assume an exogenous process for the price level:

dPt
Pt−

= qt dt+ σP dBPt, (1)

where BPt is a standard Brownian motion, that is independent of BCt.

The expected inflation process, qt, is time-varying. Specifically, it follows

dqt = κq (q̄ − qt) dt+ σq dBqt − Zcq,t dNcq,t − Zqt dNqt, (2)

where Bqt is a standard Brownian motion, that is independent of BCt and BPt. The

expected inflation process is also subject to two types of large shocks, and the arrival time

of these shocks follow Poisson distributions, given by Ncq,t and Nqt.

The magnitude of an Nc–type jump is determined by Zc, the magnitude of an Ncq–type

jump is determined by Zcq, and that of an Nq–type jump is determined by Zq. I will

consider all three types of Poisson shocks to be negative, that is Zc < 0, Zcq < 0, and

Zq < 0; furthermore, these jump sizes are random and have time-invariant distributions

νc, νcq, and νq, respectively. In what follows, I use the notation Eνj to denote expectations
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taken over the distribution νj for j ∈ {c, cq, q}. The intensities of these Poisson shocks are

time-varying, and each follows a square-root process as in Cox, Ingersoll, and Ross (1985).

In what follows, I will assume that inflation spike probability is perfectly correlated with

inflation disaster probability.4 Specifically, for j ∈ {c, cq}, the intensity for Nj is denoted

by λjt, and it is given by

dλjt = κλj(λ̄j − λjt) dt+ σλj
√
λjt dBλjt.

Bλct and Bλcq,t are independent Brownian motions, and each is independent of BCt,

BPt, and Bqt. Furthermore, assume that the Poisson shocks are independent of each other,

and of the Brownian motions. Define λt = [λct, λcq,t]
>, λ̄ = [λ̄c, λ̄cq]

>, κλ = [κλc , κλcq ]
>,

Bλt = [Bλct, Bλcqt]
>, and Bt = [BCt, BPt, Bqt, B

>
λt]
>.

In what follows, a disaster (or consumption disaster) is a Poisson shock that affects

realized consumption growth. In particular, I will refer to the Nc–type shock as a non-

inflation disaster and the Ncq–type shock as an inflation disaster. The Nq–type shock only

affects expected inflation and I refer to it as an inflation spike. Furthermore, I will refer

to λc as the non-inflation disaster probability and λcq as the inflation disaster probability.

Though the latter also governs the intensity of inflation spikes, the majority of its effects

comes from inflation disasters rather than inflation spikes.

Following Duffie and Epstein (1992), I define the utility function Vt for the representative

agent using the following recursion:

Vt = Et

∫ ∞
t

f(Cs, Vs) ds, (3)

4Inflation spikes in this model attempt to speak to the period of high inflation in the 1970s and early

1980s. During this period, consumption growth was low, and the outlook for future consumption growth

was uncertain. Therefore not modeling inflation spike probability as an independent process is realistic.

To simplify the model, I assume that the inflation spike probability equals inflation disaster probability.
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where

f(Ct, Vt) = β(1− γ)Vt

(
logCt −

1

1− γ log ((1− γ)Vt)

)
. (4)

The above utility function is the continuous-time analogue of the recursive utility defined

by Epstein and Zin (1989) and Weil (1990), which allows for preferences over the timing of

the resolution of uncertainty. Furthermore, equation (4) is a special case when the elasticity

of intertemporal substitution (EIS) equals one. In what follows, γ is interpreted as risk

aversion and β as the rate of time preference. I assume γ > 0 and β > 0 throughout the

rest of the paper.

2.2 The value function and risk-free rates

Let J(Wt, λt) denote the value function, where Wt denotes the real wealth of the represen-

tative agent. In equilibrium J(Wt, λt) = Vt.

Theorem 1. Assume

(κλc + β)2 > 2σ2
λcEνcq

[
e(1−γ)Zc − 1

]
and

(
κλcq + β

)2
> 2σ2

λcqEνcq
[
e(1−γ)Zcq − 1

]
. (5)

The value function J takes the following form:

J(Wt, λt) =
W 1−γ
t

1− γ I(λt), (6)

where

I(λt) = exp {a+ bcλc + bcqλcq} . (7)

The coefficients a and bj for j ∈ {c, cq} take the following form:

a =
1− γ
β

(
µ− 1

2
γσ2

)
+ (1− γ) log β +

1

β
b>
(
κλ ∗ λ̄

)
, (8)

bj =
κλj + β

σ2
λj

−

√√√√(κλj + β

σ2
λj

)2

− 2
Eνj

[
e(1−γ)Zj − 1

]
σ2
λj

, (9)
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Here and in what follows, we use ∗ to denote element-by-element multiplication of

vectors of equal dimension. The signs of bc and bcq determine how disaster probabilities λc

and λcq affect the investor’s value function. The following corollary shows that the investor

is made worse by an increase in the disaster probabilities.

Corollary 2. For j ∈ {c, cq}, if Zj < 0, then bj > 0.

The following two corollaries provide expressions for the real and nominal risk-free rates

in this economy.

Corollary 3. Let rt denote the instantaneous real risk-free rate in this economy, rt is given

by

rt = β + µ− γσ2 + λctEνc
[
e−γZc(eZc − 1)

]︸ ︷︷ ︸
non-inflation disaster risk

+λcq,tEνcq
[
e−γZcq(eZcq − 1)

]︸ ︷︷ ︸
inflation disaster risk

. (10)

The terms multiplying λct and λcq,t in (10) arise from the risk of a disaster. For Zj < 0,

the risk-free rate falls in λj: Recall that both non-inflation and inflation disasters affect

consumption, therefore high disaster risk increases individuals’ incentive to save, and thus

lowers the risk-free rate.

Corollary 4. Let r$
t denote the instantaneous nominal risk-free rate on the nominal bond

in the economy, r$
t is given by

r$
t = rt + qt − σ2

P . (11)

The nominal risk-free rate is affected by expected inflation; when expected inflation is

high, investors require additional compensation to hold the nominal risk-free asset.

2.3 Nominal government bonds

This section provides expressions for the prices, yields, and premia for nominal zero-coupon

government bonds.
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2.3.1 Prices and yields

Nominal bond prices are determined using no-arbitrage conditions and the state-price den-

sity. Duffie and Skiadas (1994) show that the real state-price density, πt, equals

πt = exp

{∫ t

0

fV (Cs, Vs) ds

}
fC (Ct, Vt) , (12)

and nominal state-price density, π$
t , is given by5

π$
t =

πt
Pt
. (13)

Let L
$,(τ)
t = L$(qt, λt, τ) denote the time t nominal price of a nominal government bond

that pays off one nominal unit at timet+ τ . Then

L$(qt, λt, s− t) = Et

[
π$
s

π$
t

]
.

The price L
$,(τ)
t can be solved up to four ordinary differential equations. The following

corollary is a special case of Theorem B.4 in Appendix B.

Corollary 5. The function L$ takes the following form:

L$(qt, λt, τ) = exp
{
a$
L(τ) + b$

Lq(τ)qt + b$
Lλ(τ)>λt

}
, (14)

where b$
Lλ(τ) =

[
b$
Lλc

(τ), b$
Lλcq

(τ)
]>

. The function b$
Lq takes the form

b$
Lq(τ) = − 1

κq

(
1− e−κqτ

)
, (15)

5Consider a nominal asset that has nominal payoff X$
s at time s > t, the time t nominal price of the

asset, X$
t , can be written as X$

t = Et[
πt

πs

Ps

Pt
X$
s ] = Et[

π$
s

π$
t

X$
s ]. Therefore, π$

t = πt

Pt
.

9



the function b$
Lλc

solves

db$
Lλc

dτ
=

1

2
σλcb

$
Lλc(τ)2 +

(
bcσ

2
λc − κλc

)
b$
Lλc(τ) + Eνc

[
e−γZct(1− eZct)

]
, (16)

the function b$
Lλcq

solves

db$
Lλcq

dτ
=

1

2
σλcqb

$
Lλcq(τ)2 +

(
bcqσλcq − κλcq

)
b$
Lλcq(τ)

+ Eνcq

[
e−(γ+b$Lq(τ))Zcq,t − e(1−γ)Zcq,t

]
+ Eνq

[
e−b

$
Lq(τ)Zqt − 1

]
, (17)

and the function a$
L solves

da$
L

dτ
= −β − µ+ γσ2 + σ2

P +
1

2
σ2
qb

$
Lq(τ)2 + b$

Lq(τ)κq q̄ + b$
Lλ(τ)>(κλ ∗ λ̄), (18)

with boundary conditions a$
L(0) = b$

Lq(0) = b$
Lλc

(0) = b$
Lλcq

(0) = 0.

Corollary 5 shows how prices respond to innovations in expected inflation and in chang-

ing disaster probabilities. Equation (15) shows that innovations to expected inflation lower

prices for nominal bonds of all maturities. Furthermore, the effect will be larger the more

persistent it is, that is, the lower is κq.

Higher non-inflation disaster probability has a non-negative effect on prices. Consider

the ordinary differential equation (16); without the last term Eνc
[
e−γZct(1− eZct)

]
, the

function b$
Lλc

is identically zero. Therefore, this term determines the sign of b$
Lλc

. This

term can be rewritten as: Eνc
[
e−γZct(1− eZct)

]
= −Eνc

[
e−γZct(eZct − 1)

]
, which multiplies

λct in the equation for the nominal risk-free rate (11). Because higher discount rates

lower the price, the risk-free rate effect enters with a negative sign. With the boundary

condition b$
Lλc

(0) = 0, this implies that b$
Lλc

(τ) is strictly positive and increasing for all τ .

The intuition is straightforward: Non-inflation disaster risks only affect the nominal bonds

through the underlying real bonds, and since the real bonds in this economy pay off during

consumption disaster periods, they have negative premia.
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Unlike non-inflation disasters, the effect of changing inflation disaster probability on

bond valuation is more complicated. Recall that this process governs both the probability

of an inflation disaster and the probability of an inflation spike. Similarly to the previous

argument, the last two terms in ODE (17) determine the sign of b$
Lλcq

. The first expectation

arises from inflation disasters, and it can be rewritten as:

Eνcq

[
e−(γ+b$Lq(τ))Zcq,t − e(1−γ)Zcq,t

]
=

−Eνcq
[
e−γZcq,t(eZcq,t − 1)

]︸ ︷︷ ︸
Risk-free rate effect (–)

−Eνcq
[
(e−γZcq,t − 1)(1− e−b$Lq(τ)Zcq,t)

]
︸ ︷︷ ︸

Risk premium effect (+)

+Eνcq

[
e−b

$
Lq(τ)Zcq,t − 1

]
︸ ︷︷ ︸

Nominal price effect (–)

.

(19)

The first component is the risk-free rate effect; as previously discussed, this term is multi-

plied by a negative sign. The second component is part of the bond premium: The nominal

bond price drops during periods of inflation disaster, when marginal utility is high; this

term captures the premium investors require for bearing these jump risks. This risk pre-

mium effect is also multiplied by a negative sign since an increase in the discount rate lowers

the bond price. The last term is the nominal price effect, which represents the effect of

change in λcq on expected nominal bond prices through inflation. More specifically, it is the

percent change in the price of a nominal bond with maturity τ in the event of an inflation

disaster. Because a higher expected bond value raises the price, this term is multiplied by

a positive sign.

Given γ > 0 and Zcq < 0, the risk-free rate effect is negative, the risk premium effect is

positive and increasing in maturity τ for τ > 0, and the nominal price effect is negative and

decreasing in maturity τ for τ > 0. The effect of changing inflation disaster probabilities

on bond value depends on the sum of these three effects. Notice that when τ = 0, only the

risk-rate effect is non-zero. Together with the boundary condition b$
Lλq

(0) = 0, this implies

that b$
Lλq

(τ) > 0 for some small τ : An increase in inflation disaster probability raises prices

on bonds with short maturity. As maturity increases, however, risk premium and nominal
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price effect prevail over the risk-free rate effect, implying that prices on bonds with longer

maturity decrease with inflation disaster probability.

The last term in ODE (17) arises from inflation spike risks. Notice that this term

represents the nominal price effect, and it enters with a positive sign. Furthermore, it is

negative and decreasing in maturity τ for τ > 0; implying that an increase in the chance

of an inflation spike lowers nominal bond prices and the effect is stronger for bonds with

longer maturity.

Before moving on to discuss bond premia, the following definition and corollary provides

expression for the nominal bond yield in the model:

Definition 1. The yield to maturity for a nominal bond with maturity τ at time t, denoted

by y
$,(τ)
t , is defined as:

y
$,(τ)
t =

1

τ
log

(
1

L
$,(τ)
t

)
. (20)

Corollary 5 implies that the yield to maturity in this economy takes a particularly simple

form:

Corollary 6. The nominal yield to maturity for a nominal bond with maturity τ at time

t, y
$,(τ)
t , is given by

y
$,(τ)
t = −1

τ

(
a$
L(τ) + b$

Lq(τ)qt + b$
Lλ(τ)>λt

)
, (21)

where the coefficients a$
L(τ), b$

Lq(τ), and b$
Lλ(τ) are given by (15) - (18).

2.3.2 The bond premium

This section provides an expression for the instantaneous bond premium and discusses its

properties. For notation simplicity, I will first define the jump operator, which denotes how

a process responds to the occurrence of a jump. Let X be a jump-diffusion process. Define
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the jump operator of X with respect to the jth type of jump as the following:

Jj(X) = Xtj −Xtj− j ∈ {c, cq, q},

for tj− such that a type-j jump occurs. Then define

J̄j(X) = Eνj
[
Xtj −Xtj−

]
j ∈ {c, cq, q}.

The instantaneous nominal expected return on a nominal bond with maturity τ is simply

the expected percent change in nominal prices. Let L
$,(τ)
t = L$(qt, λt, τ) be the time-t price

of a τ -year nominal bond, by Ito’s Lemma:

dL
$,(τ)
t

L
$,(τ)

t−

= µL$,(τ),t dt+σL$,(τ),t dBt+
1

L
$,(τ)
t

(
Jc(L$,(τ)

t )dNct + Jcq(L$,(τ)
t )dNcq,t + Jq(L$,(τ)

t )dNqt

)
.

Then the instantaneous expected return can be written as:

r
$,(τ)
t = µL$,(τ),t +

1

L
$,(τ)
t

(
λctJ̄c(L$,(τ)

t ) + λcq,t

(
J̄cq(L$,(τ)

t ) + J̄q(L$,(τ)
t )

))
. (22)

Corollary 7. The bond premium relative to the risk-free rate r$ is:

r
$,(τ)
t − r$

t = −λ>t
(
b$
Lλ(τ) ∗ b ∗ σ2

λ

)
+ λcq,tEνcq

[
(e−γZcq,t − 1)(1− e−b

$
Lλq

(τ)Zcq,t)
]

(23)

The first term in (23) arises from time-varying non-inflation and inflation disaster

probabilities (time-varying probability adjustment). Recall that bj > 0 for j ∈ {c, cq},
b$
Lλc

(τ) > 0 for all τ , b$
Lλcq

(τ) > 0 for small τ and b$
Lλcq

(τ) < 0 for larger τ . Therefore, the

time-varying non-inflation disaster probability adjustment is negative because the under-

lying real bond provides a hedge against consumption disasters. On the other hand, the

time-varying inflation disaster probability adjustment is negative for bonds with shorter

maturities and positive for bonds with longer maturities. The second term arises from the
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co-movement in nominal bond prices and marginal utility when a disaster occurs. Notice

that this term depends on b$
Lq: When an inflation disaster occurs, expected inflation rises,

which pushes future bond prices down. Given that b$
Lq < 0 and the assumption that γ > 0,

Zqt < 0, the second term is positive.

In a sample without disasters, but possibly with inflation spikes, the observed return is

r
$(τ)
nd,t = µL$,(τ),t +

1

L
$,(τ)
t

λcq,tJ̄cq(L$,(τ)
t ),

where the subscript “nd” is used to denote expected returns in a sample without consump-

tion disasters. The following corollary calculates these expected returns.

Corollary 8. The observed expected bond excess returns in a sample without disaster is:

r
$(τ)
nd,t − r$

t = −λ>t
(
b$
Lλ(τ) ∗ b ∗ σ2

λ

)
+ λcq,tEνcq

[
e−γZcq,t(1− e−b$Lq(τ)Zcq,t)

]
. (24)

2.4 The aggregate market

Let Dt denote the dividend on the aggregate market. Assume that total dividends in the

economy evolve according to

dDt

Dt

= µD dt+ φσ dBCt + (eφZct − 1) dNct + (eφZqt − 1) dNcq,t. (25)

Under this process, aggregate dividend responds to disasters by a greater amount than

aggregate consumption does (Longstaff and Piazzesi (2004)). The single parameter, φ,

determines how aggregate dividend responds to both normal and disaster shocks. In what

follows, φ is referred to as leverage as it is analogous to leverage in Abel (1999).

Let H (Dt, λt, τ) denote the time t price of a single future dividend payment at time

t+ τ . Then

H(Dt, λt, s− t) = Et

[
πs
πt
Ds

]
,

where π is the real state-price density defined by (12). The price H can be solved in closed-
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form up to three ordinary differential equations, and the following corollary is a special

case of Theorem B.2 in Appendix B.

Corollary 9. The function H takes the following form:

H(Dt, λt, τ) = Dt exp
{
aφ(τ) + λ>t bφλ(τ)

}
, (26)

where bφλ = [bφλcbφλcq ]
>. For j ∈ {c, cq}, function bφj takes the following form:

bφj (τ) =
2Evj

[
e(1−γ)Zjt − e(φ−γ)Zjt

] (
1− e−ζbj τ

)
(
ζbj + bjσ2

j − κj
) (

1− e−ζbj τ
)
− 2ζbj

, (27)

where

ζbj =

√(
bjσ2

j − κj
)2

+ 2σ2
jEνj

[
e(1−γ)Zjt − e(φ−γ)Zjt

]
. (28)

Function aφ(τ) takes the following form:

aφ(τ) =

(
µD − µ− β + γσ2 (1− φ)

−
(
κλcλ̄c
σ2
λc

(ζbc + bcσ
2
λc − κλc) +

κλcq λ̄cq

σ2
λcq

(ζbcq + bcqσ
2
λcq − κλcq)

))
τ

−
(

2κλcλ̄c
σ2
λc

log

(
(ζbc + bcσ

2
λc
− κλc)(e−ζbcτ − 1)

2ζbc

)
+

2κλcq λ̄cq

σ2
λcq

log

(
(ζbcq + bcqσ

2
λcq
− κλcq)(e−ζbcq τ − 1)

2ζbcq

))
. (29)

Let F (Dt, λt) denote the time t price of the claim to the entire future dividend stream.

Then

F (Dt, λt) =

∫ ∞
0

H (Dt, λt, τ) dτ.

Equation (27) shows that bφj(τ) < 0 for j ∈ {c, cq}; therefore the price-dividend ratio,

G (λt) =

∫ ∞
0

exp
{
aφ(τ) + λctbφλc(τ) + λcq,tbφλcq(τ)

}
dτ, (30)
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decreases in both non-inflation and inflation disaster probability.

3 Quantitative results

The model is calibrated to match aggregate consumption growth, inflation, and aggre-

gate market moments. To evaluate the quantitative implication of the model, I simulate

monthly data for 60,000 years. Furthermore, I simulate 10,000 60-year samples. For each

of these small-samples, the initial values of λct and λcq,t are drawn from their stationary

distributions, and the initial value of qt is set equal to its mean, q̄. In each of the tables

that follow, I report the data and population value for each statistic. In addition, I report

the 5th-, 50th-, and 95th-percentile values from the small-sample simulations (labelled “All

Simulations” in the tables), and the 5th-, 50th-, and 95th-percentile values for the subset

of the small-sample simulations that do not contain disasters (labelled “No-Disaster Sim-

ulations” in the tables). Samples in this subset do not contain any jumps in consumption,

but they may contain jumps in expected inflation.

In the past 60 years, the U.S. did not experience any consumption disasters; however,

it experienced a period of high inflation in the late 1970s and early 1980s. The No-Disaster

subset from the simulation accommodates the possibility that there was an inflation jump in

the country’s postwar history; statistics from this subset therefore offer the most interesting

comparison for the U.S. postwar data. With this calibration, about 23% of the samples

do not experience any type of consumption disaster, and about one-third of these samples

contain at least one jump in expected inflation.

3.1 Calibration

3.1.1 Data

The data on bond yields are from the Center for Research in Security Prices (CRSP).

Monthly data is available for the period between June 1952 and December 2011. The yield
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on the three-month government bills is from the Fama risk-free rate, and yields on zero-

coupon bonds with maturities between one and five year are from the Fama-Bliss discount

bond dataset.

The market return is defined as the gross return on the CRSP value-weighted index.

The dividend growth rate is from the dividends on the same index. To obtain real return

and dividend growth, I adjust for inflation using changes in the consumer price index, which

is also available from CRSP. The price-dividend ratio is constructed as the price divided

by the previous 12 months of dividends. The government bill rate is the inflation-adjusted

three-month Treasury Bill return. All data are annual. I use data from 1947 to 2010; using

only postwar data provides a comparison between U.S. data and the simulated samples

without consumption jumps.

3.1.2 Parameter values

Table 2 reports the parameter values. Mean consumption growth and the volatility of

consumption growth are both about 2%, which equal their postwar data counterparts.

Mean dividend growth is set to 3.48%; it is chosen to match the price dividend ratio

instead of the dividend growth in the data: CRSP dividends do not include repurchases;

presumably these imply that dividends are likely to be higher sometime in the future, and

that the sample mean is not a good indicator of the true mean.

The leverage parameter φ governs both the ratio between the volatility of log dividends

and the volatility of log consumption, and how dividends response to consumption disasters.

In the data, the former ratio suggests leverage to be 4.66; however, I choose a smaller value,

φ = 3, so that dividends have a more conservative response to consumption disasters. Rate

of time preference β is set to be low to obtain a realistic short-term government bill rate.

Relative risk aversion γ is set equal to 3.

Mean expected inflation is set to 2.7%; with this value, the median value of the realized

inflation among the simulations with no consumption disaster is 3.65%, the value in the

data is 3.74%. The volatility of non-expected inflation σp equals 0.8% to match the realized
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inflation volatility in the data; the median value among the simulations with no consump-

tion disaster is 2.89%, and the value in the data is 3.03%. The volatility of expected

inflation σq equals 1.3% to match the volatility of short-term bond yield; the volatility of

three-month Treasury Bill yield is 3.01% in the data, and the median value among the

simulations with no consumption disaster is 2.99%. The mean reversion parameter in the

expected inflation process governs the persistence of the inflation process, which is highly

persistent and the autocorrelation decays slowly. This parameter it is set to 0.09 to obtain

a reasonable first order autocorrelation of the inflation process.

Barro and Ursua (2008) calibrated the average probability of a consumption disaster

for OECD countries to be 2.86%, implying that λ̄c + λ̄cq = 2.86%.6 In the data, about

one-third of the disasters are accompanied by high inflation (Table 1), therefore I set λ̄c to

equal 1.83% and λ̄cq to equal 1.03%. The persistence in the price-dividend ratio is mostly

determined by the persistence in the disaster probability. I therefore choose a low rate of

mean reversion for both inflation and non-inflation disaster probabilities: κλc = κλcq = 0.11.

With this choice, the median value of the persistence of the price-dividend ratio among

the simulations with no consumption disaster is 0.73; the value in the data is 0.92. The

volatilities σλc = 0.112 and σλcq = 0.103 lead to a reasonable volatility for the aggregate

market.

The disaster distributions Zc and Zcq are chosen to match the distribution of consump-

tion declines. I consider 10% as the smallest possible disaster magnitude and I assume that

Zc and Zcq follow power law distributions. For non-inflation disasters, I set the power law

parameter to equal 10, and for inflation disasters, I set the power law parameter to equal

8. Table 2 plots these power law distributions along with distributions of large consump-

tion declines. In particular, I compare the power law distribution with parameter 8 to the

distribution of large consumption declines that are accompanied by high inflation, and the

6In this calibration, I calibrate the disaster probability to the OECD subsample but the size of jumps

to the full set of samples. This is a more conservative approach as OECD countries have disasters that are

rarer but more severe.
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power law distribution with parameter 10 to the distribution of large consumption declines

that are not accompanied by high inflation. In addition, I will assume that Zq follows the

same distribution as Zcq.

3.2 Yield curves and expected returns as functions of the state

variables

3.2.1 Yield curves

It is helpful to understand how the state variables affect the nominal yield curves in order

to better understand the simulation results. Equation (21) shows that nominal yields

on nominal bonds depend on expected inflation, q; on non-inflation disaster probability,

λc; and on inflation disaster probability, λcq. Furthermore, the coefficients on these state

variables are functions of maturity τ . Figure 3 shows the term in the expression for the

nominal bond yield (21). In particular, it shows the loading on expected inflation, −bLq/τ ;

on non-inflation disaster probability, −bLλc/τ ; and on the inflation disaster probability,

−bLλcq/τ ; all as functions of maturity τ .

The loading on expected inflation is positive and decreases with maturity: High expected

inflation lowers bond values and raises bond yields; due to mean-reversion, the effect is

larger on bonds with shorter maturities. The loading on inflation spike probability is

also positive but increases with maturity: High probability of an expected inflation jump

lowers bond values and raises bond yields, and the effect is stronger on bonds with longer

maturities.

What is more interesting is the stark distinction between the loading on non-inflation

disaster and inflation disaster probabilities. The loading on non-inflation disaster proba-

bility is negative and decreases with maturity. While the loading on the inflation disaster

probability is also negative for short maturity bonds, it increases with maturity and be-

comes positive. Disasters in the model affect the nominal yield curves through two channels:

They affect realized consumption growth and (possibly) expected inflation. Non-inflation
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disasters only affects consumption growth, thus high non-inflation disaster risks lower the

risk-free rate, which leads to higher bond prices and lower bond yields. Therefore, the

coefficient on the non-inflation disaster probability is negative and decreasing with matu-

rity. On the contrary, inflation disaster probability affects the nominal yield curve through

both channels, and investors require positive compensation for bearing the risk of jumps

on expected inflation. The bottom-right panel of Figure 3 shows that the former effect

dominates for bonds with shorter maturity while the latter effect dominates for bonds with

longer maturity. Notice that inflation spike risk also affects the shape of the loading on

inflation disaster probability: Inflation spike risks further lower bond values and raise bond

yields, and the effect is stronger on bonds with longer maturities. Thus the presence of in-

flation spike risks leads to an even steeper −bLλcq/τ , though the shape is mostly determined

by inflation disaster risks.

Figure 4 shows how the yield curve responds to changes in each of the three state

variables. In each of the panels, the dashed line represents the yield curve when all state

variables are at their means. I then increase the value of one state variable at a time and

plot the resulting yield curve. The solid line in the top-left panel shows the yield curve

when expected inflation is increased by σq: High expected inflation shifts the nominal yield

curve up, and the effect is slightly stronger for bonds with short maturities. The solid

line in the top-right panel shows the yield curve when non-inflation disaster probability

is increased by one standard deviation: High non-inflation disaster probability shifts the

nominal yield curve down (the risk-free rate effect), and the effect is slightly stronger for

bonds with long maturities. The solid line in the bottom-left panel shows the yield curve

when inflation disaster probability is increased by one standard deviation: High inflation

disaster probability changes the shape of the nominal yield curve. The yields for short

maturity bonds become lower (risk-free rate effect) and the yields for long maturity bonds

become higher (risk-premium effect and nominal price effect). The risk of inflation spikes

further increases the nominal bond yield (nominal price effect).

From this figure, one can also observe that the primary effect of expected inflation
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and non-inflation disaster probability is on the level of the yield curve, while non-inflation

disaster probability also affects the slope of the yield curve. Furthermore, most of the

variations in the term structure variables such as the yield spreads and forward rates come

from variations in the probabilities of inflation disasters and inflation spikes.

3.2.2 Risk premia

Figures 5 and 6 plots the bond risk premia as functions of non-inflation disaster probability,

λc, and inflation disaster probability, λq, using Equation (23). Expected inflation q is set

equal to 2.8% in all cases. To illustrate the impact of changes in disaster probabilities on

bonds with different maturities, I compare the risk premia on one- and five-year bonds.

Figure 5 shows that risk premia decrease with non-inflation disaster probability, and

also that bonds with longer maturities are more sensitive to these changes. Equation (23)

shows that non-inflation disaster probability implies a negative premium, and that the

absolute magnitude of this premium increases with maturity. Figure 6 shows that risk

premia increase as a function of the inflation disaster probability and that bonds with

longer maturities are more sensitive to these changes. The co-movement of marginal utility

and bond prices in inflation disaster periods generates a positive premium for all nominal

bonds, and this premium increases with maturity. Time-varying inflation disaster risks

generate a small negative premium for short maturity bonds, and this premium increases

with maturity and becomes positive when the maturity is longer. Comparing Figures 5

and 6, one can see that bond risk premia are more sensitive to inflation disaster risks than

to non-inflation disaster risks, furthermore, one can also see that long-term bonds are more

sensitive to these risks than short-term bonds.

Figure 4 – 6 provide evidence of predictable bond premia in the model. Figure 5 and 6

imply that bond excess returns are high when inflation disaster risk is high, or when non-

inflation disaster risk is low. Figure 4 shows that yield spread is also high when inflation

disaster risk is high, or when non-inflation disaster risk is low. Therefore, one should

expect yield spread to have some predictive power on bond excess returns. Furthermore,
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since excess returns on long-term bonds are more sensitive to these disaster probabilities

than excess returns on short-term bonds are, long-term bond excess returns should be more

sensitive to changes in yield spreads than excess returns of short-term bonds are.

3.3 Simulation results

3.3.1 Nominal yields

Figures 7 and 8 show the first two moments of yields for nominal bonds with different

maturities. Figure 7 plots the data and model-implied average nominal bond yields, and

Figure 8 plot the data and model-implied volatility of nominal bond yields, both as functions

of time to maturity. In each figure, I plot the median, the 25th-, and 75th-percentile values

drawn from the subset of small-sample simulations that do not contain any consumption

disasters. Table 5 reports the data and all model-implied statistics of mean and volatility

of yields for nominal bonds with one, two, three, four, and five years to maturity.

The model is capable of explaining the average nominal yield curve. The median values

among the simulations with no consumption disasters are close to their data counterparts.

Furthermore, the median values increase with time to maturity, implying an upward-sloping

average yield curve in the model. The median small-sample value of the mean increases

from 5.67% for one-year bonds to 6.03% for five-year bonds; in the data, the average bond

yields increase from 5.20% for one-year bonds to 5.82% for five-year bonds. In addition

to the first moment, the model also generates realistic implications for the volatility of

bond yields. The median values among the simulations having no consumption disasters

decreases from 2.79% for one-year bond to 2.61% for five-year bond; in the data, it decreases

from 3.02% for one-year bond to 2.78% for five-year bond. Notice that the nominal yields

are on average higher and more volatile in the full set of simulations and in population.

This is because more jumps in expected inflation (inflation disasters) are realized, and

expected inflation are on average higher in these samples.

This model is able to match both the first two moments of the nominal yield curve,

22



while previous literature successfully capture the upward-sloping shape of the nominal yield

curve, they do not generate realistic implication for the second moment. In both Piazzesi

and Schneider (2006) and Bansal and Shaliastovich (2012), short-term bond yields are also

more volatile than long-term bond yields, but the levels are much lower than the data

counterparts. The habit formation model in Wachter (2006) implies that short-term yields

are more volatile than long-term yields, which is counterfactual. Comparing with the three

models, this model also impose a potentially more reasonable requirement on the utility

function of the representative agent. In the current calibration, relative risk aversion is set

equal to 3. In contrast, Piazzesi and Schneider (2006) set it equal to 43 and Bansal and

Shaliastovich (2012) estimate it to be 20.90. The habit formation model in Wachter (2006)

assumes a time-varying risk aversion, which is greater than 30 when the state variable is

at its long-run mean.

3.3.2 Principal component analysis

Litterman and Scheinkman (1991) find that most of the variations in yield curve can be

explained by a three-factor model. Specifically, the first factor affects the level of the yield

curve, the second factor affects the slope, and the third factor affects the curvature. To

evaluate whether the model also exhibits this feature, I perform a principal component

analysis on the data and model-simulated yields. Figure 11 reports the results. For the

model, I only report the median values drawn from the subset of small-sample simulations

that does not contain any disasters. I plot the loadings on yields with different maturities

on each of the first three principal components. Similar to Litterman and Scheinkman

(1991), a shock to the first principal component has similar effects across yields of different

maturities (level factor); a shock to the second principal component raises yields on short-

term bonds and reduces yields on long-term bonds (slope factor); and a shock to the third

principal component raises yields on bonds with median maturity, but lowers yields on

short- and long-term bonds (curvature factor). In addition, the bottom-right panel also

shows that almost all the variations in yield curve are explained by the first three principal

23



components, both in the data and in the model.

Given the three-factor structure of the model, it is natural to ask how these three factors

relate to the three state variables in the model. Table 6 reports the correlation between

each of the three state variables in the model and each of the three principal components.

The level factor is mostly correlated with expected inflation; consistent with Figure 4, an

increase in expected inflation or inflation disaster probability raises the yield curve, while an

increase in non-inflation disaster probability lowers it. The slope factor is highly negatively

correlated with the inflation disaster probability, and slightly positively correlated with

expected inflation and non-inflation disaster probability.7 The curvature factor is mostly

correlated with non-inflation disaster risks; a shock to non-inflation disaster risks (also

expected inflation and inflation disaster risks) increase the curvature of the yield curve.

Collin-Dufresne and Goldstein (2002) provide evidence of unspanned volatility using

data on fixed income derivative. Their findings suggest that interest rate volatility risk

cannot be hedged by bonds. Following Collin-Dufresne, Goldstein, and Jones (2009), I

simulate the model to obtain 13-year samples at daily frequency. I then regress realized

volatility of 6-month yields, constructed using five daily data, on the first three principal

components at the beginning of the period. Similar to Collin-Dufresne, Goldstein, and

Jones (2009), these regressions yield low R2-statistics. For example, the median value in

the subset of small-samples with out disaster is around 0.03, with the 95th percentile value

around 0.19, and Collin-Dufresne, Goldstein, and Jones (2009) find the R2 to be 0.155

using data from 1990 to 2002. This suggests that the first three principal components do

not forecast volatility in the model and in the data.

7Note that the loadings on the second principal component decrease with maturity, so a positive shock

to this factor reduces the slope.
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3.3.3 Time-varying bond risk premia

First I consider the “long-rate” regression in Campbell and Shiller (1991):

y
$,(n−h)
t+h − y$,(n)

t = constant + βn
1

n− h
(
y

$,(n)
t − y$,(h)

t

)
+ error, (31)

where n denotes bond maturity and h denotes the holding period. In what follows, I will

consider this regression at quarterly frequency, h = 0.25, from June 1952 to December

2011.

Table 7 reports the results for regression (31). I consider long-term bonds with ma-

turities of one, two, three, four, and five years, and report the data and model-simulated

coefficient of the above regression. Under the expectations hypothesis, excess returns on

long-term bonds are unpredictable, which implies that βn should equal one for all n. As

in Campbell and Shiller, the coefficient βn’s are negative and decreasing in maturity n,

implying that bond excess returns are predictable by yield spread, and a high yield spread

predicts a higher excess return for bonds with longer maturity. The model is capable of

capturing this feature. The median value of these coefficients among the simulations that

contain no consumption disasters is also negative and decreasing with maturity n, further-

more, the data values are all above the 5th percentile of the values drawn from the model.

In what follows, I will discuss how the mechanism drives the model’s ability to explain the

failure of the expectations hypothesis.

Bond risk premia are not constant in this model; (23) and (24) show that higher inflation

disaster risks lead to a higher bond risk premium, and that this premium increases with

maturity. Furthermore, Figure 4 shows that variations in inflation disaster risk have a

large effect on yield spread, and higher inflation disaster risks lead to higher yield spreads.

These imply that bond premia are expected to be high when yield spread is large.8 However,

higher inflation disaster risks also lead to a higher probability of expected inflation jumps,

8Non-inflation disaster risks decrease both yield spread and bond premium, which also implies that

bond premia will be high when yield spread is high.
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and once these jumps are realized, bond prices drop and realized excess returns also fall.

In summary, when the variations in yield spread arise from variations in non-inflation and

inflation disaster probabilities – and conditional on inflation jumps are not being realized –

one should expect a high yield spread to be followed by high bond premia. Furthermore, a

high yield spread predicts a larger premium for long-term bonds than it does for short-term

bonds. Variations in expected inflation, however, have the opposite effect on the coefficient

βn’s. An increase in expected inflation leads to a lower yield spread (Figure 4); furthermore,

it leads to a higher bond premium. Therefore, if the variations in yield spread arise from

variations in expected inflation, it will have a positive effect on these coefficient βn’s.

In Table 7, one can see that while the median values drawn from the subset of small-

sample simulations containing no consumption disasters are negative, the median values

among the full set of simulations are positive. This is because there are substantially more

inflation jumps among all the small-samples. While the effects of variations in λc and λcq

dominate in the subset without disasters, the realizations of inflation jumps and variations

in expected inflation dominate among the full set of small-samples.

In addition to the long-rate regressions, I also consider the forward rate regressions

performed by Cochrane and Piazzesi (2005) to evaluate the model’s success in capturing

time-varying bond risk premia. In what follows, I consider the annual forward rate. I

denote the n-year forward rate at time t for a loan from time t+n to time t+n+ 1 by fnt ,

defined as:

fnt = logL
$,(n−1)
t − logL

$,(n)
t .

As in Cochrane and Piazzesi, these forward rate regressions are done in two steps. First

I regress the average annual excess returns on two-, three-, four-, and five-year nominal

bonds on all available forward rates:

1

4

5∑
n=2

r
e,(n)
t+1 = θ>ft + error, (32)
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where r
e,(n)
t+1 = r

$,(n)
t+1 − r$,(1)

t+1 is the excess return of a bond with maturity n and ft denotes

the vector of all forward rates available at time t.

The second step is to form a single factor ĉpt+1 = θ̂>ft and regress the excess returns

of bonds with different maturities on this single factor:

r
e,(n)
t+1 = constant + ρnĉpt+1 + error. (33)

I consider monthly overlapping annual observations from June 1952 to December 2011. In

the data, I construct one-, two-, three-, four-, and five-year forward rates. In the model,

however, I can only construct three independent forward rates since the model only has

three factors. Therefore, I will use all five forward rates in the data, but only one-, three-,

and five-year forward rates in the model.

Table 8 reports the results from the second stage regression, (33). In the data the

single forward rate factor predicts bond excess returns with an economically significant

R2, furthermore, the coefficient on this factor increases with bond maturity. The model

successfully generates these findings: The median values of the R2 drawn from the subset of

the small-sample simulations containing no consumption disasters are slightly smaller than

those in the data, but still economically significant. For example, the single forward rate

factor predicts excess returns on five-year nominal bonds with R2 = 0.18, and the median

values drawn from the subset of samples containing no disasters is 0.17. The median value

of the coefficients in these samples increases from 0.40 for one-year bonds to 1.59 for five-

year bonds, in the data it increases from 0.44 to 1.47. In the full set of small-samples, the

R2 are lower, but still economically meaningful. The small-sample bias in these regressions,

however, is significant: The R2-statistics are almost zero in population.

One other finding of Cochrane and Piazzesi (see also Stambaugh (1988)) is that in

the first stage regression (32), the coefficients exhibit a tent-shaped pattern as a function

of maturity. This model is also able to generate these tent-shaped patterns. In about

35% of the subset that contain no consumption disasters, the coefficients from the first
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stage regression (32) exhibit a tent-shaped pattern. Figure 10 reports the average of these

coefficients.

3.3.4 The aggregate market

This model is also successful in matching moments in the aggregate market. Table 9 reports

the simulation results. The model is able to explain most of the equity premium, which

is 7.25% in the data; the median value from the small-sample containing no consumption

disasters is 5.06%, and the data is below the 95th percentile of the values drawn from the

model.

To calculate the real three-month Treasury Bill returns, I calculate the realized returns

on the nominal three-month Treasury Bill, then adjust them by realized inflation. This

model generates reasonable values for the short-term interest rate; this value in the data is

1.25%, and the median value from the small-sample containing no consumption disasters

is 2.03%. Furthermore, the data value is above the 5th percentile of the values drawn from

the model, indicating that we cannot reject the model at the 10% level.

The model, however, only has limited ability to explain the volatility of the price-

dividend ratio. As discussed in Bansal, Kiku, and Yaron (2012) and Beeler and Campbell

(2012), this is a limitation shared by models that explain aggregate prices using time-

varying moments but parsimonious preferences. Time-varying moments imply cash flow,

risk-free rate, and risk premium effects, and one of these generally acts as an offset to the

other two, thus limiting the effect time-varying moments have on prices.

3.3.5 Interactions between the aggregate and bond market

In this section, I study the model’s implications for the interaction between the aggregate

market and the term structure of interest rates. Previous works have shown that variables

that predict excess returns in one asset class often fail in another. For example, Duffee

(2012) showed that while term structure variables predict bond excess returns, they do not

predict stock market excess returns. In this section, I consider two predictor variables, the
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price-dividend ratio and the linear combination of forward rates that best predicts bond

returns. I also consider two excess returns, the aggregate market returns over short-term

bonds, and the average long-term bond returns over short-term bonds. The average long-

term bond return is defined as the average of the returns on one-, two-, three-, four- and

five-year nominal bonds. I calculate the predictive regressions of each excess returns on

each predictor variable. Data are annual from 1953 to 2010. Tables 10 – 13 report the

results from these predictive regressions.

Tables 10 and 12 show the results of regressing aggregate and bond market excess returns

on the price-dividend ratio. It is well known that price-dividend ratio predicts aggregate

market excess returns in the data (e.g. Campbell and Shiller (1988), Cochrane (1992),

Fama and French (1989) and Keim and Stambaugh (1986)). Equation (30) shows that the

price-dividend ratio in the model is governed by both non-inflation and inflation disaster

probabilities. In particular, a high disaster probability lowers the price-dividend ratio.

Furthermore, investors require a higher-than-average premium when the total disaster risk

is high, implying that on average, a high total disaster probability is followed by high

returns. Notice that predictability still exists in the full set of simulations, though the

R2-statistics are smaller. This is because realized returns are much lower when disasters

actually occur. In population, the predictability is even smaller, reflecting the well-known

small-sample bias in predictive regressions.

In the data, the price-dividend ratio also has some predictive power on long-term bond

excess returns, though the t-statistics are not significant and R2 values are low, as shown

in Tables 10 and 12. The model generates similar implications. An increase in either

non-inflation or inflation disaster probability leads to a low price-dividend ratio; bond

excess return, however, is governed mainly by inflation disaster probability. Therefore,

investors require a higher-than-average bond premium only when inflation disaster risk is

high, implying that on average, high inflation disaster probability is followed by high bond

returns. Furthermore, a high non-inflation disaster probability lowers the expected bond

excess returns; nonetheless, this effect is substantially smaller. Therefore, if the variation
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in the price-dividend ratio comes from the inflation disaster probability, then the price-

dividend ratio predicts long-term bond excess returns with a negative sign. On the other

hand, if the movement in the price-dividend ratio comes from the non-inflation disaster

probability, then the price-dividend ratio predicts long-term bond excess returns with a

small but positive sign. Notice that predictability still exists in the full set of simulations,

but disappears in population.

As shown in previous section, long-term bond excess returns can be predicted using a

linear combination of forward rates. Tables 11 and 13 report the results of the long-horizon

regression. Unsurprisingly, the model successfully generates the long-term bond excess

return predictability found in the data. In the model, both the shape of the term structure

and bond excess returns are largely determined by the inflation disaster probability: A

high inflation disaster probability leads to a steeper term structure and also a higher bond

premium.

On the other hand, the linear combination of forward rates has less predictive power

on the aggregate market excess returns (Duffee (2012)). In the full sample from 1953 to

2010, the linear combination of forward rates appears to have no predictive power.9 In the

model, forward rates depend on inflation disaster probability, and high inflation disaster

probability is, on average, followed by high returns. Therefore, the linear combination of

forward rates still predicts aggregate market excess returns. However, comparing Panel

A and Panel B of Tables 11 and 13, one can see that the linear combination of forward

rates predicts the long-term bond excess returns with a much higher R2 value than for

the aggregate market excess returns, implying that the forward rate factor has a stronger

predictive power on bond excess returns.

Lettau and Wachter (2011) also consider these regressions; the single forward rate factor

9The magnitude of the R2-statistics depends on the subsample. For example, Cochrane and Piazzesi

(2005) find that the linear combination of forward rates predicts one-year aggregate market excess returns

with an R2 = 0.07 in the sample from 1964 through 2003. In the corresponding period, the R2 is 0.36 for

one-year nominal bond excess returns.
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in their model predicts bond excess returns and aggregate market excess returns with similar

R2 values. In the data, even though the R2 depends on the sample period, the forward

rate factor has a stronger predictive power on bond excess returns. Wachter (2006) and

Gabaix (2012) also study both the stock and bond markets. The model of Wachter (2006),

however, implies that the risk premia on stocks and bonds move together. In Gabaix

(2012), the time-varying risks in stock and bond market are unrelated, where in this paper,

the underlying risks are the same, but they have different effect on the premia. The model

in this paper is able to generate more realistic implications for these predictive regressions

because the prices of risks in the model have a two-factor structure, and these factors have

differential effects on the stock and bond markets.

4 Conclusion

Why is the average term structure upward-sloping? Why are excess returns on nominal

bonds predictable? This paper provides an explanation for these questions using a model

with time-varying rare disaster risks. Previous research has shown that a model that

includes time-varying disaster risks can generate high equity premium and excess returns

volatility. Motivated by historical data, disasters in this model affect not only aggregate

consumption, but also expected inflation. A jump in expected inflation pushes down the

real value of nominal bonds, and investors require compensation for bearing these inflation

disaster risks. Furthermore, this premium increases with bond maturity, which leads to

an upward-sloping nominal term structure. Time-varying bond risk premia arise naturally

from time-varying disaster probabilities, and prices of risk in this model follow a two-factor

structure.

The model is calibrated to match the aggregate consumption, inflation, and equity

market moments, and the quantitative results show that this model produces realistic

means and volatilities of nominal bond yields. The three state variables in the model are

highly correlated with the first three principal components, which explain almost all of the
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variations in the nominal yield curve both in the model and in the data. This model can

also account for the violation of the expectations hypothesis. In particular, I show that the

yield spread and a linear combination of forward rates can predict long-term bond excess

returns. Furthermore, the model is capable of capturing the joint predictive properties of

the aggregate market returns and of the bond returns. Aggregate market variables have

higher predictive powers for equity excess returns while the term structure variables have

higher predictive powers for bond excess returns.
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Appendix

A Model derivation

A.1 Notation

Definition A.1. Let X be a jump-diffusion process. Define the jump operator of X with

respect to the jth type of jump as the following:

Jj(X) = Xtj −Xtj− j ∈ {c, cq, q},

for tj− such that a type-j jump occurs. Then define

J̄j(X) = Eνj
[
Xtj −Xtj−

]
j ∈ {c, cq, q},

and

J̄ (X) = [J̄c(X), J̄cq(X), J̄q(X)]>.

A.2 The value function

Proof of Theorem 1 Let S denote the value of a claim to aggregate consumption, and

conjecture that the price-dividend ratio for the consumption claim is constant:

St
Ct

= l,

for some constant l. This relation implies that St satisfies

dSt = µSt−dt+ σSt−dBct + (eZct − 1)StdNct + (eZcq,t − 1)StdNcq,t. (A.1)

Consider an agent who allocates wealth between S and the risk-free asset. Let αt be

the fraction of wealth in the risky asset St, and let ct be the agent’s consumption. The
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wealth process is then given by

dWt =
(
Wtαt

(
µ− rt + l−1

)
+Wtrt − ct

)
dt+WtαtσdBct

+ αtWt

(
(eZct − 1)StdNct + (eZcq,t − 1)StdNcq,t

)
,

where rt denotes the instantaneous risk-free rate. Optimal consumption and portfolio

choices must satisfy the following Hamilton-Jacobi-Bellman (HJB) equation:

sup
αt,Ct

{
JW
(
Wtαt

(
µ− rt + l−1

)
+Wtrt − ct

)
+ κλc

(
λ̄c − λct

)
+ κλcq

(
λ̄cq − λcq,t

)
+

1

2
JWWW

2
t α

2
tσ

2 +
1

2

(
Jλcλcσ

2
λcλct + Jλcqλcqσ

2
λcqλcq,t

)
+ λctEνc

[
J
(
Wt

(
1 + αt

(
eZct − 1

))
, λt
)
− J (Wt, λt)

]
+ λcq,tEνcq

[
J
(
Wt

(
1 + αt

(
eZcq,t − 1

))
, λt
)
− J (Wt, λt)

]
+ f (ct, Vt)

}
= 0, (A.2)

where Jn denotes the first derivative of J with respect to variable n, for n equal to λi or

W , and Jnm denotes the second derivative of J with respect to n and m.

In equilibrium, αt = 1 and ct = Wtl
−1. Substituting these policy functions into (A.2)

implies

JWWtµ+ Jλcκλc
(
λ̄c − λct

)
+ Jλcqκλcq

(
λ̄cq − λcq,t

)
+

1

2
JWWW

2
t σ

2

+
1

2

(
Jλcλcσ

2
λcλct + Jλcqλcqσ

2
λcqλcq,t

)
+ λctEνc

[
J
(
Wte

Zct , λt
)
− J (Wt, λt)

]
+ λcq,tEνcq

[
J
(
Wte

Zcq,t , λt
)
− J (Wt, λt)

]
+ f (ct, Vt) = 0. (A.3)

By the envelope condition fC = JW , we obtain β = l−1. Given the consumption-wealth

ratio, it follows that

f (ct, Vt) = f
(
Wtl

−1, J(Wt, λt)
)

= βW 1−γ
t

(
log β − log I(λt)

1− γ

)
. (A.4)
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Substituting (A.4) and (6) into (A.3) and dividing both sides by W 1−γ
t I(λt), we find

µ+ I−1(1− γ)−1
(
Iλcκλc(λ̄c − λct) + Iλcqκλcq(λ̄cq − λcq)

)
− 1

2
γσ2

+
1

2
I−1

(
Iλcλcσ

2
λcλct + Iλcqλcqσ

2
λcqλcq,t

)
+ (1− γ)−1

(
λcEνc

[
e(1−γ)Zc − 1

]
+ λcqEνcq

[
e(1−γ)Zcq − 1

])
+ β

(
log β − log I(λt)

1− γ

)
= 0,

where Iλj denotes the first derivative of I with respect to λj and Iλjλj denotes the second

derivative for j ∈ {c, cq}.
Collecting terms in λjt results in the following quadratic equation for bj:

1

2
σ2
λj
b2
j − (κλj + β)bj + Eνj

[
e(1−γ)Zj − 1

]
,

for j ∈ {c, cq}, implying

bj =
κλj + β

σ2
λj

±

√√√√(κλj + β

σ2
λj

)2

− 2
Eνj

[
e(1−γ)Zj − 1

]
σ2
λj

,

Collecting constant terms results in the following characterization of a in terms of b:

a =
1− γ
β

(
µ− 1

2
γσ2

)
+ (1− γ) log β +

1

β
b>
(
κλ ∗ λ̄

)
.

Here and in what follows, I use ∗ to denote element-by-element multiplication of vectors of

equal dimension. Given the form of I(λ), Iλj = bjI and Iλjλj = b2
jI for j ∈ {c, cq}. Because

there are no interaction terms, the solution takes the same form as when there is only a

single type of jump. As in Wachter (2012, Appendix A.1) we take the negative root of the
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corresponding equation for bj to find:

bj =
κλj + β

σ2
λj

−

√√√√(κλj + β

σ2
λj

)2

− 2
Eνj

[
e(1−γ)Zj − 1

]
σ2
λj

.

Proof of Corollary 2 Since γ > 1, if Zj < 0, then the second term in the square root of

(9) is positive. Therefore the square root term is positive but less than
κj+β

σ2
j

, and bj > 0.

Similarly, if Zj > 0 then the second term in the square root of (9) is negative. Therefore

the square root term is positive and greater than
κj+β

σ2
j

, and bj < 0.

Proof of Corollary 3 The risk-free rate is obtained by taking the derivative of the HJB

(A.2) with respect to αt, evaluating at αt = 1, and setting it equal to 0. The result

immediately follows.

A.3 The state-price density

Duffie and Skiadas (1994) show that the state-price density πt equals

πt = exp

{∫ t

0

fV (Cs, Vs) ds

}
fC (Ct, Vt) ,

where fC and fV denote derivatives of f with respect to the first and second argument

respectively. Note that the exponential term is deterministic. From equation (4), I obtain

fC (Ct, Vt) = β (1− γ)
V

C
.

From the equilibrium condition Vt = J (β−1Ct, λt), together with the form of the value

function (6), I get

fC (Ct, Vt) = βγC−γt I(λt). (A.5)
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Applying Ito’s Lemma to (A.5) implies

dπt
πt−

= µπtdt+ σπtdBt +
(
e−γZct − 1

)
dNct +

(
e−γZcq,t − 1

)
dNcq,t, (A.6)

where

σπt =
[
−γσ, 0, 0, bcσc

√
λct, bcqσcq

√
λcq,t

]
. (A.7)

It also follows from no-arbitrage that

µπt = −rt −
(
λctEνc

[
e−γZct − 1

]
+ λcq,tEνcq

[
e−γZcq,t − 1

])
= −β − µ+ γσ2 −

(
λctEνc

[
e(1−γ)Zct − 1

]
+ λctEνcq

[
e(1−γ)Zcq,t − 1

])
. (A.8)

From (A.6) we can see that in the event of a disaster, marginal utility (as represented by

the state-price density) jumps upward. This implies that investors require compensation

for bearing disaster risks. The first element of (A.7) implies that the standard diffusion

risk in consumption is priced; more importantly, changes in λjt are also priced as reflected

by the last two elements of (A.7).

The nominal state-price density π$ equals

π$
t =

πt
Pt
. (A.9)

The nominal state-price density follows

dπ$
t

π$
t−

= µ$
πtdt+ σ$

πtdBt +
(
e−γZct − 1

)
dNct +

(
e−γZcq,t − 1

)
dNcq,t, (A.10)

where

σ$
πt =

[
−γσ, −σP , 0, bcσλc

√
λct, bcqσλcq

√
λcq,t

]
, (A.11)
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and

µ$
πt = −β − µ+ γσ2 − qt + σ2

P −
(
λctEνc

[
e(1−γ)Zct − 1

]
+ λctEνcq

[
e(1−γ)Zcq,t − 1

])
. (A.12)

By comparing (A.11) to (A.7), we can see that the second element is no longer zero. This

implies that the diffusion risk in inflation is also priced in the nominal state-price density.

By comparing (A.12) to (A.8), we can see that the expected inflation and volatility of

realized inflation also affect the drift of the nominal state-price density.

Proof of Corollary 4 It follows from no-arbitrage that

µ$
πt = −r$

t −
(
λctEνc

[
e−γZct − 1

]
+ λcq,tEνcq

[
e−γZcq,t − 1

])
,

where µ$
πt is given by (A.12). Therefore the nominal risk-free rate on a nominal bond, r$

t is

r$
t = β + µ− γσ2 + qt − σ2

P + λctEνc
[
e−γZct

(
eZct − 1

)]
+ λqtEνcq

[
e−γZcq,t

(
eZcq,t − 1

)]
.

B Pricing general zero-coupon equity

This section provides the price of a general form of a zero-coupon equity, both in real terms

and in nominal terms. The dividend on the aggregate market and the face value on the

bond market will be special cases.

B.1 Real assets

First I will consider the price of a real asset. Consider a stream of cash-flow that follows a

jump-diffusion process:

dDt

Dt−
= µD dt+ σD dBt + (eφD,cZct − 1) dND

ct + (eφD,cqZcq,t − 1) dND
cq,t. (B.1)
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This stream of cash-flow is subject to Poisson shocks dND
jt , j ∈ {c, cq}. The arrival time of

these Poisson shocks are linked to the arrival time of consumption disasters.

Assumption B.1. When a consumption disaster happens, this cash-flow stream experi-

ences a jump with probability pD; that is, for j ∈ {c, cq}.

• If dNjt = 0, then dND
jt = 0.

• If dNjt = 1, then

dND
jt =


1 with probability pD

0 otherwise.

With this assumption, φD,j denotes the jump multiplier for a type-j jump, for j ∈
{c, cq}.

Lemma B.1. Let H (Dt, λt, τ) denote the time t price of a single future cash-flow at time

s = t+ τ :

H(Dt, λt, s− t) = Et

[
πs
πt
Ds

]
.

By Ito’s Lemma, we can write

dH(Dt, λt, τ)

H(Dt, λt, τ)
= µH(τ),tdt+ σ>H(τ),tdBt +Jc(πtH(Dt, λt, τ))dNct +Jcq(πtH(Dt, λt, τ))dNcq,t.

for a scalar process µH(τ),t and a vector process σH(τ),t. Then, no-arbitrage implies that:

µπ,t + µH(τ),t + σπ,tσ
>
H(τ),t +

1

πtHt(τ)
λ>t J̄ real(πtH(Dt, λt, τ)) = 0. (B.2)

Proof No-arbitrage implies that H(Ds, λs, 0) = Ds and that

πtH(Dt, λt, τ) = Et [πsH(Ds, λs, 0)] .

To simplify notation, let Ht = H(Dt, λt, τ), µH,t = µH(τ),t, and σH,t = σH(τ),t. It follows
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from Ito’s Lemma that

dHt

Ht−
= µH,tdt+ σH,tdBt + (eφD,cZct − 1)dNct + (eφD,cqZcq,t − 1)dNcq,t.

Applying Ito’s Lemma to πtHt implies that the product can be written as

πtHt = π0H0 +

∫ t

0

πsHs

(
µH,s + µπ,s + σπ,sσ

>
H,s

)
+

∫ t

0

πsHs(σH,s + σπ,s)dBs∑
0<sci≤t

(
πsciHsci − πs−ciHs−ci

)
+

∑
0<scq,i≤t

(
πscq,iHscq,i − πs−cq,iHs−cq,i

)
, (B.3)

where sji = inf{s : Njs = i} (namely, the time that the ith time type-j jump occurs, where

j ∈ {c, cq}).
We use (B.3) to derive a no-arbitrage condition. The first step is to compute the

expectation of the jump terms
∑

0<sji≤t

(
πsjiHsji − πs−jiHs−ji

)
. The pure diffusion processes

are not affected by the jump. Adding and subtracting the jump compensation terms from

(B.3) yields:

πtHt = π0H0+

∫ t

0

πsHs

(
µH,s + µπ,s + σπ,sσ

>
H,s +

1

πsHs

(
λcJ̄c(πsHs) + λcqJ̄cq(πsHs)

))
ds

+

∫ t

0

πsHs(σH,s + σπ,s)dBs +
∑

0<sci≤t

((
πsciHsci − πs−ciHs−ci

)
−
∫ t

0

πsHsλcJ̄c(πsHs)ds

)
+

∑
0<scq,i≤t

((
πscq,iHscq,i − πs−cq,iHs−cq,i

)
−
∫ t

0

πsHsλcqJ̄cq(πsHs)ds

)
(B.4)

Under mild regularity conditions analogous to those given in Duffie, Pan, and Singleton

(2000), the second and the third terms on the right hand side of (B.4) are martingales.

Therefore the first term on the right hand side of (B.4) must also be a martingale, and it

follows that the integrand of this term must equal zero:

µπ,t + µH(τ),t + σπ,tσ
>
H(τ),t +

1

πtHt(τ)
λ>t J̄ real(πtH(Dt, λt, τ)) = 0.
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Theorem B.2. The function H takes an exponential form:

H(Dt, λt, τ) = Dt exp
{
aφ(τ) + λ>t bφλ(τ)

}
, (B.5)

where bφλ = [bφλc , bφλcq ]
>. Function bφλj for j ∈ {c, cq} solves

dbφλj
dτ

=
1

2
σ2
λj
bφλj(τ)2 +

(
bjσ

2
λj
− κλj

)
bφλj(τ)

+ pDEνj

[
e(φD,j−γ)Zjt − e(1−γ)Zjt

]
+ (1− pD)Eνj

[
e−γZjt − e(1−γ)Zjt

]
, (B.6)

and function aφ solves

daφ
dτ

= µD − µ− β + γσ (σ − σD) + bφλ(τ)>
(
κλj ∗ λ̄j

)
. (B.7)

The boundary conditions are aφ (0) = bφλc(0) = bφλcq(0) = 0.

Proof See proof of Theorem B.4.

B.2 Nominal asset

Similar no-arbitrage conditions can be derived for nominally denominated assets. Suppose

cash-flow that follows:

dD$
t

D$
t−

= µD$ dt+ σD$ dBt + (eφ
$
D,cZct − 1) dND

ct + (eφ
$
D,cqZcq,t − 1) dND

cq,t,

where the process ND
jt is given by Assumption B.1 and φ$

D,c and φ$
D,cq are the jump multi-

pliers for the Nc– and Ncq–type jumps, respectively.

Lemma B.3. Let H$(D$
t , qt, λt, τ) denote the time t price of a single future dividend pay-

ment at time t+ τ :

H$(D$
t , qt, λt, s− t) = Et

[
π$
s

π$
t

D$
s

]
.
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By Ito’s Lemma, we can write

dH$(D$
t , qt, λt, τ)

H$(D$
t , qt, λt, τ)

= µH$(τ),tdt+ σ>H$(τ),tdBt + Jc(π$
tH

$(D$
t , qt, λt, τ))dNct

+ Jcq(π$
tH

$(D$
t , qt, λt, τ))dNcq,t + Jq(π$

tH
$(D$

t , qt, λt, τ))dNqt.

for a scalar process µH$(τ),t and a vector process σH$(τ),t. Then, no-arbitrage implies that:

µπ$,t + µH$(τ),t + σπ$,tσ
>
H$(τ),t +

1

π$
tH

$
t (τ)

(
λctJ̄c(π$

tH
$(D$

t , qt, λt, τ))

+ λcq,t
(
J̄cq(π$

tH
$(D$

t , qt, λt, τ)) + J̄q(π$
tH

$(D$
t , qt, λt, τ))

))
= 0, (B.8)

Proof See proof of Lemma B.1.

Theorem B.4. The function H$ takes an exponential form:

H$(D$
t , qt, λt, τ) = D$

t exp
{
aφ$(τ) + bφ$q(τ)qt + bφ$λ(τ)>λt

}
, (B.9)

where bφ$λ =
[
bφ$λc , bφ$λcq

]
. Function bφ$q solves

dbφ$q
dτ

= −κqbφ$q(τ)− 1; (B.10)

function bφ$λc solves

dbφ$λc
dτ

=
1

2
σ2
λcbLλc(τ)2 +

(
bcσ

2
λc − κλc

)
bφ$λc(τ)

+ pDEνc

[
e(φ$D,c−γ)Zct − e(1−γ)Zct

]
+ (1− pD)Eνc

[
e−γZct − e(1−γ)Zct

]
; (B.11)
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function bφ$λcq solves

dbφ$λcq
dτ

=
1

2
σ2
λcqbφ$λcq(τ)2 +

(
bcqσ

2
λcq − κλcq

)
bφ$λcq(τ) + Eνq

[
e−bφ$q(τ))Zqt − 1

]
+ pDEνcq

[
e(φ

$
D,cq−(γ+b

φ$q
(τ)))Zcq,t − e(1−γ)Zcq,t

]
+ (1− pD)Eνcq

[
e−(γ+b

φ$q
(τ))Zcq,t − e(1−γ)Zcq,t

]
; (B.12)

and function aL solves

daφ$

dτ
= µD−β−µ+γσ(σ−σD)+σ2

P +
1

2
σ2
qbφ$q(τ)2 +bφ$q(τ)κq q̄+bφ$λ(τ)>(κλ ∗ λ̄). (B.13)

The boundary conditions are aφ$(0) = bφ$q(0) = bφ$λc(0) = bφ$λcq(0) = 0.

Proof It follows from Ito’s Lemma that

dH$
t

H$
t−

= µH$,tdt+ σH$,tdBt +
1

H$
t−

(
Jc(H$

t ) + Jcq(H$
t ) + Jq(H$

t )

)
,

where µH$ and σH$ are given by

µH$,t =
1

H$

(
∂H$

∂q

(
q̄ − qt

)
+
∂H$

∂λc

(
λ̄c − λct

)
+
∂H$

∂λcq

(
λ̄c − λcq,t

)
− ∂H$

∂τ

+
1

2

∂2H$

∂q2
j

σ2
q +

1

2

(
∂2H$

∂λ2
c

σ2
λc +

∂2H$

∂λ2
c

σ2
λc

))
= bφ$q(τ)κq (q̄ − qt) + bφ$λc(τ)κλc

(
λ̄c − λct

)
+ bφ$λcq(τ)κλcq

(
λ̄cq − λcq,t

)
+

1

2
bφ$q(τ)2σ2

q +
1

2

(
bφ$λc(τ)2σ2

λcλct + bφ$λcq(τ)2σ2
λcqλcq,t

)
−
(
daφ$

dτ
+
dbφ$q
dτ

qt +
∑
j

dbφ$λj
dτ

λjt

)
, (B.14)
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and

σH$,t =
1

L

(
∂H$

∂qt
[0, 0, σq

√
qt, 0, 0] +

∂H$

∂λc
[0, 0, 0, σλc

√
λct, 0] +

∂H$

∂λcq
[0, 0, 0, 0, σλcq

√
λcq,t]

)
=
[
0, 0, bφ$q(τ)σq

√
qt, bφ$λc(τ)σλc

√
λct, bφ$λcq(τ)σλcq

√
λcq,t

]
. (B.15)

Furthermore,

J̄c(π$
tH

$
t )

π$
tH

$
t

= pDEνc

[
e(φ$D,c−γ)Zct − 1

]
+ (1− pD)Eνc

[
e−γZct − 1

]
, (B.16)

J̄cq(π$
tH

$
t )

π$
tH

$
t

= pDEνcq

[
e(φ

$
D,cq−(γ+b

φ$q
(τ)))Zcq,t − 1

]
+ (1− pD)Eνcq

[
e−(γ+b

φ$q
(τ))Zcq,t − 1

]
,

(B.17)

and

J̄q(π$
tH

$
t )

π$
tH

$
t

= Eνq

[
e−bφ$q(τ))Zqt − 1

]
. (B.18)

Recall that λq = λcq. Substituting (B.14) – (B.17) along with (A.11) and (A.12) into the

no-arbitrage condition (B.8) implies that functions aφ$ , bφ$q, bφ$λc , and bφ$λcq solve the

following ordinary differential equation:

bφ$q(τ)κq (q̄ − qt) + bφ$λc(τ)κλc
(
λ̄c − λct

)
+ bφ$λcq(τ)κλcq

(
λ̄cq − λcq,t

)
+

1

2
bφ$q(τ)2σ2

q +
1

2

(
bφ$λc(τ)2σ2

λcλct + bφ$λc(τ)2σ2
λcλct

)
− β − µ+ γσ2 − qt + σ2

P

+ bφ$λc(τ)bjσ
2
λcλct + bφ$λcq(τ)bjσ

2
λcqλcq,t + pDλctEνc

[
e(φ$D,c−γ)Zct − e(1−γ)Zct

]
+ (1− pD)λctEνc

[
e−γZct − e(1−γ)Zct

]
+ pDλcq,tEνcq

[
e(φ

$
D,cq−(γ+b

φ$q
(τ)))Zcq,t − e(1−γ)Zcq,t

]
+ (1− pD)λcq,tEνcq

[
e−(γ+b

φ$q
(τ))Zcq,t − e(1−γ)Zcq,t

]
+ λcq,tEνq

[
e−bφ$q(τ))Zqt − 1

]
−
(
daφ$

dτ
+
dbφ$q
dτ

qt +
dbφ$λc
dτ

λct +
dbφ$λcq
dτ

λcq,t

)
= 0. (B.19)
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Collecting qt terms results in the following ordinary differential equation:

dbφ$q
dτ

= −κqbφ$q(τ)− 1;

collecting terms multiplying λc results in the following ordinary differential equation for

bφ$λc

dbφ$λc
dτ

=
1

2
σ2
λcbLλc(τ)2 +

(
bcσ

2
λc − κλc

)
bφ$λc(τ)

+ pDEνc

[
e(φ$D,c−γ)Zct − e(1−γ)Zct

]
+ (1− pD)Eνc

[
e−γZct − e(1−γ)Zct

]
;

collecting terms multiplying λcq results in the following ordinary differential equation for

bφ$λcq

dbφ$λcq
dτ

=
1

2
σ2
λcqbφ$λcq(τ)2 +

(
bcqσ

2
λcq − κλcq

)
bφ$λcq(τ) + Eνq

[
e−bφ$q(τ))Zqt − 1

]
+ pDEνcq

[
e(φ

$
D,cq−(γ+b

φ$q
(τ)))Zcq,t − e(1−γ)Zcq,t

]
+ (1− pD)Eνcq

[
e−(γ+b

φ$q
(τ))Zcq,t − e(1−γ)Zcq,t

]
;

and collecting constant terms results in the following ordinary differential equation for aL:

daφ$

dτ
= µD − β − µ+ γσ(σ − σD) + σ2

P +
1

2
σ2
qbφ$q(τ)2 + bφ$q(τ)κq q̄ + bφ$λ(τ)>(κλ ∗ λ̄).

The boundary conditions are aφ$(0) = bφ$q(0) = bφ$λc(0) = bφ$λcq(0) = 0.

C Nominal bond pricing

Proof of Corollary 6

y
$,(τ)
t =

1

τ
log

(
f $
t

L
$,(τ)
t

)
,

where L
$,(τ)
t is given by (14), then the results immediately follows.
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Proof of Theorem 7 By the no-arbitrage condition (B.8) and the definition of µπ$ (A.12),

we can rewrite the premium in population (22) as

r
$,(τ)
t − r$

t = −σπ$,tσ
>
L,t − λct

(
J̄c
(
π$
tL

$
t

)
π$
tL

$
t

− J̄c(π
$
t )

π$
t

− J̄c(L
$
t )

L$
t

)

− λcq,t
(
J̄cq
(
π$
tL

$
t

)
π$
tL

$
t

− J̄cq(π
$
t )

π$
t

− J̄cq(L
$
t )

L$
t

)
− λqt

(
J̄q
(
π$
tL

$
t

)
π$
tL

$
t

− J̄q(π
$
t )

π$
t

− J̄q(L
$
t )

L$
t

)
.

From (A.10), we know that for j ∈ {c, cq},

J̄j(π$
t )

π$
t

= Eνj
[
e−γZjt − 1

]
,

and
J̄q(π$

t )

π$
t

= 0. Furthermore, recall that the Nq type of jump (inflation spike) does not

affect π$, therefore;
J̄q(π$

tL
$
t)

π$
tL

$
t

=
J̄q(L$

t)
L$
t

. From (B.16) – (B.17) we know that

J̄c
(
π$
tL

$
t

)
π$
tL

$
t

= pDEνc
[
e(1−γ)Zct − 1

]
+ (1− pD)Eνc

[
e−γZct − 1

]
,

J̄cq
(
π$
tL

$
t

)
π$
tL

$
t

= pDEνcq

[
e1−(γ+b

L$q
(τ))Zcq,t − 1

]
+ (1− pD)Eνcq

[
e−(γ+b

L$q
(τ))Zcq,t − 1

]
.

Furthermore,

J̄c
(
L$
t

)
L$
t

= pDEνc
[
eZct − 1

]
,

J̄cq
(
L$
t

)
L$
t

= pDEνcq

[
e1−b

L$q
(τ)Zcq,t − 1

]
+ (1− pD)Eνcq

[
e−bL$q

(τ)Zcq,t − 1
]
.

Together with (A.11) and (B.15), we obtain:

r
$(τ)
t − r$

t = −λ>t
(
bL$λ(τ) ∗ b ∗ σ2

λ

)
+ λcpD Eνc

[
(e−γZct − 1)(1− eZct)

]
+ λcq

(
(1− pD)Eνcq

[
(e−γZcq,t − 1)(1− e−bL$q

(τ)Zcq,t)
]

+ pDEνcq

[
(e−γZcq,t − 1)(1− e(1−b

L$q
(τ))Zcq,t)

])
.
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Figure 1: Inflation disasters: Distribution of consumption declines and inflation rates
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Notes: Histograms show the distribution of large consumption declines (peak-to-trough

measure) and high inflation (average annual inflation rate) in periods where large con-

sumption declines and high inflation co-occur. These figures exclude eight events in which

average annual inflation rates exceeded 100%. Data from Barro and Ursua (2008).
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Figure 2: Data vs. model consumption declines
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Notes: This figure plots the distributions of large consumption declines in the data and

the power law distribution used in the model. The top-left panel plots the distributions

of large consumption declines that do not co-occur with high inflation and the top-right

panel plots the power law distribution with parameter 10. The bottom-left panel plots

the distributions of large consumption declines that co-occur with high inflation and the

bottom-right panel plots the power law distribution with parameter 8. Data from Barro

and Ursua (2008).
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Figure 3: Solution for the nominal bond yield
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Notes: The nominal yield of a bond with maturity τ is

y
$,(τ)
t = −1

τ

(
aL(τ) + bLq(τ)qt + bLλ(τ)>λt

)
.

The top-left panel plots the constant term, the top-right panel plots the coefficient mul-

tiplying qt (expected inflation), the bottom-left panel plots the coefficient multiplying λc

(non-inflation disaster probability), and the bottom right panel plots the coefficient multi-

plying λcq (inflation disaster probability). All are plotted as functions of years to maturity

(τ).
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Figure 4: Yield curve as functions of the state variables
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Notes: The figure plots the responses of the nominal yield curve to a shock of standard

deviation on each of the three state variables. The dashed line represents the yield curve

when all variables are fixed at their means. The solid line in the top-left panel represents

high expected inflation; the solid line in the top-right panel represents high non-inflation

disaster probability; and the solid line in the bottom-left panel represents high inflation

disaster probability.
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Figure 5: Risk premiums as a function of non-inflation disaster probability
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Notes: This figure shows the instantaneous expected nominal return on a one-year nominal

zero coupon bond above the nominal risk-free rate (solid line) and the analogous premium

for the five-year nominal zero coupon bond (dashed line). Premiums are shown as a function

of the non-inflation disaster probability, λ1, while λ2 is fixed at its mean of 1.03%. Premiums

are in annual terms.
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Figure 6: Risk premiums as a function of inflation disaster probability
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Notes: This figure shows the instantaneous expected nominal return on a one-year nominal

zero coupon bond above the nominal risk-free rate (solid line) and the analogous premium

for the five-year nominal zero coupon bond (dashed line). Premiums are shown as a function

of the disaster probability, λ2, while λ1 is fixed at its mean of 1.83%. Premiums are in annual

terms.
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Figure 7: Average bond yield
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Notes: This figure plots the data and model-implied average nominal bond yield as a

function of years to maturity. The solid line plots the average nominal bond yields in the

data. The dashed line plots the median average bond yields in the small sample containing

no consumption disasters, and the dotted lines plot the 25% and 75% bounds. Data

moments are calculated using monthly data from 1952 to 2011. Data are constructed using

the Fama-Bliss dataset from CRSP. All yields are in annual terms.
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Figure 8: Volatility of bond yield
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Notes: This figure plots the data and model-implied volatility of nominal bond yield as a

function of years to maturity. The solid line plots the volatility of nominal bond yields in

the data. The dashed line plots the median volatility of bond yields in the small-samples

containing no consumption disasters, and the dotted lines plot the 25% and 75% bounds.

Data moments are calculated using monthly data from 1952 to 2011. Data are constructed

using the Fama-Bliss dataset from CRSP. All yields are in annual terms.
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Figure 9: Campbell-Shiller long rate regression
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Notes: This figure reports the coefficients of the Campbell-Shiller regression.

y
$,(n−h)
t+h − y$,(n)

t = constant + βn
1

n− h
(
y

$,(n)
t − y$,(h)

t

)
+ error,

where h = 0.25. The solid line plots the coefficients in the data. The dash-dotted line

plots the coefficients under the expectation hypothesis. The dashed line plots the median

value of the coefficients in the small-samples containing no consumption disasters, and the

dotted lines plot the 5% and 95% bounds. Data moments are calculated using monthly

data from 1952 to 2011. Data are constructed using Fama-Bliss dataset from the CRSP.
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Figure 10: Forward rate regression - First stage estimates
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Notes: This figure plots the coefficient from regressing average excess bond returns on

forward rates in the model. Average annual returns on two-, three-, four-, and five-year

nominal bonds, in excess of the return on the one-year bond, are regressed on the one-,

three-, and five-year forward rates. The figure shows the resulting coefficients as a function

of the forward-rate maturity. About 35% of the small-sample having no consumption

disaster have coefficients that form a tent shape, and this figure plots the average of the

coefficients in these samples.
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Figure 11: Principal component analysis
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Notes: This figure plots the results from the principal component analysis. I report the

median values from the subset of small-sample simulations that do not contain any disasters.

The top-left panel plots the loadings on the first principal component, the top-right panel

plots the loadings on the second principal component, and the bottom-left panel plots the

loadings on the third principal component. The bottom-right panel shows the percentage

of variance explained by each of the principal components. Data are available at monthly

frequency from June 1952 to December 2011.
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Table 1: Summary statistics of consumption disasters

Panel A: All countries

Number of consumption disasters 89

Number of consumption disasters with high inflation 30

Percentage of consumption disasters with high inflation (%) 33.71

Panel B: OECD countries

Number of consumption disasters 53

Number of consumption disasters with high inflation 17

Percentage of consumption disasters with high inflation (%) 32.08
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Table 2: Parameters

Panel A: Basic parameters

Average growth in consumption (normal times) µ̄ (%) 2.02

Average growth in dividend (normal times) µD (%) 3.48

Volatility of consumption growth (normal times) σ (%) 2.00

Leverage φ 3.0

Rate of time preference β 0.010

Relative risk aversion γ 3.0

Panel B: Inflation parameters

Average inflation q̄ (%) 2.70

Volatility of expected inflation σq (%) 1.30

Volatility of realized inflation σp (%) 0.80

Mean reversion in expected inflation κq 0.09

Panel C: Non-inflation disaster parameters

Average probability of non-inflation disaster λ̄c (%) 1.83

Mean reversion in non-inflation disaster probability κλc 0.11

Volatility parameter for non-inflation disaster σλc 0.112

Minimum non-inflation disaster (%) 10

Power law parameter for non-inflation disaster 10

Panel D: Inflation disaster parameters

Average probability of inflation disaster λ̄cq (%) 1.03

Mean reversion in inflation disaster probability κλcq 0.11

Volatility parameter for inflation disaster σλcq 0.103

Minimum inflation disaster (%) 10

Power law parameter for inflation disaster 8
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Table 3: Log consumption and dividend growth moments

Panel A: Consumption growth

No-Disaster Simulations All Simulations

Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

mean 1.91 1.57 2.00 2.42 −0.19 1.45 2.22 1.29

standard deviation 1.41 1.68 1.99 2.29 1.85 3.86 9.02 5.05

skewness −0.48 −0.51 −0.01 0.49 −6.06 −3.20 0.22 −6.61

kurtosis 3.49 2.22 2.82 3.97 2.50 16.18 43.29 69.83

Panel B: Dividend growth

No-Disaster Simulations All Simulations

Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

mean 1.78 2.01 3.29 4.56 −3.28 1.64 3.97 1.16

standard deviation 6.57 5.05 5.97 6.86 5.56 11.57 27.06 15.14

skewness −0.01 −0.51 −0.01 0.49 −6.06 −3.20 0.22 −6.61

kurtosis 5.26 2.22 2.82 3.97 2.50 16.18 43.29 69.83

Notes: Data moments are calculated using annual data from 1947 to 2010. Population

moments are calculated by simulating data from the model at a monthly frequency for

60,000 years and then aggregating monthly growth rates to an annual frequency. I also

simulate 10,000 60-year samples and report the 5th-, 50th- and 95th-percentile for each

statistic both from the full set of simulations and for the subset of samples for which no

consumption disasters occur.
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Table 4: Inflation moments

No-Disaster Simulations All Simulations

Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

Mean 3.74 0.27 3.65 12.59 0.91 6.12 28.51 11.16

Standard deviation 3.03 1.77 2.89 13.55 1.92 5.54 31.34 20.63

AC(1) 0.66 0.61 0.84 0.93 0.65 0.87 0.95 0.95

Notes: Data moments are calculated using annual data from 1947 to 2010. Population

moments are calculated by simulating data from the model at a monthly frequency for

60,000 years and then aggregating monthly growth rates to an annual frequency. I also

simulate 10,000 60-year samples and report the 5th-, 50th- and 95th-percentile for each

statistic both from the full set of simulations and for the subset of samples for which no

consumption disasters occur. All numbers are in annual level terms.
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Table 5: Nominal Yield Moments

Panel A: Average nominal bond yield

No-Disaster Simulations All Simulations

Maturity Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

1-year 5.20 2.39 5.67 13.09 2.49 7.39 23.26 10.86

2-year 5.40 2.66 5.80 13.06 2.71 7.51 23.27 10.92

3-year 5.58 2.88 5.88 12.93 2.89 7.60 23.15 10.92

4-year 5.72 3.03 5.96 12.85 3.03 7.65 22.97 10.89

5-year 5.82 3.18 6.03 12.71 3.14 7.67 22.68 10.83

Panel B: Volatility of nominal bond yield

No-Disaster Simulations All Simulations

Maturity Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

1-year 3.02 1.67 2.79 10.96 1.90 5.09 20.67 12.97

2-year 2.97 1.62 2.69 10.51 1.83 4.96 20.18 12.72

3-year 2.90 1.58 2.65 10.22 1.80 4.88 19.59 12.46

4-year 2.84 1.56 2.63 9.87 1.77 4.80 19.13 12.20

5-year 2.78 1.54 2.61 9.58 1.76 4.73 18.67 11.93

Notes: Panel A reports the average nominal bond yield and Panel B reports the volatility

of the nominal bond yield. Data moments are calculated using monthly data from 1952 to

2011. Population moments are calculated by simulating data from the model at a monthly

frequency for 60,000 years. I also simulate 10,000 60-year samples and report the 5th-,

50th- and 95th-percentile for each statistic both from the full set of simulations and for the

subset of samples for which no consumption disasters occur. All yields are in annual terms.
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Table 6: Correlation between principal components and state variables

PC1 PC2 PC3

expected inflation 0.92 0.09 0.11

non-inflation disaster risks −0.05 0.07 0.82

inflation disaster risks 0.06 −0.90 0.07

Notes: This table reports the correlation between each principal component and each state

variable in the model. I report the median value drawn from the subset of small-sample

simulations having no consumption disasters.
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Table 7: Campbell-Shiller long rate regression

No-Disaster Simulations All Simulations

Maturity Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

1-year −0.57 −1.02 −0.18 2.80 −0.93 0.31 3.65 0.44

2-year −0.74 −1.18 −0.31 2.90 −1.08 0.30 3.76 0.57

3-year −1.14 −1.43 −0.42 2.95 −1.31 0.27 3.87 0.67

4-year −1.44 −1.71 −0.54 2.96 −1.56 0.25 3.93 0.74

5-year −1.68 −2.01 −0.64 2.98 −1.80 0.23 3.96 0.79

Notes: This table reports the coefficients of the Campbell-Shiller regression.

y
$,(n−h)
t+h − y$,(n)

t = constant + βn
1

n− h
(
y

$,(n)
t − y$,(h)

t

)
+ error,

where h = 0.25 and each row represents a bond with a different maturity (n). Data

moments are calculated using quarterly data from June 1952 to December 2011.
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Table 8: Cochrane-Piazzesi forward rate regression

Panel A: Coefficient

No-Disaster Simulations All Simulations

Maturity Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

2-year 0.44 0.32 0.40 0.48 0.33 0.41 0.49 0.54

3-year 0.83 0.73 0.80 0.87 0.74 0.81 0.88 0.90

4-year 1.26 1.19 1.20 1.21 1.19 1.20 1.21 1.17

5-year 1.47 1.46 1.59 1.73 1.44 1.57 1.71 1.39

Panel B: R2-statistics

No-Disaster Simulations All Simulations

Maturity Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

2-year 0.16 0.02 0.15 0.48 0.01 0.11 0.41 0.01

3-year 0.17 0.03 0.16 0.47 0.02 0.11 0.41 0.01

4-year 0.20 0.03 0.16 0.44 0.02 0.12 0.39 0.01

5-year 0.18 0.03 0.17 0.41 0.02 0.12 0.37 0.01

Notes: This table reports the results from the second stage of the Cochrane-Piazzesi single

factor regression. It reports the coefficient on the linear combination of forward rates

on nominal bonds and the R2-statistics from regressing excess bond return on the single

forward rate factor. I consider bonds with maturities of two, three, four and five years.

Data are monthly from 1952 to 2011.
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Table 9: Market moments

No-Disaster Simulations All Simulations

Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

E[R(0.25)] 1.25 1.03 2.03 2.54 −0.56 1.57 2.40 1.35

σ(R(0.25)) 2.75 0.90 1.26 2.13 0.98 1.64 3.29 2.15

E[Rm −R(0.25)] 7.25 3.12 5.06 7.87 2.09 4.78 8.57 5.04

σ(Rm) 17.79 9.68 13.75 19.91 11.21 17.80 27.44 18.91

Sharpe ratio 0.41 0.25 0.37 0.50 0.11 0.28 0.45 0.27

exp(E[p− d]) 32.51 30.71 36.13 39.06 24.48 33.77 38.35 32.66

σ(p− d) 0.43 0.07 0.15 0.30 0.09 0.21 0.44 0.29

AR1(p− d) 0.92 0.46 0.73 0.90 0.53 0.79 0.92 0.88

Notes: Data moments are calculated using annual data from 1947 to 2010. Population

moments are calculated by simulating monthly data from the model for 60,000 years and

then aggregating to an annual frequency. We also simulate 10,000 60-year samples and

report the 5th-, 50th-, and 95th-percentile for each statistic from the full set of simulations

and for the subset of samples for which no disasters occur. R(0.25) denotes the three-month

Treasury Bill return where R(0.25) = R
$,(0.25)
t

Pt+1

Pt
. Rm denotes the return on the aggregate

market, and p− d denotes the log price-dividend ratio.
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Table 10: Long-horizon regressions of returns on the price-dividend ratio (One-year holding
period)

Panel A: Aggregate Market

No-Disaster Simulations All Simulations

Data t-stat 0.05 0.50 0.95 0.05 0.50 0.95 Population

Coef. −0.12 [−1.89] −0.63 −0.34 −0.17 −0.53 −0.23 0.03 −0.13

R2 0.07 0.07 0.17 0.29 0.00 0.08 0.23 0.04

Panel B: Bond Market

No-Disaster Simulations All Simulations

Data t-stat 0.05 0.50 0.95 0.05 0.50 0.95 Population

Coef. 0.02 [1.19] −0.15 −0.00 0.13 −0.13 0.02 0.18 0.02

R2 0.02 0.00 0.03 0.23 0.00 0.02 0.19 0.00

Notes: This table reports the results from regressing one-year aggregate market excess

returns and average nominal bond excess return on the price-dividend ratios. Data are

annual from 1953 to 2010. For the data coefficients, I report t-statistics constructed using

Newey-West standard errors. Population moments are calculated by simulating monthly

data from the model for 60,000 years and then aggregating to an annual frequency. I also

simulate 10,000 60-year samples and report the 5th-, 50th- and 95th-percentile for each

statistic from the full set of simulations and for the subset of samples for which no disasters

occur.
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Table 11: Long-horizon regressions of returns on the linear combination of forward rates
(One-year holding period)

Panel A: Aggregate Market

No-Disaster Simulations All Simulations

Data t-stat 0.05 0.50 0.95 0.05 0.50 0.95 Population

Coef. 0.72 [0.48] −3.14 0.39 2.84 −3.06 0.54 3.24 −0.28

R2 0.00 0.00 0.03 0.16 0.00 0.02 0.14 0.00

Panel B: Bond Market

No-Disaster Simulations All Simulations

Data t-stat 0.05 0.50 0.95 0.05 0.50 0.95 Population

Coef. 1.03 [3.19] 0.86 1.17 1.55 0.81 1.20 1.68 1.59

R2 0.20 0.02 0.17 0.45 0.01 0.12 0.40 0.01

Notes: This table reports the results from regressing one-year aggregate market excess

returns and average nominal bond excess return on the linear combination of forward

rates. Data are annual from 1953 to 2010. For the data coefficients, I report t-statistics

constructed using Newey-West standard errors. Population moments are calculated by

simulating monthly data from the model for 60,000 years and then aggregating to an

annual frequency. I also simulate 10,000 60-year samples and report the 5th-, 50th- and

95th-percentile for each statistic from the full set of simulations and for the subset of

samples for which no disasters occur.
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Table 12: Long-horizon regressions of returns on the price-dividend ratio (Five-year holding
period)

Panel A: Aggregate Market

No-Disaster Simulations All Simulations

Data t-stat 0.05 0.50 0.95 0.05 0.50 0.95 Population

Coef. −0.28 [−2.87] −1.55 −1.05 −0.57 −1.51 −0.84 0.13 −0.52

R2 0.13 0.13 0.44 0.69 0.01 0.25 0.61 0.12

Panel B: Bond Market

No-Disaster Simulations All Simulations

Data t-stat 0.05 0.50 0.95 0.05 0.50 0.95 Population

Coef. 0.07 [1.83] −0.54 0.00 0.43 −0.51 0.08 0.62 0.07

R2 0.09 0.00 0.07 0.47 0.00 0.06 0.46 0.01

Notes: This table reports the results from regressing five-year aggregate market excess

returns and average nominal bond excess return on the price-dividend ratios. Data are

annual from 1953 to 2010. For the data coefficients, I report t-statistics constructed using

Newey-West standard errors. Population moments are calculated by simulating monthly

data from the model for 60,000 years and then aggregating to an annual frequency. I also

simulate 10,000 60-year samples and report the 5th-, 50th- and 95th-percentile for each

statistic from the full set of simulations and for the subset of samples for which no disasters

occur.
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Table 13: Long-horizon regressions of returns on the linear combination of forward rates
(Five-year holding period)

Panel A: Aggregate Market

No-Disaster Simulations All Simulations

Data t-stat 0.05 0.50 0.95 0.05 0.50 0.95 Population

Coef. 2.02 [0.68] −11.03 0.97 8.61 −11.61 1.41 10.89 −1.21

R2 0.01 0.00 0.08 0.45 0.00 0.07 0.40 0.00

Panel B: Bond Market

No-Disaster Simulations All Simulations

Data t-stat 0.05 0.50 0.95 0.05 0.50 0.95 Population

Coef. 1.83 [2.53] 1.04 3.37 5.83 0.84 3.66 7.18 6.45

R2 0.11 0.02 0.26 0.65 0.01 0.24 0.64 0.05

Notes: This table reports the results from regressing five-year aggregate market excess

returns and average nominal bond excess return on the linear combination of forward

rates. Data are annual from 1953 to 2010. For the data coefficients, I report t-statistics

constructed using Newey-West standard errors. Population moments are calculated by

simulating monthly data from the model for 60,000 years and then aggregating to an

annual frequency. I also simulate 10,000 60-year samples and report the 5th-, 50th- and

95th-percentile for each statistic from the full set of simulations and for the subset of

samples for which no disasters occur.
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