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ABSTRACT

We analyze the dynamic risk management policy of a firm that faces a tradeoff between
minimizing the costs of financial distress and maximizing financing for investment. Costly
external financing of investment discourages hedging because of the option to abandon
investment at low profitability and the option to expand investment at high profitability.
Our theory generates results consistent with actual policies, without relying on the costs
of risk management. First, we show that firms with safe assets and fewer growth options
can choose to hedge more aggressively than firms with risky assets. Second, firms prefer to
hedge systematic rather than firm-specific risk, even when hedging technologies for both
types of risk are available. Third, it is optimal not to hedge when cash savings are low and
do not cover investment needs. Therefore, more constrained firms may appear to hedge
less aggressively.
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Contemporary research on determinants of corporate hedging policy has stumbled upon sev-

eral facts that are seemingly inconsistent with firm optimization. First, hedging activity tends

to be concentrated in large mature firms with few growth options (Bartram, Brown, and Fehle

(2009), Nance, Smith, and Smithson (1993), Tufano (1996), Haushalter (2000), Graham and

Rogers (2002), Mian (1996), Allayannis and Ofek (2001), Gay and Nam (1998)). Second,

firms with tighter financing constraints do not appear to hedge more than firms with fewer

constraints (Rampini, Sufi, and Viswanathan (2013)). Finally, there is puzzling evidence that

riskier firms tend to have lower hedging ratios (see, e.g., Guay (1999)). These facts seem to

run counter to the basic prediction that hedging policy is dictated by firm risk.

The goal of this paper is to reconcile these empirical regularities with theory by building

a model of real investment and financing. The simple fact that the exercise of investment

options typically requires a large amount of financing goes a long way toward explaining the

observed hedging policies. Growth options can rationalize, for example, the lack of hedging

by the low-net-worth firms and can also explain why riskier firms, which inherently have more

investment options, hedge less than safer firms.

Intuitively, risk management does not always increase value because it jeopardizes chances

to undertake investment. For example, consider a company holding a single profitable invest-

ment option, which can only be financed internally. A low-expected-net-worth firm will lack

sufficient financing for a large investment project and will abandon it unless its cash flow

turns out to be very high. Since hedging effectively moves cash away from the high- to the

low-profitability states, it makes the prospect of undertaking investment even more remote

and is value-destroying absent any other benefits of hedging. In contrast, a high-expected-

net-worth firm will have sufficient financing for a project in most cases. Hedging is desirable

in this case because it increases the amount of cash in the low-profitability states and at the

same time preserves the level of investment in the high-profitability states.

Since the value of investment options naturally increases with profitability, an additional

“cash flow correlation” effect appears. If options are in-the-money, the cash flows from the

existing assets also tend to be high and thus provide a convenient source of investment funds.
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Over-hedging decreases the coordination between a firm’s investment demand and internal

funds, thereby necessitating costly external financing. We show that the natural positive

correlation between cash flows and investment is higher in riskier firms and in those with

more valuable real options, which helps to explain the lower hedging ratios for those firms.

Another way to understand the intuition for why cash risk can be optimal is by thinking

about the firm’s financing gap. The usual argument is that risk is undesirable because it

causes the firm to have either too much or too little cash to pay for its expenses, assuming

that expenses are constant. We find, however, that the firm’s investment costs tend to increase

with the cash flow. First, the option to abandon investment helps to reduce costs when the

cash flow is low. Second, the opportunity to expand investment results in higher costs when

the cash flow is high. In sum, the firm’s revenues and expenses tend to be positively correlated,

making the cash flow risk desirable.

The model exhibits parsimony in its assumptions, requiring only that investment cost

is significant and that external financing is costly. The optimal risk management strategy

balances the costs of financial distress with the ability to finance investment. We first de-

velop intuition for the optimal hedging ratio in the one-period setting and then build the

intertemporal model with dynamic cash accumulation. The solution is fairly general and can

accommodate systematic and idiosyncratic risk, the cost of hedging, and nonlinear hedging

strategies.

Using the model, we obtain several new results. First, the relation between the hedging

ratio and asset risk is non-monotonic. Firms with riskier assets may want to leave a larger

proportion of their risk unhedged because, intuitively, they have more valuable real options.

Cash flows and the demand for financing tend to have a higher correlation in these firms. In

contrast, safer firms exercise fewer growth options and are mainly concerned with eliminating

negative cash flow outcomes, which is accomplished by hedging most of their risk exposure.

Second, and paradoxically, stronger financing constraints can lead to less hedging. In par-

ticular, we show that the low-expected-net-worth firms maximize the value of their investment

by leaving their profits unhedged. In a sense, this effect is akin to the risk-shifting behavior of
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levered firms. The difference, however, is that we are discussing the financing effect that arises

because a higher risk in cash savings can increase the probability of investment. Shareholders

are protected by the option to abandon investment when there is a lack of financing, and the

value of this option increases with the riskiness of the firm’s cash flow. Therefore, our results

provide a new explanation for insufficient risk management that does not require high costs

of hedging or agency problems between shareholders and debtholders.

Third, using the dynamic model with cash accumulation, we derive the value of cash inside

the firm, examine the incentive to increase the risk of cash savings, and show the benefit of

a dynamic risk management policy relative to a one-shot policy. In static models, a fixed

hedging ratio must balance losses in some regions with gains in others. One must evaluate

the firm’s payoff function over the whole domain of the underlying risk variable to determine

whether this function is overall concave or convex. Under the dynamic policy, the firm can

tailor its hedging strategy to specific circumstances, such as the current liquidity position. For

example, we show that when the firm’s current cash savings are large, the value function is

concave and therefore hedging is optimal. In contrast, firm value exhibits convexity when cash

savings are relatively low, and it becomes optimal to increase the volatility of cash savings to

maximize the value of investment.

Further, we show that the optimal risk management strategy is influenced by the strategies

of other firms in the economy. The model predicts that the optimal hedging ratio will be higher

for firms with more systematic risk (i.e., common risk across firms) and lower for firms with

more idiosyncratic risk. To arrive at this result, we rely on the view that firms mainly compete

for the common component of their profits and therefore derive less value from investment

options that are linked to the overall state of economy.1 In turn, the limit to growth imposed

by the interaction between firms decreases the correlation between cash flows and option

value. Risk management policy therefore depends not only on the amount but also on the

1The basic idea is that competition erodes the value of a firm’s real options (see, e.g., Grenadier (2002)),
and that competition matters more if risk is systematic. For example, if the investment opportunities improve
uniformly for all firms in an industry, the increase in competition associated with higher aggregate production
and new entry into the market will limit each firm’s profits (see, e.g., Caballero and Pindyck (1996) for a
discussion of competition effects on real options). However, when a firm’s success is unique, its real options
are likely to increase in value, implying that firms that start with unique assets derive a larger component of
their market value from real options than firms with generic assets.
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type of risk that firms are subjected to.

The rest of the paper is organized as follows. The next section offers a brief literature

review. Section 2 presents a single-period model, which explains how risk management affects

investment. Section 3 lays out a general continuous-time model of investment under financing

constraints, which allows for cash savings and a dynamic hedging ratio. The last section

concludes.

I. Literature Review

Most studies on risk management show how financial hedging can create value. Benefits come

from the reduction in expected bankruptcy costs (e.g., Smith and Stulz (1985) and Graham

and Smith (1999)); higher debt capacity (Leland (1998) and Graham and Rogers (2002)); con-

vexity in operating costs and/or concavity in the production function (Froot, Scharfstein, and

Stein (1993) and Mackay and Moeller (2007)); improvement in contracting terms with firm

creditors, customers, and suppliers (Bessembinder (1991)); mitigation of information asym-

metry (DeMarzo and Duffie (1995)); and reduction in management overinvestment incentives

(Morellec and Smith (2007)).

It is somewhat more difficult to justify insufficient risk management, especially given

the recent developments in derivatives trading and reductions in transaction costs. Froot,

Scharfstein, and Stein (1993) show that firms may not fully eliminate risk exposure when

their cash flow is positively correlated with investment options. A related paper by Adam,

Dasgupta, and Titman (2007) shows that incomplete hedging can arise from competition.

Their study recognizes that a firm’s optimal risk management can depend on its competitors’

strategies because the goal of the firm is to increase cash reserves in those states of the world

where the competitors lack financing. We also discuss market competition in later parts of the

paper. However, unlike Adam, Dasgupta, and Titman (2007), we allow firm entry to depend

on the realization of profit shock and also let the firm seek external financing.

Methodologically, we contribute to the new literature on dynamic risk management, cash

policies, and investment. Bolton, Chen, and Wang (2011) build a structural investment
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model with adjustment costs and among other results derive the closed-form expression for the

optimal hedging ratio. In their model, the firm’s investment opportunity set is continuous and

does not depend on the current profitability shock; therefore the value function is everywhere

concave, inducing hedging. Fehle and Tsyplakov (2005) present a dynamic model, in which

full hedging is suboptimal when the firm is in deep financial distress or very far from it. Their

results rely on leverage, the costs of financial distress, and the fixed costs of hedging.

Similar to us, Rampini and Viswanathan (2010) obtain the result that financially con-

strained firms can prefer to hedge less, but using a different mechanism. In their model, both

financing and risk management involve promises to pay that need to be collateralized, thereby

resulting in a tradeoff between a firm’s ability to finance current investment and engage in

risk management in order to maximize future investment. Since more constrained firms find

it more advantageous to use the available cash for current investment, a negative relation

between financial constraints and risk management arises. In our setting, there are no col-

lateral constraints, and hence risk management is not limited by the current amount of cash.

Nevertheless, firms with low expected-net-worth can prefer to hedge less because this allows

them to maximize the probability of future investment.

Our work is also related to studies on investment and cash policies under financing con-

straints. Bolton, Wang, and Yang (2013) show that the investment threshold is non-monotonic

in cash in a real option model with financing constraints. Boyle and Guthrie (2003), Dasgupta

and Sengupta (2007) study the implications of cash uncertainty on investment. In these two

papers, cash flow risk matters because firms choose investment timing keeping the uncertainty

of future funding in mind. Our idea is much simpler: investment increases when more cash is

available, which means it must depend on a firm’s hedging policy.

II. Investment and Risk Management: Single-Period Analysis

To fix ideas, we develop a simple one-period example of risk management under financing

constraints that builds on the investment literature. We first provide the solution for the

optimal hedging strategy and then proceed with a discussion of how a firm’s net worth, firm

5



risk and its composition, product market competition, and investment opportunities affect

the optimal hedging ratio. In section III, we present a full model with cash accumulation and

dynamic risk management policy, which extends the simple example.

A. Preliminaries

There are three dates in the model corresponding to: (1) choice of hedging strategy, (2) cash

flow realization, external financing choice, and investment, and (3) the final payoff.2 There

is no discounting. We assume that the firm can hedge its cash flow risk by buying forward

contracts and postpone the discussion of nonlinear hedging strategies to Section II.E. For the

firm that adopts hedging ratio φ, the cash flow available at date 2 is

w = w0 + w1 (φε+ (1− φ) ε) , (1)

where ε is the primitive uncertainty (the cash flow shock) governed by the probability distri-

bution function g (ε) with mean ε and variance σ2. By construction, hedging decreases cash

flow variability but leaves the expected cash flow, w0 +w1ε, unchanged. This assumption, in

particular, implies that hedging has no direct costs. Note that if φ = 1, the firm’s internal

funds are completely independent of the profitability shock.

The cash flow w can be used to pay for firm’s operating costs and investment at date

2. Whenever the firm is short of internally generated funds, it can raise external financing

e available at a cost C(e). Following Kaplan and Zingales (1997) and Hennessy and Whited

(2007), we assume that the external cost function is increasing and convex (Ce > 0, Cee > 0).

Operating costs R have to be paid at date 2 to keep the firm running and to retain the

claim on the final payoff f0. The payoff is assumed to be high enough so that liquidating the

firm with the goal of avoiding the operating costs is never optimal, i.e., the firm is better off

by raising external financing than liquidating.3

At the management’s discretion, the firm can also invest an additional amount I −R > 0

2If the payoff is immediate, the last date is redundant. This notation simply clarifies that the final payoff
cannot be used to pay for investment or operating costs.

3The condition for no liquidation is f0−R−C(R−w) > 0. It is straightforward but unnecessary to model
liquidation or bankruptcy costs because the costs of external financing C() already punish the firm for having
a low cash flow.
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to replace the existing assets and to increase firm profitability. If this investment option

is exercised, the payoff at date 3 changes from f0 to θf (I), with variable θ capturing the

firm’s investment opportunities at date 2. Note that the assumption that new assets will

render old ones unproductive (profit f0 is not available if investment is made) is equivalent

to assuming that there are fixed costs of investment. Such costs may, for example, originate

from new investment cannibalizing profits associated with assets in place (see, e.g., Hackbarth,

Richmond, and Robinson (2012)).

To model the fact that firm’s investment opportunities are correlated with cash flow shocks,

we specify

θ = α (ε− ε) + β, (2)

where α ≥ 0 captures the positive correlation and higher β implies better overall investment

opportunities. We also assume that investment technology has decreasing returns to scale,

fI > 0, fII < 0.

B. Optimal Investment

The firm decides whether to invest and how much to invest. Should the firm invest, it chooses

the optimal amount of investment by solving:

max
I
{θf(I)− I − C(e)}, (3)

which gives I∗ through the first-order condition:

θfI (I∗)− 1 = Ce (e) . (4)

In general, invesment is optimal only if the profit net of investment and financing costs is

higher than the profit associated with running existing assets

θf(I)− I − C(e) ≥ f0 −R− C(e0), (5)

where e and e0 are the financing gaps given, respectively, by e = I − w, e0 = R− w.

Setting (5) to equality gives the implicit condition for the investment threshold ε∗, such

that investing in the new technology is optimal only for the cash flow shock above such

threshold, i.e., when ε > ε∗.
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The option to abandon investment is an important feature of the model that differentiates

our study from the past risk management literature. If the firm must invest, its sole concern

is minimizing the financing gap, and therefore a low cash flow risk is optimal. Realistically,

however, it may be better to drop the investment project alltogether if the external financing

is too costly and the present value of investment is relatively small. In this case, the cash flow

risk may be beneficial.

To summarize, the firm’s profit function in the no-investment (inaction) and investment

region is given by

Π (ε) =

 P = θf(I∗)− I∗ − C(e), if ε ≥ ε∗, investment region

P0 = f0 −R− C(e0), if ε < ε∗, inaction region

 (6)

where the threshold ε∗ is determined endogenously.

Before we proceed to analyzing the firm’s optimal hedging policy, it is worthwhile to

examine the incremental effect of hedging on investment. As the following lemma shows, the

answer depends on whether the cash from the firm’s fully hedged position is sufficient to cover

the investment cost.

Lemma 1. Suppose there exists an interior solution for the investment threshold ε∗. Then,

we have:

(i) If ε∗ > ε, then hedging increases the investment threshold (investment is more selective),

dε∗

dφ > 0, and decreases the optimal investment level, dI∗

dφ < 0, for ∀ε.

(ii) If ε∗ < ε, then hedging decreases the investment threshold (investment is less selective),

dε∗

dφ < 0. The effect of hedging on the optimal investment level is ambiguous.

Proof. All proofs are in the Appendix.

Intuitively, when a firm decides whether to invest, the firm internalizes the costs of external

financing, which increase with the financing gap. By hedging the firm effectively moves cash

from the high-profitability states (i.e., from the states above the average, ε > ε) to the low-

profitability states (ε < ε). In case (i) in the lemma, the investment is only optimal in the

high-profitability states. Therefore, it will require a larger amount of external financing when
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the firm decides to hedge. This will make investment less profitable and lead to an increase

in the investment threshold. In contrast, if investment was feasible in the low-profitability

states without hedging, it will require a smaller amount of external financing after hedging,

which results in a decrease in the investment threshold (case (ii)).

C. Optimal Hedging Ratio: Uncorrelated Investment

We first consider a case when the investment payoff is uncorrelated with firm profitability,

α = 0. For example, one can think of a firm that can invest $1 million to obtain a guaranteed

fixed payoff of $1.2 million. An unconstrained firm would always invest and pocket $0.2 million

from this deal, while a constrained firm may either invest less than $1 million or completely

abandon the investment if external financing is expensive.

The optimal hedging ratio maximizes the firm’s expected profit:

φ∗ = argmax
φ∈[0,1]

E [Π(ε)] . (7)

Proposition 1. Suppose α = 0 and φ ∈ [0, 1]. Then, the optimal hedging ratio is given by:

φ∗ = 0 for ε∗ ∈ [εL, εH ],

φ∗ = 1 otherwise,

where εL and εH are defined in the Appendix.

Two opposing effects determine the choice of optimal hedging. On the one hand, convexity

of costs (Cee > 0) and concavity of revenues (fII < 0) create an incentive to hedge, as in

Froot, Scharfstein, and Stein (1993). On the other hand, because the firm has an investment

option, there is a disadvantage to hedging. The benefit of hedging is independent of the

investment threshold, but the disadvantage is largest when the option value is large, i.e., when

the investment option is neither far out-of-the-money nor deep in-the-money. Therefore, a

firm will prefer not to hedge for intermediate investment thresholds ε∗ ∈ [εL, εH ].

Using the proposition, we next examine the comparative statics with respect to profitabil-

ity of firms investment opportunities, β, the firm’s wealth, w0, and volatility, σ. Note that a

high investment threshold ε∗ means that the firm is highly constrained.
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First, we show that hedging ratio can be lower for firms with more valuable investment

options.4

Corollary 1. Suppose ε∗ > εL. Then, firms with more valuable growth options choose to

hedge less, i.e., ∆φ∗

∆β ≤ 0.

This result follows from the fact that for firms with very poor investment opportunities

(low β), the probability of investment is small. Therefore, the risk management policy in these

firms is mostly driven by the desire to minimize the costs of financial distress, which is achieved

by choosing high hedging ratios. In contrast, firms with better investment opportunities are

concerned about investment financing, which results in choice of lower hedging ratios.

Second, we show that tighter financing constraints (lower w0) can lead to less hedging.

Corollary 2. Suppose ε∗ < εH . Then, easing of financing constraints leads weakly to more

hedging, i.e., ∆φ∗

∆w0
≥ 0.

The intuition is that greater savings lead to lower costs of external financing and therefore

a lower investment threshold. In this case, it is optimal for a firm to fully hedge its risk

exposure since such action guarantees investment and at the same time decreases the costs of

external financing when the profitability is low.

Finally, we investigate the role of volatility. Observing that the effects limiting the value of

hedging come from the firm holding investment options, we conjecture that the high volatility

firms—i.e., companies holding more valuable options—will be less aggressive in their cash flow

risk management.

Corollary 3. There exists σ > 0, such that for σ ∈ [0, σ] hedging ratio weakly decreases in

cash flow volatility, i.e., ∆φ∗/∆σ ≤ 0.

To understand why riskier firms may prefer lower hedging ratios, consider the case when

ε∗ > ε and the volatility of the profitability shock is close to zero. In this case, the probability

4The empirical literature generally finds that hedging activity is concentrated in firms with few growth
options, as measured by their book-to-market ratios (see, e.g., Bartram, Brown, and Fehle (2009), Mian
(1996), Graham and Rogers (2002), Allayannis and Ofek (2001), Haushalter (2000), Gay and Nam (1998).
Two papers by Guay (1999) and Geczy, Minton, and Schrand (1997) find the opposite result.
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of ever reaching the investment threshold is negligibly small so that investment does not affect

the risk management choice. However, because of the concavity of value function, any risk

is undesirable, and the hedging ratio is equal to 1.5 When the volatility increases, however,

the probability that the shock crosses the threshold increases. Additionally, not only the

probability but also the level of investment becomes larger because larger cash flow shocks

can be drawn from a distribution with a higher volatility. As a result, we have a lower

hedging ratio. Therefore, φ∗ must decrease in volatility at least in some continuous range of

the volatility parameter values.

D. Optimal Hedging Ratio: Positive Investment-Cash Flow Correlation

Proposition 2. There exists a threshold α > 0, a solution to (74) in the Appendix, such that:

i) for α > α, the optimal interior hedging ratio is given by

φ∗ = 1− α

w1

∫∞
ε∗ fIk (e) dG∫ ε∗

−∞Cee (e0) dG−
∫∞
ε∗ θfIIk (e) dG

, (8)

where

k (e) =
Cee(e)

Cee(e)− θfII (e)
, (9)

ii) for 0 < α < α, the optimal hedging ratio is given by a corner solution, i.e. φ∗ = φmin or

φ∗ = φmax.

The proposition shows that the natural tendency of real options to become more valuable

when the firm is profitable can discourage hedging. In particular, it follows from (8) that firms

with a positive correlation between cash flows and investment opportunities (α > 0) can use

incomplete hedging and that the amount of optimal hedging decreases when the correlation

is greater.

E. Illustrations and Comparative Statics

Figure 1 illustrates the effect of hedging on financing of investment and cash shortfall in the

distress region. The firm has operating costs R = 20 and can also invest a fixed amount

5More formally, observe that the threshold ε∗ is independent of volatility and that ε∗ > ε; therefore
Pr(ε > ε∗) −→ 0 when σ → 0.
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I − R = 80 in the profitable project. For exposition purposes, we assume that external

financing is prohibitively expensive and investment is possible only out of internal funds.

Parameters are chosen in such a way that investment always generates a higher profit than

running existing assets. Panels A and B are for the cases of w0 = 0 (low net worth) and

w0 = 30 (high net worth), respectively. If the low-net-worth firm fully hedges, the investment

never occurs. In contrast, the high-net-worth firm always invests when fully hedged. The

filled areas show regions of investment (on the right) and distress (on the left) when the firms

do not hedge.

In Figure 2, we plot the expected investment level as a function of hedging policy when

cash flows and investment opportunities are uncorrelated (α = 0). For illustration purposes,

we assume a logarithmic payoff function and quadratic costs of external financing. Lemma

1 establishes that the effect of risk management on investment depends on the profitability

of investment. If the investment option is out-of-the-money when hedging ratio is zero, then

hedging decreases the probability of investment. Indeed, Panel A shows that the expected

investment steadily drops with hedging, with the probability of investment eventually going

down to zero at high hedging ratios. In contrast, if the investment option is in-the-money

when hedging ratio is zero, hedging encourages investment. This effect is observed in Panel

B. In fact, when hedging ratio is high, the investment reaches the first-best level, i.e., the

investment made by an unconstrained firm.

Figure 3, Panels A and B, provide an illustration of the volatility effect on optimal hedg-

ing policy. We plot the optimal investment amount and cash flow realizations for a firm with

positive correlation between investment opportunitis and cash flows. The difference between

the investment amount and cash represents the “financing gap,” which requires external fi-

nancing. Because of a positive correlation between investment opportunities and cash flow,

the optimal investment amount increases with cash flow. Panel A shows what happens when

the firm has high expected distress costs in a low profitability state but does not hedge any

risk exposure. For comparison we also provide a corresponding function in Panel B, which

shows what happens when the firm hedges completely. It is clear that if the firm fully hedges,
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it minimizes the costs of financial distress where cash is low (since a constant financing gap

minimizes convex costs). However, the financing gap of the firm is not constant in the in-

vestment region and increases with higher cash flow shocks. Therefore, the firm with a high

hedging ratio will incur, in expectation, large costs of raising external financing for invest-

ment. In fact, by comparing Panel A and Panel B, we can see that a fully hedged firm will

even decrease the amount of state-contingent investment because of financing costs.

The next pair of panels illustrates how firm risk affects hedging. Panels B and C plot the

investment demand and cash relation for the case when the volatility of a firm’s cash flow is

low (Panel C and D). Intuitively, the probability of state-contingent investment is low, and

therefore demand for cash is unchanged across states of profitability. It follows that maximum

hedging is optimal in this case.

Next, Figure 4 shows how the value of investment and the optimal hedging ratio change

with volatility of the assets. In Panel A of Figure 4, we show the expected investment amount

of a constrained firm (solid line). The dashed line displays the expected investment level of an

unconstrained firm. It is easy to see that financial constraints affect both the level and proba-

bility of investment, and that the expected investment increases in volatility. Finally, in Panel

B of Figure 4, we plot the optimal hedging ratio of a firm as a function of volatility. Indeed,

we observe that at low volatility, the firm prefers to hedge all of its risk exposure. However,

as volatility increases, the optimal hedging ratio drops and can even become negative, which

means that a firm may choose to speculate.

Panel A of Figure 5 shows how the optimal hedging ratio changes with financing con-

straints for a firm with uncorrelated investment opportunities (dashed line) and for a firm

with a positive correlation between investment opportunities and cash flows (solid line). The

graph shows that the firm with a positive correlation never chooses full hedging and always

maintains a lower hedging ratio than the firm with uncorrelated investment opportunities.

When financing constraints ease (higher w0), both types of firms may prefer to hedge more

aggressively, but the relation between constraints and hedging is non-monotonic.

In Panel B, we plot the optimal hedging ratio as a function of firm’s investment opportu-
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nities β. It is clear that firms with higher positive correlation between their cash flows and

investment opportunities tend to have lower heddging ratios. Furthermore, the relation be-

tween risk management and the value of growth options is non-monotonic, which could explain

the mixed empirical results on the relation between hedging ratios and firms’ market-to-book

ratios.

Finally, Figure 6 shows the relation between the correlation between investment opportu-

nities and cash flows, α, and a firm’s optimal hedging ratio. Since larger positive α implies a

better coordination between firm’s investment needs and internal funds, it is intuitive that the

optimal hedging ratio decreases with α. However, the shape of the function crucially depends

on the value of investment options, β. For example, when β = 1.5, the hedging ratio function

is flat and equal to zero irrespective of α .

F. Economy with Multiple Firms

In the benchmark model we consider the firm’s decisions in isolation. However, both invest-

ment and risk management strategies must be determined in conjunction with strategies of

other firms.6 It is intuitive that real options are less valuable in a competitive economy since

increased production by other firms can depress the price of output and therefore impose a

limit to profitability. Since the profitability of new investment is reduced by competition, firms

invest less and are also less concerned with financing investment. Our model then predicts a

higher optimal hedging ratio.

The relation between real options and competition is well known in the real options litera-

ture; however most of the related studies are concerned with the exercise timing. For example,

Grenadier (2002) argues that competition decreases the value of real options and the advan-

tage of waiting to invest. In contrast, Leahy (1993) and Caballero and Pindyck (1996) argue

that despite the fact that the option to wait is less valuable in a competitive environment,

irreversible investment is still delayed because upside profits are limited by new entry. By

focusing on nonlinear production technology, Novy-Marx (2007) shows that firms in a com-

6Zhu (2012) empirically analyzes the relation between hedging policies and competition and concludes that
the hedging strategy a firm chooses affects the probability of the exit.
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petitive industry may delay irreversible investment longer than suggested by a neoclassical

framework. None of these studies, however, analyze hedging incentives.

We formalize the intuition by representing the total cash flow of the firm as the sum of

two parts—the component of the profit common across all firms and a firm-specific profit

component. We assume that firms are identical aside from the differences in their cash flow

composition. The required adjustment to the previous section’s model is as follows: we supply

the profitability shock with a firm-index “i” and separate it into common and idiosyncratic

components

εi = βivm +

√
1− β2

i vi, (10)

where we denote 0 < βi < 1 the sensitivity of the total cash flow to the common shock. It is

related but not necessarily equal to the market “beta.” We assume that the two components

have the same mean v and are drawn from an identical probability distribution with density

function G (v). This assumption allows us to vary the mix of firm-specific risk (by changing

βi) without changing the volatility of total cash flow.

With competition among different firms, the optimal investment strategy turns out to be

a function of both the total cash flow shock εi and the common component of profit vm. Since

competitors are more likely to invest with high shock vm, a particular firm’s investment is

more profitable when vm is relatively low and the idiosyncratic component vi is relatively

high.

It is important that in our model firms compete to the extent that their profit shocks

contain the common component. Therefore, firms in the economy that have a larger propor-

tion of the systematic profit risk are less valuable and have fewer real options. The following

proposition summarizes these facts.

Proposition 3. In the economy with multiple firms:

(i) The optimal hedging ratio φ∗ increases with competition.

(ii) The optimal hedging ratio φ∗ increases with βi.

The proposition states that the optimal hedging ratio increases with the systematic risk

exposure because the probability of exercise decreases. Even if the total cash flow is currently
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high, firms may not invest heavily because they expect new entry to reduce profitability in the

future. In contrast, firms with a high proportion of unique risk possess valuable investment

options and expect to invest in the future. Therefore, the correlation between their cash flows

and investment is large and leads to their adoption of a lower hedging ratio.7

G. Hedging with State-Contingent Securities

Here we extend the model allowing a firm to hedge a different amount of risk for each prof-

itability state, by trading Arrow-Debreu securities. Of course, a state-contingent hedging

strategy may be infeasible because markets are inherently incomplete, some risks are un-

hedgeable, or firms cannot accurately identify ahead of time the full set of future profitability

states. Below we ask what type of hedging policy the firm would adopt if it were allowed to

freely redistribute cash flows.

Assuming that profitability-contingent securities are fairly priced and there are no trans-

action costs, the expected cash amount must be independent of hedging. Suppose by hedging

the firm redistributes its cash in such a way that in each financial state, ε, it has cash w (ε).

Then we have ∫
w (ε) dG (ε) = w0 + w1ε ≡ w. (11)

The optimal policy maximizes firm value subject to the above fair-pricing constraint with

respect to w (ε)

L =

∫
Π (ε, w (ε)) dG(ε)− λ

(∫
w (ε) dG (ε)− w

)
. (12)

From the above maximization problem, the sensitivity of the firm’s cash to shock ε must be

state-independent and equal to the Lagrange multiplier λ on the constraint, i.e.,

Πw = λ. (13)

Intuitively, the marginal value of a dollar of cash has constant across the firm’s profitability

states; otherwise, the hedging strategy would call for moving more cash into the states with

7Mello and Ruckes (2005), Adam, Dasgupta, and Titman (2007) analyze optimal hedging in models with
product market competition. In their setting, firms choose a hedging policy simultaneously with their rivals
in anticipation of the opponent’s strategy and with the purpose to increase the chances of its own survival
in competition. The mechanism in our model is different. The ex-post competition decreases the value of
investment options that are not unique to the firm. This approach is more similar to that in the real options
literature (see, e.g., Grenadier (2002), Novy-Marx (2007)).
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the high marginal value of cash. Because λ is a constant independent of ε, we can use the

implicit function theorem to show

dw∗ (ε)

dε
=

 −
αfI
θfII

> 0, for ε > ε∗,

0, for ε ≤ ε∗.

 (14)

Expression (14) essentially defines optimal state-contingent policy w∗ (ε) subject to the fair-

pricing constraint (11). It says that the optimal amount of cash, w∗ (ε), is monotonically

increasing in ε in the investment region and is constant in the non-investment region. The

optimal hedging policy in the investment region will therefore call for purchases of non-linear

derivatives (e.g., out-of-the money call options), while in the inaction region hedging is linear

and can be accomplished with purchases of forward contracts. Further, the region in which

cash flows remain sensitive to the profitability shocks is larger with more valuable growth

options.

By analogy with (1), we can define the state-contingent hedging ratio as

φ (ε) = 1 +
1

w1

dw (ε)

dε
. (15)

From (14), the average hedging ratio is

φ = 1− α

w1

∫ ∞
ε∗

fI
θ (−fII)

dG(ε). (16)

According to (16), the average hedging ratio asymptotically increases to one with the in-

vestment threshold, ε∗. Therefore, when the firm has no investment options, full hedging is

optimal. Moreover, as firm risk increases, the integral in (16) becomes larger in magnitude

and the average hedging ratio goes down.

The one-period model provides the basic intuition for the static problem. However, it

assumes that firms can only finance investment out of their cash flows or using external

financing. This may be unrealistic because liquidity issues and a persistent wedge between

internal and external financing costs force firms to save. We next consider a dynamic model.
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III. Dynamic Model with Cash Accumulation

This section presents and solves the model with cash savings and dynamic risk management

policy.

A. Model Setup

Revenue Process Firms are price takers. At every point in time they observe the

stochastic output price, pt, and maximize their instantaneous profits by choosing the quantity

of produced goods, qt. The unit price follows the geometric Brownian motion (GBM) process

in the risk-adjusted probability measure8

dpt
pt

= µpdt+ σpdBp. (17)

Producing quantity qt is associated with a flow of convex costs per unit of time, mq
γ/(γ−1)
t ,

γ > 1. These costs reflect the company’s spending on labour and materials during the course

of production. The firm’s profit flow is then

Πtdt = max
qt

(
qtpt −mq

γ

γ−1

t

)
dt. (18)

The firm’s instantaneous optimization with respect to quantity of goods gives the optimal

output flow as a function of output price

q∗t (pt) =

(
pt (γ − 1)

mγ

)γ−1

. (19)

Substituting this expression in (18), we can write the firm’s profit flow as

Πtdt = pγt δdt, (20)

where we define the constant

δ =
1

γ

(
γ − 1

mγ

)γ−1

. (21)

Because the output flow depends only on the current value of output price, pt, but not

on shock, dBp, it is locally deterministic. The output flow is homogeneous of degree one in

8We assume there is no arbitrage in the economy and there exists a (unique) stochastic discount factor
(SDF) dΛt/Λt = −rdt − ςdBt, where E(dBtdBp) = ρBΛdt. Because of the positive risk premium implied by
SDF, the drift µp in the risk-adjusted measure Q is lower by ςσpρBΛ than in the physical measure.
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pγt . As we will see shortly, the firm’s basic valuation equation, including the present value

of firm’s profit and costs, is also homogeneous of degree one in pγt . Therefore pγt serves as a

numerare or a scaling factor.

Cash Inventory The firm is initially endowed with a stock of cash C0 and can carry

the cash balance forward by investing in a risk-free security earning a riskless rate of return

r. Unlike BCW (2011), we simplify the solution by assuming that carrying cash is costless.

Therefore the voluntary payout to shareholders is never optimal in the model.9 Cash inventory

grows because the firm retains earnings Πt. Additionally, the firm’s cash savings are subject

to shocks that are not directly related to the production process. We introduce this “cash

risk” by modeling the increments of the Brownian motion dBc that can unpredictably increase

or decrease savings. In summary, the dynamics of the cash process evolves according to

dCt = rCtdt+ Πtdt+ σcCtdBc. (22)

The three terms above capture, respectively, the interest earned on the running cash balance,

the profit flow accumulated from the current period’s production, and the cash inventory

risk. Note that dBc term in (22) is important in the model for several reasons. By design, it

captures the uncertainty in the firm’s financing environment, such as unanticipated expenses,

revenues, settlement of legal disputes, or proceeds from employee stock option exercises. More

important, cash inventory risk guarantees that the cash accumulation process is not locally

deterministic. In other words, this is the “true” cash inventory risk that persists even after

the model is scaled. For convenience, we assume that the error terms are uncorrelated, i.e.,

E [dBcdBp] = 0.

Because the firm has no leverage, it never finds it optimal to terminate production even

if the decrease in output price causes cash inventory to decrease to zero.10 Therefore, to

model the incentive to hedge and also to avoid the singularity problem when the cash variable

9The cost to cash accumulation can be easily accommodated in the model by reducing the interest rate
earned on cash savings. In this case, the optimal payout policy would amount to distributing excess cash when
the accumulated cash process reaches an upper boundary. We do not introduce the cost of carrying cash and
endogenous payout to keep the analysis simple.

10It is never optimal to liquidate an unlevered firm because the profit is guaranteed to stay positive. This is
the common feature in the cash flow models that use the geometric Brownian motion (e.g., Leland (1994)).
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approaches zero from above, we assume that the firm has to satisfy the minimum working

capital requirement. We impose the minimum requirement on savings as

C ≥ cpγ , (23)

with constant c > 0. Once the cash level falls below this threshold, the firm must raise more

cash at the marginal cost kd. One could interpret such cost as a proportional cost of financial

distress or a refinancing cost that is incurred in the low-cash states. We assume that the

firm cannot optimize over the choice of c. In our setup with no financial leverage, the lowest

possible value of c trivially minimizes the capital requirement cost.

Risk Management To mitigate the cash savings risk the firm can buy financial securi-

ties (e.g., futures or customized hedging contracts), that carry payments correlated with the

firm’s profitability. We consider the case in which the firm can optimize dynamically over its

hedging policy using only linear contracts. In particular, at any point in time, the firm can

choose to enter into Φt futures contracts. Anticipating that the optimal number of hedging

contracts will be proportional to the size of cash inventory, we amend the notation to measure

the number of contracts in the scaled units, i.e., φt = Φt/p
γ . The futures price has no drift

under the risk-neutral measure and evolves as follows11

dFt
Ft

= σFdBF . (24)

Hence, cash savings with a hedging portfolio follow

dCt = rCtdt+ δpγt dt+ σcCtdBc − pγφtFtσFdBF − πp
γ
t φtdt, (25)

where the last term captures the cost of hedging. We assume the following correlation struc-

ture:

E [dBcdBF ] = ρcdt, (26)

E [dBpdBF ] = ρpdt. (27)

11Equivalently, the model is solved with the forward price on the same underlying asset. See the Cox,
Ingersoll, and Ross (1981) for comparison of the futures and forward prices for the nonstochastic interest rate
case.
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The costs associated with hedging can be thought of as either direct transaction fees or the

cost of holding cash in a margin account and posting collateral. Note that complete hedging

in this framework would imply that dC is a locally deterministic function. It is achieved if

there is a perfect correlation between profit uncertainty and the hedging security (ρc = −1 or

ρc = 1) and the firm chooses hedging ratio equal to

φt =
ρcσcct
FσF

. (28)

Investment In addition to receiving the profit flow, the firm may have an opportunity

to invest in a new project at time τ . We model the investment option in a simple way to keep

the model tractable. In particular, if a Poisson shock with intensity λ arrives at time τ , the

firm can invest an amount ipγ and obtain an instantaneous payoff of θ (p) pγ , where θ (p) is a

weakly increasing function reflecting better investment opportunities at higher profitability.

The investment amount and the payoff from investment are both made proportional to pγ to

ensure that the firm’s cash flows do not outgrow investment.

If the firm does not have a sufficient cash balance to make investment, it needs to raise

external financing and pay the associated financing costs k (ipγ − C)+. We allow for the

possibility that k 6= kd because the costs of raising external financing in distress can, in

principle, differ from costs incurred at other times. The option is worthless if the costs of

financing exceed the benefit of the investment.

For tractability purposes, we assume that after investment is made the firm pays a dividend

and is immediately liquidated. The value of the firm at date τ is then equal to the final payout

D (C, p) = C + max
(
0, θ (p) pγ − ipγ − k (ipγ − C)+) . (29)

At any other time, the value of the firm is equal to the present value of cash flows, including

the interest earned on cash, plus the expected liquidation value

V (pt, Ct) =

∫ τ

t
(rCt + δpγt ) dt+

∫ τ

t
σcCtdBc + e−rτD (C, p) . (30)

Using Ito’s lemma and expression (22), we can describe the value function as a solution to
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the Hamilton-Jacoby-Bellman equation

(r + λ)V (p, C) =
σ2
pp

2

2
Vpp +

σ2
cC

2

2
VCC + µppVp (31)

+ (rC + δpγ)VC + λC + λmax
(
0, θ (p) pγ − ipγ − k (ipγ − C)+) .

This equation is subject to boundary conditions. First, when the cash level reaches the

threshold cpγ , we have from (23)

VC (p, cpγ) = 1 + kd, (32)

where VC is the first-order derivative of firm value with respect to cash savings. Second, when

the cash level is high, the value V (p, C) must approach the value of the fully unconstrained

firm.

We therefore obtain a second-order partial differential equation (PDE) with respect to

the profitability shock p and amount of cash C. In general, this equation does not have the

analytical solution. In the next section, we discuss a particular case of uncorrelated investment

option, for which the PDE can be reduced to the ordinary differential equation.

B. The Case of Uncorrelated Investment

Our model admits a closed-form solution (as an Ordinary Differential Equation with two

boundary conditions) for the case when the value of the investment option is uncorrelated

with the cash flow, θ (p) = θ, with θ > i. With this assumption, the value of a firm’s assets,

including cash, is proportional to pγ . One can think of the scaling parameter pγ as a new

numeraire or a new currency, in terms of which all values, such as firm value, cash holdings,

investment, and payoff, will be computed. Because of this scaling property, the model is

identical to a much simpler one, where all values are scaled by a factor of pγ .

It is therefore convenient to define the scaled cash variable, which will be the main state

variable in the model

c = Cp−γ . (33)

The value of the firm at date τ is

D (c, p) = cpγ + pγ
(
θ − i− k (i− c)+)+ , (34)
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where the first term is accumulated cash and the second term is the option payoff. When the

cash level is low and investment requires significant external financing, the option is optimally

abandoned. We define such a trigger level of scaled cash by

c∗ ≡ i− θ − i
k

. (35)

Finally, if cash savings are higher than the cost of investment when the investment option

arrives, i.e.,

c ≥ c ≡ i, (36)

the firm does not need to raise any external financing and does not incur any costs. Note,

however, that even if c ≥ c the firm still remains constrained. This is because cash c can fall

below c before an option arrives and therefore firm value is lower than that of the unconstrained

firm by the amount of expected financing costs. Unlike in Bolton, Wang, and Yang (2013), in

our model there is no such level of cash, at which the firm becomes permanently unconstrained.

Because of the cash risk term in (25), it is always possible for the level of cash to decrease

below the investment costs.

C. The Solution for Firm Value Without Hedging

We conjecture that the value function can be written in the following separable form

V (p, C) ≡ pγv
(
C

pγ

)
= pγv (c) , (37)

where v (c) is the scaled value function. Using definitions in (33) and (37), it is easy to show

Vp (p, C) = γpγ−1
(
v (c)− cv′ (c)

)
, (38)

VC (p, C) = v′ (c) , VCC (p, C) = v′′ (c) p−γ , (39)

Vpp (p, C) = γ (γ − 1) pγ−2
(
v (c)− cv′ (c)

)
+ c2γ2pγ−2v′′ (c) . (40)

Substituting (38-40) into the Hamilton-Jacoby-Bellman equation (31) and using θ (p) = θ,

we can write the second-order ordinary differential equation (ODE) for value function v (c),
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where now c is the only state variable(
λ+ r − γµp −

σ2
p

2
γ (γ − 1)

)
v (c) =

(
σ2
pγ

2 + σ2
c

) c2v′′ (c)

2
(41)

+v′ (c)

(
δ + rc− γµpc−

σ2
pc

2
γ (γ − 1)

)
+ λmax

(
c, c+ θ − i− k (i− c)+) .

To properly characterize the solution, we also need to specify two boundary conditions. The

first condition comes from the working capital requirement at the lower boundary (32), which

we can rewrite as

v′ (c) = 1 + kd. (42)

The second condition applies when cash savings are large, c → ∞. At this point, the firm

is not constrained and does not incur any costs of raising external financing. Therefore, the

firm is worth its cash holdings, plus the value of cash flows and the investment opportunity

v (c)→ c+ g, (43)

where constant g can be determined endogenously by substituting (43) into (41)

(r + λ) (c+ g) = γgµp +
σ2
p

2
γ (γ − 1) g + rc+ δ + λ (c+ θ − i) . (44)

Solving this equation for g gives

g =
δ + λ (θ − i)

r + λ− γµp −
σ2
p

2 γ (γ − 1)
. (45)

Note that the value of unconstrained firm net of cash g increases with the profitability of

investment θ − i, the probability of option arrival λ, and firm profitability δ. Additionally, it

increases with volatility σ2
p since for γ > 1 the firm’s payout is convex in p.

At this point, we can describe the scaled value function v (c) as a solution to the ODE

(41), subject to the boundary conditions (42) and (43). Because concavity/convexity of the

function v (c) determines the incentive to hedge, we proceed to finding the second derivative

of this function.

The value function v (c) is concave at high levels of cash, c ≥ c, and concavity induces

hedging. The upper boundary condition requires that the function is linear at high values of
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cash, implying that v′ → 1 as c → ∞, while the lower boundary condition (the refinancing

requirement) requires that v′ = 1 +kd ≥ 1. Therefore, the function is concave in some region.

In the Appendix, we prove that function v (c) which satisfies the ODE must be concave in

the whole region above c (that is, where the option is exercised using firm’s own cash savings

only). It follows then that it is always optimal to reduce cash flow risk when the firm becomes

unconstrained. Intuitively, for the firm carrying sufficient cash to finance the exercise of the

option, the best strategy is to preserve this amount by reducing risk.

However, in the region where c < c, the value function can be convex. We prove in the

Appendix that if the costs of financial distress are not too large compared to the costs of

financing the investment, there exists a convexity region for lower values of c. This result is

explained by the fact that the firm holds an option to invest, which has a convex payoff in the

cash variable. For example, when cash is just below investment threshold c∗, it can pay off for

a firm to increase the volatility in cash savings since such behavior increases the probability

of cash exceeding the threshold c∗, and therefore also increases the value of the option. It is

important that the additional value of risk in cash flows comes from the option to abandon

the investment if the financing is insufficient. If the firm were always required to exercise the

option, cash flow risk would be value-destroying because it would necessitate large financing

costs when cash is very low.

We further show that the higher financial distress costs reduce or eliminate the convexity

region in v (c). When cash savings are very low and the probability of exercise is small, a firm

may actually prefer to hedge because this allows it to avoid distress and the costly external

financing associated with distress. Therefore, for the high values of kd (high distress costs)

we recover the standard intuition. The value function is concave in the whole region because

concerns about the potential distress dominate other considerations.

In Figure 7, Panel A, we show the shape of function v (c) for a given set of parameters.

The solution to ODE (41) is obtained numerically. The upper dashed line in the graph gives

the value of the firm if it were completely unconstrained (i.e., kd = k = 0), in which case

the firm would always exercise its investment option when the option arrives. It is clear that
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firm value approaches this line as the accumulated cash savings increase beyond c. The lower

dashed line shows the value of the firm that does not have an investment option and is not

subject to the costs of financial distress (i.e., λ = 0 and kd = 0). As predicted, the function

exhibits concavity in the region of the high values of cash and convexity in the region of the

low values. Panels B helps to evaluate how the first derivative of v (c) change with cash.

Having analyzed the shape of the value function that gives us guidance on where it is

optimal to increase or decrease risk of cash savings, we now turn to determining the optimal

amount of hedging.

D. Optimal Hedging Policy

Using the expression for the cash evolution specified in (25) and also using the previously

obtained derivatives (38)-(40) and VCp = −γv′′ (c) cp−1, we can write the Hamilton-Jacoby-

Bellman equation for the scaled firm value v (c)

(r + λ) v (c) = max
φ

(
γµp + γ (γ − 1)

σ2
p

2

)(
v − cv′

)
+
v′′c2

2

(
γ2σ2

p + σ2
c

)
(46)

+v′ (rc+ δ − πφ) +
v′′FσF

2

(
φ2FσF − 2cφσcρc + 2γcφσpρp

)
+λmax

(
c, c+ θ − i− k (i− c)+) .

Differentiating with respect to hedging policy φ gives the optimal choice of hedging

φ∗t =
ρcσcct − γρpσpct

σFFt
− π

(σFFt)
2

v′

(−v′′)
. (47)

Note that the second-order condition is satisfied as long as function v (c) is concave. It is worth

examining the expression (47) with care. First, observe that the second term is negative, and

therefore optimal hedging is less than complete (compare (47) to (28)). Second, observe that

the optimal hedging ratio decreases with the volatility of the output price, σp, particularly if

the convexity of the firm’s profit (γ) is high. Third, φt decreases with the cost of hedging.

When v (c) is convex, there is no interior solution for hedging and the firm chooses between

corner solutions φmin and φmax. In particular, if there are no costs of hedging (π = 0), the

firm will choose φ∗ = φmin when

φmax + φmin

2
<
σcρcct − γσpρpct

σFFt
. (48)
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In any case, the firm will leave its cash exposed to shocks. Interestingly, the firm’s hedging

policy can remain the same for extended periods of time even as its liquidity position or the

value of the hedging asset changes. However, it is also possible for the firm to radically

change its hedging position from time to time (and even go from hedging to speculation). For

example, if σp is relatively small (σp <
σcρc
γρp

), the firm will switch from φmin to φmax as its

scaled cash savings increase.

IV. Conclusion

In this study, we analyze the relation between optimal risk management policy and invest-

ment under financing constraints. In particular, we recognize that hedging policy can affect

the probability of option exercise and also the cost of financing. The optimal amount of fi-

nancial hedging balances the benefits of lower expected financial distress costs with the better

ability to finance investment. The model demonstrates importance of real frictions, such as

irreversibility of investment or fixed costs.

The predictions of the model are consistent with the empirical findings: firms with less

financing constraints operate with higher hedging ratios, and firms with more risky cash flows

operate with lower hedging ratios. The hedging ratio is linked theoretically to the value

of growth options, the ratio of firm-specific to systematic risk, and the costs of forming a

hedging portfolio. Therefore, the model generates additional empirical predictions for future

work. Our results offer an alternative explanation for the observed hedging policies that does

not rely on the cost of hedging.

The analytical solution for the one-period model and the dynamic model with cash ac-

cumulation can be used in other applications. For example, it would be relatively easy to

extend the model to study optimal dividend policy and the implications of a minimum cash

balance requirement.
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V. Appendix A: Proposition Proofs

Proof of Lemma 1. Using the implicit function theorem for (5), we obtain

dε∗

dφ
=

(Ce (e)− Ce (e0)) (ε∗ − ε)
αf
w1

+ (Ce (e)− Ce (e0)) (1− φ)
. (49)

Our assumptions imply that I∗ > R, α ≥ 0, Cee > 0, and e > e0.

Therefore (i) dε∗

dφ > 0 for ε∗ > ε, and (ii) dε∗

dφ < 0 for ε∗ < ε. Additionally, using condition (4)

yields

dI∗

dφ
= −w1 (ε− ε)Cee

Cee − θfII
. (50)

It is clear that dI∗

dφ < 0 for all states ε in the investment region if ε∗ > ε .

Proof of Proposition 1. If α = 0, the optimization function does not have an interior maxi-

mum; we show this formally in the proof of Proposition 2. Therefore, the optimal hedging

ratio is either a minimum φ∗ = 0 or a maximum φ∗ = 1.

If the firm hedges completely (φ∗ = 1), its cash savings at date 2 are independent of the

state and the profit is given by either P0 (ε) or P (ε) depending on whether investment is

optimal at ε

P0 (ε) = f0 −R− C (R− w0 − w1ε) , (51)

P (ε) = βf (I∗)− I∗ − C (I∗ − w0 − w1ε) . (52)

where the optimal investment I∗ is fixed (does not vary with the profitability state).

If the firm does not hedge, its cash savings w vary with the state ε and there exists a

threshold ε∗ at which the firm starts to invest. To determine under which φ the expected

profit is maximized, let us consider two cases: (1) ε∗ < ε (the firm would invest at the

average profitability, P (ε) > P0 (ε)); and (2) ε∗ > ε (the firm would not invest at the average

profitability, P (ε) < P0 (ε)).

If ε∗ < ε, the difference between the expected profit in the case of full hedging and the
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case of no hedging is

P (ε)−
∫ ε∗

−∞
P0 (ε) dG (ε)−

∫ ∞
ε∗

P (ε) dG (ε) (53)

= P (ε)− E (P (ε)) +

∫ ε∗

−∞
(P (ε)− P0 (ε)) dG (ε) .

Because the profit function is concave it must be that P (ε) > E (P (ε)) and the first term

above is positive. However, the second term is negative and captures the value of abandonment

option lost by hedging. Intuitively, hedging decreases the volatility in cash flow and hence

makes the external financing cost constant. Because α = 0 and ε∗ < ε, the only reason not

to invest is low cash flow and expensive financing, but this situation never happens with full

hedging. Therefore, the option not to invest has no value when φ = 1. Since the first term

in (53) is independent of ε∗ and the second term increases in magnitude with ε∗, there must

exist such εL that for ε∗ > εL hedging destroys value (φ∗ = 0) and for ε∗ < εL hedging creates

value (φ∗ = 1). Such εL can be found by setting expression (53) to zero and plugging εL in

place of ε∗.

Similarly, if ε∗ > ε, the difference between the expected profit under full hedging and no

hedging is

P0 (ε)−
∫ ε∗

−∞
P0 (ε) dG (ε)−

∫ ∞
ε∗

P (ε) dG (ε) (54)

= P0 (ε)− E (P0 (ε))−
∫ ∞
ε∗

(P (ε)− P0 (ε)) dG (ε) .

The first term is positive because of the concavity of the profit function, whereas the

second term is negative and captures the value of the investment option lost by hedging.

Since the first term is independent of ε∗ and the second one decreases with ε∗, there must

exist εH such that for any ε∗ > εH hedging creates value (φ∗ = 1) and for ε∗ < εH hedging

destroys value (φ∗ = 0). The value of εH is found by setting (54) to zero at ε∗ = εH .

Proof of Corollary 1. From (5) we obtain

dε∗

dβ
= − f

αf + w1 (1− φ) (Ce (e) + Ce (e0))
< 0,

which implies that firms with more valuable options choose to invest at the lower threshold.

Therefore, from Proposition 1 it follows that ∆φ∗

∆β ≤ 0.
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Proof of Corollary 2. Using the definition of the investment threshold (5), we obtain the com-

parative statics with respect to the firm’s initial cash position w0

dε∗

dw0
= − Ce (e)− Ce (e0)

αf + w1 (1− φ) (Ce (e)− Ce (e0))
< 0. (55)

Therefore, as w0 increases and the firm becomes less constrained, the investment threshold

ε∗ decreases. Proposition 1 shows that the optimal hedging ratio depends on the investment

threshold.

If initially ε∗ < εL, then full hedging remains optimal as w0 increases since the firm

remains in the same region (see Proposition 1). If initially ε∗ ∈ [εL, εH ], then the hedging

ratio either remains unchanged or increases to φ∗ = 1. Therefore, an increase in the firm’s

internal cash reserves can result in more hedging.

Proof of Corollary 3. Recall from the proof of Proposition 1 that when ε∗ < ε, the difference

between the expected profit in the case of full hedging and the case of no hedging is

P (ε)− E (P (ε)) +

∫ ε∗

−∞
(P (ε)− P0 (ε)) dG (ε) . (56)

Note that the investment threshold ε∗ is independent of volatility. When the volatiliy is

small, the firm never reaches the region below ε∗. Therefore, the second term in the formula

above disappears, while the first term is positive and induces hedging. A firm with low

volatility and ε∗ < ε chooses φ∗ = 1. As volatility increases, the second term starts to create

a greater disadvantage to hedging, with a resulting decrease in the hedging ratio.

Similarly, if ε∗ > ε, the difference between the expected profit under full hedging and no

hedging is

P0 (ε)− E (P0 (ε))−
∫ ∞
ε∗

(P (ε)− P0 (ε)) dG (ε) . (57)

If the volatility is small, the second term is zero and thus φ∗ = 1. As volatility increases,

the second term becomes more important and hedging ratio drops.

Proof of Proposition 2. From (7) we can use Leibniz’s rule to obtain the first order condition

with respect to φ as∫ ∞
ε∗

Pw
∂w

∂φ
dG (ε) +

∫ ε∗

−∞
P0w

∂w

∂φ
dG (ε) +

dε∗

dφ
(P0 (ε∗)− P (ε∗)) g (ε∗) = 0, (58)
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and by P0 (ε∗) we denote the profit when the firm does not invest (ε∗ > ε). Because the profit

function is continuous at ε∗, the last term is zero, and the condition (58) becomes

E

[
Πw

∂w

∂φ

]
= 0. (59)

By applying (1), we can simplify the first order condition (59) to

cov (Πw, ε) = 0. (60)

Using Stein’s lemma for normally distributed profitability shocks, g (ε) ∼ N
(
ε, σ2

)
, and using

the expression (60), we have

E(Πwε)σ
2 = 0. (61)

Alternatively, if the distribution is not normal, the same expression can be obtained from the

second-order Taylor expansion around ε. In the investment region, ε > ε∗, we obtain

Πwε = Pwε = (αfI + θfIIIε) Iw + (θfI − 1− Ce) Iwε − Cee (Iε − w1 (1− φ)) (Iw − 1) , (62)

which simplifies using the first order condition for investment (4) to

Pwε = [αfI + θfIIIε − CeeIε + Ceew1 (1− φ)] Iw + Cee [Iε − w1 (1− φ)] . (63)

Differentiating implicitly equation (4),

Iε =
αfI + Ceew1 (1− φ)

Cee − θfII
, (64)

Iw =
Cee

Cee − θfII
, (65)

and substituting these expressions in (63) we obtain

Pwε =
CeeαfI + θfIICeew1 (1− φ)

Cee − θfII
. (66)

In the inaction region, ε < ε∗, we have

Πwε = P0wε = −Cee (e0)w1 (1− φ) . (67)

Substituting (63), rewrite (61) as

E [Πwε] = 0 =

∫ ∞
ε∗

PwεdG (ε) +

∫ ε∗

−∞
P0wεdG (ε) . (68)
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Finally, solving this equation for the optimal hedging ratio φ∗ yields

φ∗ = 1− α

w1

∫∞
ε∗

fICee
Cee−θfII dG (ε)∫ ε∗

−∞Cee (e0) dG (ε)−
∫∞
ε∗

θfIICee
Cee−θfII dG (ε)

. (69)

The second order condition with respect to φ is∫ ∞
ε∗

Pww

(
∂w

∂φ

)2

dG (ε) +

∫ ε∗

−∞
P0ww

(
∂w

∂φ

)2

dG (ε) (70)

+
dε∗

dφ
(P0w (ε∗)− Pw (ε∗))w1 (ε− ε∗) g (ε∗) < 0.

Since

Pww =
θfIICee
Cee − θfII

< 0, (71)

P0ww = −Cee < 0, (72)

the first two terms in (70) are negative. The last term in (70) is positive and is equal to

(Ce (e)− Ce (e0))2 (ε∗ − ε)2w1g (ε∗)
αf
w1

+ (Ce (e)− Ce (e0)) (1− φ)
> 0. (73)

For a sufficiently large α (i.e., for α > α), the condition (70) is satisfied, where α is a solution

to the following equation

−
∫ ∞
ε∗

Pww (ε− ε)2 dG−
∫ ε∗

−∞
P0ww (ε− ε)2 dG =

(Ce (e)− Ce (e0))2 (ε∗ − ε)2 g (ε∗)

αf + (Ce (e)− Ce (e0))w1 (1− φ∗)
. (74)

Note that when α → 0, from (69) we have φ∗ → 1. The denominator in (73) is linear

in α, and therefore the last term in the second order condition is infinite for a very small α.

Therefore, when α→ 0 the solution is “bang-bang”.

Proof of Proposition 3. Similarly to the steps in Proof of Proposition 2, we obtain the first

order condition for the optimal hedging ratio as

E [Πwε(φ
∗)] = 0. (75)

In the investment region, we have

Pwε =
CeeαfI + θfIICeew1 (1− φ)

Cee − θfII
, (76)
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whereas in the region where the firm operates its existing assets, we obtain

P0wε = −Cee (e0)w1 (1− φ) . (77)

Substituting these expressions into the first-order condition (75) and rewriting the expectation

yields

E [Πwε] = 0 =

∫ v̂m

−∞

∫ ∞
ε∗
i
−βivm√
1−β2

i

PwεdG (vi)

 dG (vm) (78)

+

∫ v̂m

−∞

(∫ ε∗i−βivm√
1−β2

i

−∞
P0wεdG (vi)

)
dG (vm)

Finally, solving this equation for the optimal hedging ratio φ∗ yields

φ∗ = 1− α

w1

∫ v̂m
−∞

(∫∞
ε∗
i
−βivm√
1−β2

i

CeefIdG(εi)
Cee−θfII

)
dG (vm)

∫ v̂m
−∞

∫ ε∗
i
−βivm√
1−β2

i

−∞ Cee (e0) dG (vi)−
∫∞
ε∗
i
−βivm√
1−β2

i

θfIICeedG(vi)
Cee−θfII

 dG (vm)

(79)

To show that dφ∗

dβi
> 0, note that φ∗ depends on βi only through the limits of the integration

v∗i (vm) =
ε∗i − βivm√

1− β2
i

, (80)

which has the meaning of the minimum idiosyncratic shock vi which warrants new investment

at the current realized value of the systematic shock vm. Note that v∗i (vm) → +∞ when

βi → 1, i.e., an infinitely large idiosyncratic shock is required to trigger investment if almost

all risk comes from the systematic component. Therefore, it follows from (79) that φ∗ → 1 as

βi → 1, and φ∗ < 1 if βi < 1.

Proof of Formula (14). Differentiating explicitly expression (6) in the investment region and

using the first order condition for investment we obtain

Pww =
θfIICee
Cee − θfII

, (81)

Pwε =
αfICee

Cee − θfII
. (82)
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Hence, the optimal sensitivity of cash to shock in the investment region is

dw∗ (ε)

dε
= − Pwε

Pww
= − αfI

θfII
> 0. (83)

Similarly, in the region where the firm operates its existing assets, i.e., if ε < ε∗, we obtain

P0ww = −Cee, (84)

P0wε = 0. (85)

Therefore, the optimal sensitivity of cash to shock in the non-investment region is equal to

zero, which corresponds to full hedging

dw∗ (ε)

dε
= 0. (86)

Proof of concavity of v (c) function when c ≥ c. We have shown that function v (c) must have

at least some region of c values where it is concave. The following argument shows that the

value function contains no convex region when c ≥ c. The ODE for the value function is

(r + λ) v (c) =
(
γv (c)− γcv′ (c)

)
µp +

σ2
p

2
γ (γ − 1)

(
v (c)− cv′ (c)

)
(87)

+
σ2
p

2
c2γ2v′′ (c) + v′ (c) (rc+ δ) + λd (c) ,

with function d (c) being weakly concave for c ≥ c.

We proceed with the proof by contradiction. Suppose function v (c) is convex at point c2. Then

it should be possible to pick such values c1 and c3, with c1 < c2 < c3 and c2 = αc1 +(1− α) c3,

that

v′ (c1) = v′ (c2) = v′ (c3) = b, (88)

and

v′′ (c1) < 0, v′′ (c2) > 0, v′′ (c3) < 0. (89)

Using these conditions and letting v1 = v (c1), v2 = v (c2) and v3 = v (c3) , we can then write

34



the following inequalities

(r + λ) v1 < γ

(
µp +

σ2
p

2
(γ − 1)

)
(v1 − c1b) + b (rc1 + δ) + λd (c1) , (90)

(r + λ) v3 < γ

(
µp +

σ2
p

2
(γ − 1)

)
(v3 − c3b) + b (rc3 + δ) + λd (c3) , (91)

(r + λ) v2 > γ

(
µp +

σ2
p

2
(γ − 1)

)
(v2 − c2b) + b (rc2 + δ) + λd (c2) . (92)

Let v̂2 ≡ αv1 + (1− α) v3. If the function v (c) is convex at point c2, then it must be that

v̂2 > v2. Using this fact, we can rewrite (92) as

(r + λ) v̂2 < γ

(
µp +

σ2
p

2
(γ − 1)

)
(v̂2 − c2b) + b (rc2 + δ) (93)

+λ [αd (c1) + (1− α) d (c3)] .

Taking the difference, we obtain

(r + λ) (v̂2 − v2) <

[
γµp +

σ2
p

2
γ (γ − 1)

]
(v̂2 − v2) (94)

+λ [d (c2)− αd (c1)− (1− α) d (c3)] .

Because

r + λ > γµp +
σ2
p

2
γ (γ − 1) , and d (c2) ≥ αd (c1) + (1− α) d (c3)

we get a contradiction.

Proof of existence of convexity of v (c) function when c < c. Suppose the distress costs are small

(kd → 0). Then, the slope of the value function v (c) is the same at the lower boundary and

the upper boundary, i.e.,

v′ (c) = v′ (c→∞) = 1,

At the lower boundary, c → c, the investment option is far out-of-the-money and hence the

value of the firm is the same as of a firm without option. However, at the upper boundary,

the firm always exercises the option, that is the firm value approaches the value of the un-

constrained firm with the investment option. To have the same slope at both boundaries,
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but a higher value at the right boundary, the function v (c) must have convexity on the left

and concavity on the right. The inflection point may or may not coincide with the exercise

threshold.
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Figure 1. Investment and Distress Regions

The firm has operating costs, R = 20, and a profitable option to invest a fixed amount,
I − R = 80. All expenses must be financed internally. Shock ε is distrubuted uniformly on
[0, 4], and w1 = 40. The upper dashed line marks the sum of investment and operating costs,
I = 100, whereas the lower dashed line marks the operating costs. The solid upward-sloping
(flat) line shows the firm’s internal funds under no hedging (full hedging). The filled area on
the left of the figure represents the financing shortfall in distress; the filled area on the right
side represents the financing slack available after the firm invests. The firm invests only when
cash exceeds 100. Panels A and B are for the cases of w0 = 0 and w0 = 30, respectively.
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Figure 2. Expected Investment and Hedging

This figure shows the expected investment level as a function of hedging ratio φ. We assume
f (I) = b log I and C (e) = ke2

2 and set parameters as follows: w1 = 24, w0 = 0, R = 50,
b = 300, α = 0, f0 = 1900, k = 0.08, ε = 2. Panels A is for the case when the investment
option is out-of-the-money at zero hedging, β = 1.45. Panel B is for the case when the
investment option is in-the-money at zero hedging, β = 1.5.
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Figure 3. Financing Gap and Hedging

This figure shows a firm’s cash flow (solid line) and optimal investment level (dashed line) as

a function of the primitive uncertainty shock ε. We assume f (I) = b log I and C (e) = ke2

2
and set parameters as follows: w1 = 24, w0 = 0, R = 50, b = 300, α = 1, β = 1, f0 = 1900,
k = 0.08, ε = 2. Panels A and B are for high volatility σ = 1.2; Panels C and D are for low
volatility σ = 0.2.
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Figure 4. Expected Investment and Optimal Risk Management

Panel A shows the expected investment level of a constrained firm (solid line) and an uncon-
strained firm (dashed line) as a function of volatility σ. Panel B displays the optimal hedging
ratio ϕ (solid line) as a function of volatility σ. Hedging ratios below zero (dashed line) indi-
cate speculation. Whenever investment exceeds cash flow, the firm raises external financing.
We assume f (I) = b log I and C (e) = ke2

2 and set the parameters as follows: w1 = 24, w0 = 0,
R = 50, b = 300, α = 1, β = 1, f0 = 1900, k = 0.08, ε = 2.
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Figure 5. The Effect of Financing Constraints and Growth Options on Hedging Ratio

This figure shows the optimal hedging ratio for a firm with zero correlation between investment
opportunities and cash flows (dashed line) and for a firm with positive correlation (solid line).
Panel A plots the hedging ratio as a function of financing constraints w0, and Panel B as a
function of a firm’s investment opportunities β. We assume f (I) = b log I and C (e) = ke2

2
and set the parameters as follows: w1 = 24, w0 = 0, R = 50, b = 300, β = 1, σ=0.8,
f0 = 1900, k = 0.08, ε = 2.
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Figure 6. The Effect of Positive Correlation on Hedging Ratio

This figure shows the optimal hedging ratio as a function of correlation between investment
opportunities and cash flows, α. We assume f (I) = b log I and C (e) = ke2

2 and set the
parameters as follows: w1 = 24, w0 = 0, R = 50, b = 300, σ=0.8, f0 = 1900, k = 0.08, ε = 2.

0 0.05 0.1 0.15

0

0.2

0.4

0.6

0.8

1

H
e
d
g
in
g
ra

ti
o
φ
*

Correlation b/w investment opportunities and cash flow α

β=1.7

β=1.5

β=1.4 β=1.7

β=1.5

β=1.4 β=1.7

β=1.5

β=1.4 β=1.7

β=1.5

β=1.4 β=1.7

β=1.5

β=1.4

44



Figure 7. Value function v (c) and its first derivative

This figure shows the shape of value function v (c) (Panel A) and its first derivative (Panel B).
The solution to ODE (41) is obtained numerically. The upper dashed line in Panel A gives
the value of the firm if it were completely unconstrained (i.e., kd = k = 0). The lower dashed
line shows the value of the firm that does not have an investment option and is not subject
to the costs of financial distress (i.e., λ = 0 and kd = 0). Vertical lines denote the option
exercise threshold and the value of c at which the firm can finance the exercise internally.
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