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Abstract


Greater operating flexibility need not reduce expected returns or risk. In a neoclassical


model of a firm with costly scale adjustment options, a distinguishing feature of low adjust-


ment costs (i.e., high flexibility) is that risk and expected returns decline with operating


leverage, whereas risk and expected returns rise with operating leverage for high inflexibility.


Hence inflexibility increases the slope rather than the level of risk premia. Using measures


of inflexibility and operating leverage, we provide evidence for cross-firm heterogeneity in


real options and support for the model’s predicted interaction effect, which is present in


returns and risk measures.
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1 Introduction


Do more valuable operating options make stock returns safer and thereby lower expected re-


turns? Intuition suggests that a firm’s real flexibility to respond to changes in operating condi-


tions should be a key determinant of the risk its owners bear. Likewise, intuition suggests that


risk should increase as a firm’s fixed costs rise relative to sales, due to operating leverage. In


the context of a neoclassical model of a firm with scale adjustment options and operating costs,


neither intuition is strictly correct.


Research on stock returns has focused on models of ex ante homogeneous firms that differ


only in their history of idiosyncratic shocks. Homogeneity is a restrictive but useful assumption


in otherwise complex models, and also enables the isolation of effects that are solely attributable


to differences in productivity shocks.1 To the extent that models of ex ante homogeneous firms


derive their results from variation in risk that stem from changes in the relative value of firms’


operating options, it is natural to study the implications of differences in option values across


firms (as well as over time).


While the real options literature has long recognized that variation in option exercise costs


can imply important differences in optimal policies (see, e.g., Abel, Dixit, Eberly, and Pindyck


(1996) and Abel and Eberly (1996)), the implications of this heterogeneity has received little


attention in the asset pricing literature. Moreover, there is empirical research on corporate in-


vestment that documents substantial differences across firms in the purchase and resale prices


of physical capital.2 These differences are equivalent to differences in the value of operating


options to increase or decrease a firm’s scale (i.e., flexibility). This study is among the first to


explore the effect of cross-firm differences in real option values for the risk and expected return


characteristics of a firm’s equity.


We consider a firm that is composed of assets-in-place, contraction options, and expansion


options. The model is both rich enough to encompass ex ante heterogeneous firms, and yet


simple enough to reveal general patterns of cross-firm variation in the value of these operating


1It lead to many insights in explaining stock returns (Berk, Green, and Naik (1999), Carlson, Fisher, and Gi-
ammarino (2004), Zhang (2005), Cooper (2006), Li, Livdan, and Zhang (2009), Hackbarth and Johnson (2015)).


2See, e.g., MacKay (2003), Balasubramanian and Sivadasan (2009), Chirinko and Schaller (2009), or Kim and
Kung (2014). In line with the arguments in Dixit and Pindyck (1994) that adverse selection is a likely reason
for the partial irreversibility, Li and Whited (2015) show that resale prices are endogenously lower in recessions.
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options for equity returns. The key state variable is the firm’s asset base scaled by its instanta-


neous operating profit, which increases monotonically with operating leverage. Firms inhabit


different ranges of this state variable between their upper and lower scale adjustment boundaries,


which are attributable to variation in their adjustment costs. Thus, the model’s first implica-


tion is that inflexibility can be summarized by the distance of these two operating boundaries


(scaled by the volatility of the state variable), because the distance increases with inflexibility.


In the model, assets-in-place increase risk but real options may increase or decrease risk.


Exercising the contraction option attenuates firm’s exposure to priced risk and exercising the ex-


pansion option has the opposite effect: it increases firm’s exposure to priced risk.3 The model’s


second implication is that, perhaps contrary to intuition, the unconditional relation between


flexibility and equity risk premia need not be negative. Lowering some types of adjustment


cost can raise expected returns and risk. The finding is not obvious: computing the uncondi-


tional effects requires not only solving the firms’ problem, but integrating over the (endogenous)


distribution of operating states.


The model’s third implication is that, while the level of the risk premium is not, in general,


increasing in measures of inflexibility, the slope of the risk premium is. That is, the sign of the


relationship between operating leverage and expected returns may go either way, depending


on the adjustment cost parameters. Again perhaps surprisingly, more flexible firms actually


become safer as operating leverage rises. This is because their option to exchange risky assets-


in-place for riskless cash becomes increasingly valuable as productivity deteriorates. Thus,


flexibility determines the average effect of operating leverage on risk and expected returns.


Solving a wide range of model parameter permutations numerically and also estimating return


regressions on simulated data from the calibrated model, we show that the relation between


operating leverage and returns is increasingly positive for more inflexible firms.


In interpreting the model, we note that flexibility has many dimensions, such as the abil-


ity to alter or transform factor intensity, product mix, pricing strategy, production scale, or


technology. Thus, the notion of flexibility extends beyond firm scale or physical capital. One


can interpret the firm’s production function as dependent on a general factor input which can


3Operating option values are maximized at their exercise boundaries and hence pre-exercise option values
increasingly reflect these risk effects as they move closer to their exercise boundaries.
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be viewed as bundle of capital, labor, knowledge, etc. Weber (2014) studies the asset pricing


implications of nominal rigidities, which can be interpreted as another aspect of inflexibility.4


Further, the quasi-fixed costs in the model are not just associated with assets-in-place but may


accrue from production inputs acquired under long-term contracts, such as some part of human


capital, labor input, raw materials and other supplies, or organization capital.


Turning to the data, these observations suggest that operating flexibility should not be as-


sessed purely with respect to investment activity. Instead, viewing real technologies as industry-


specific, we construct an industry-level proxy of inflexibility as the range of an industry’s oper-


ating costs over sales scaled by the residual standard deviation from a regression of operating


costs on sales. Based on the model’s first implication, this time-invariant “range measure” of


inflexibility captures the inaction region, i.e., typical distance between operating boundaries sim-


ilarly.5 Intuitively, flexibility should have more cross- than within-industry variation. Indeed,


the range measure shows significant cross-industry variation and we validate it by variables from


the industrial organization literature that are related to entry or fixed costs, outsourcing, and


productivity dispersion (see Section 3.1). At the firm-level, we assess period-specific operating


leverage based on expected quasi-fixed costs over sales, without regard to the source of these


costs. To obtain reliable and smooth estimates, we run five-year, rolling-window regressions of


quarterly operating costs on their first lag and contemporaneous sales. We then employ two


alternative measures, i.e., either the intercept plus predicted value or the intercept (both scaled


by sales), as firm-level proxies for operating leverage. Intuitively, the intercept may proxy for


fixed operating costs, whereas the predicted value may proxy for quasi-fixed operating costs.


With these measures, we test the model’s predictions in the data. Consistent with the model,


we find a weak unconditional flexibility effect. Portfolios formed on flexibility do not reveal that


more flexible firms have unambiguously lower returns. More precisely, the excess return spread


between inflexible-industry and flexible-industry portfolios is not always positive and significant.


Sorting within industries by operating leverage, however, does reveal the predicted difference in


slope between more and less flexible sectors. For example, the monthly excess returns for the


4Other recent contributions to the literature on price or wage rigidities and asset prices are Uhlig (2007),
Favilukis and Lin (2015), Li and Palomino (2014), and Gorodnichenko and Weber (2015). Similar to our results,
Weber (2014) finds that firms with more infrequent product price adjustment have a higher equity risk premium.


5Fischer, Heinkel, and Zechner (1989) use the debt over assets range to measure capital structure adjustments.
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high-minus-low operating leverage portfolio in flexible, less flexible, and inflexible industries are


19, 56, and 72 basis points, respectively, with t-statistics of 1.14, 2.44, and 3.28.


In a cross-sectional Fama and MacBeth (1973) return regression framework, these findings


are robust to the inclusion of standard controls and to alternative measurement of both the


conditioning variables. The interaction effect is about 44 to 95 basis points per month, which


is very similar to the test results using the simulated data from the calibrated model. Notably,


the interaction effect is consistent with significant cross-firm heterogeneity in the value of oper-


ating options. The marginal flexibility effect is small and insignificant, confirming the model’s


implication of a weak unconditional effect of flexibility.6


Finally, we also examine the model’s prediction on the second moments of equity returns.


That is, systematic and total risk should exhibit the same behavior as expected returns. In-


deed, the patterns of portfolio return volatility and average portfolio beta across double sorted


portfolios resemble the ones from the return test. Specifically, the sorts reveal that relation


between portfolio risk measures and operating leverage becomes more positive as inflexibility


increases. Moreover, regression results for monthly volatilities or betas on conditioning and


control variables provide supportive evidence for the patterns in the portfolio sorts.


To summarize, we demonstrate that differences across firms in scale adjustment flexibility


do lead to economically significant differences in the risk and return characteristics of their


equity. We document an interaction effect that improves our understanding of the relation be-


tween flexibility and returns as well as the operating leverage hypothesis that has served as the


foundation for many theoretical models. We conclude that cross-firm variation of real option


effects is important for better understanding of expected returns and risk.


The rest of the paper proceeds as follows. Sections 2 develops the model’s testable implica-


tions. Section 3 describes the data and measures. Sections 4 and 5 present results for first and


second moments of equity returns. Section 6 concludes and the model solution is in Appendix A.


6Consistent with our results, Chen, Kacperczyk, and Ortiz-Molina (2011) establish returns are higher for
firms in unionized industries (a measure of firms inability to scale down in bad times). Novy-Marx (2011) shows
the relation between expected returns and operating leverage is weak and non-monotonic across industries but
strong and monotonic within industries, and Bustamante and Donangelo (2014) document operating leverage
is higher and is associated with higher returns of firms in more competitive industries. Grullon, Lyandres, and
Zhdanov (2012) provide evidence that the positive relation between firm-level stock return and firm-level return
volatility is due to the firm’s operating options. This study also complements earlier studies by looking at
second moments of stock returns.
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2 Model Properties


To study the expected return and risk implications of ex ante differences in operating flexibility,


we employ the model developed in Hackbarth and Johnson (2015) (hereafter HJ). The model


describes the evolution of a firm’s optimal investment and disinvestment policy in response to


permanent productivity shocks, in a continuous-time, partial-equilibrium economy.7 HJ de-


rive the firm’s risk premium as a closed-form expression of (scaled) productivity. The model


solution, however, does not provide an analytical mapping between other firm characteristics


and the risk premium. After briefly reviewing the model and describing our interpretation of


flexibility, we assess the model’s implications for the relation between expected returns or risk


and cross-firm variation in operating flexibility.


2.1 Framework


HJ consider a firm with repeated expansion and contraction options that allow it to alter its


scale (and operating expenses) in response to productivity shocks, subject to adjustment costs.


That work follows the production-based asset pricing literature by viewing the firm’s scale as


equivalent to its physical capital. The economic logic of the model is not confined to plant and


equipment, however. Here we suggest a broader interpretation, and think of the firm’s scale as


encompassing the composite of productive factors that the firm has in place. Just as accounting


rules view long-term leases as capitalized assets, so one could view long-term contracts for other


inputs (human capital, labor, raw materials and other supplies, franchise agreements) as being


assets-in-place in three senses: (1) they are needed to generate output; (2) their cost contains


a fixed component that does not scale with output; and (3) their quantity is costly to adjust.


Other assets, such as knowledge, organizational capital, and intellectual property, may similarly


share these properties.


With this interpretation in mind, we let A denote the composite scale of the firm, or the total


assets-in-place, and write the firm’s profit flow per unit time (i.e., net sales minus quasi-fixed


7General equilibrium models of investment-based return effects are, for example, Gomes, Kogan, and Zhang
(2003) and Gala (2011). Industry competition is considered, for example, in Aguerrevere (2009) and Novy-Marx
(2011).
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operating costs) as:


Πt = θ1−γ
t Aγt −mAt, (1)


where γ ∈ (0, 1) captures returns to scale and m > 0 denotes the operating cost per unit of A.


Unless adjusted by the firm, A follows dA/A = − δ dt, where δ ≥ 0 captures the generalized


depreciation, or retirement rate of the asset base.


The productivity process θ evolves as a jump-diffusion with drift µ, volatility σ, and obso-


lescence rate η. The stochastic differential equation is as follows:


dθ/θ = µdt+ σ dW θ − dN, (2)


where W is a standard Wiener process and N is a Poisson process whose initial jump terminates


the firm’s production. We restrict attention to an all equity financed firm. There are no explicit


cost of external finance.


The economy is characterized by a stochastic discount factor, Λ, with a fixed drift, r (the


riskless interest rate), and fixed volatility, σΛ (the maximal Sharpe ratio). That is, Λ obeys the


stochastic differential equation:


dΛ/Λ = −r dt+ σΛ dW
Λ. (3)


The constant coefficients imply that the macroeconomic environment is not a source of variation


in the firm’s business conditions. The model thus does not capture business cycle effects in the


cost of capital. The correlation between dWΛ and dW θ, denoted ρ, parameterizes the systematic


risk of the firm’s earnings stream.8 We assume ρ < 0, i.e., that the risk premium is positive.


The firm’s real options to increase or decrease scale in response to shocks to profitability


determine its flexibility. Specifically, the value of the real options is dictated by the cost of


these adjustments. The model assumes the firm faces both quasi-fixed and variable costs for


either upward or downward adjustments. The cash cost to investors of increasing A by ∆A is


denoted PL ∆A, and the cash extracted from decreasing A by ∆A is PU ∆A. In addition, the


8It is straightforward to generalize the pricing kernel to incorporate systematic jumps. If these are present
and also affect θ, then the firm’s risk premium contains an additive constant reflecting the systematic jump risk.
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quasi-fixed cost of upward and downward adjustments are written FL θ
1−γ Aγ and FU θ


1−γ Aγ ,


respectively, with FL > 0 and FU > 0. These components are proportional to the firm’s net


revenue at the time of the adjustment, and can be viewed as capturing the forgone revenue


due to diversion of scarce internal resources, such as managerial time. Clearly the firm’s real


flexibility decreases as FL and FU increase.


When thinking of A as physical capital, it is natural to view PL as the purchase price,


e.g., of machinery, with PL > 1 reflecting installation frictions. That is, there is a deadweight


loss of (PL − 1) ∆A of expanding the firm. Likewise PU may be viewed as the resale price,


and contraction entails the loss of (1 − PU ) ∆A, due to costly disposal. Thus, the firm’s real


flexibility decreases with the purchase price, PL, but increases with resale price, PU . With the


broader interpretation of assets-in-place, A, that we have suggested, the frictionless benchmark


case may not be PL = PU = 1, because expanding the scale of labor inputs, for example, might


entail no cash outlay by the firm’s owners. Still, in this case, the total value of the firm’s


operating options would decrease with the difference PL − PU .


Note that the case PU = 0 is similar to scale-irreversiblity in the sense that nothing is recov-


ered upon contractions.9 Further, PU < 0 is also conceivable due to penalty costs of terminating


long-term contracts, clean-up costs, etc.


The firm’s objective is to choose a scale policy to maximize its market value of equity. HJ


show that the re-scaled productivity variable Zt ≡ At/θt is a sufficient statistic for the firm’s


problem, and therefore that the optimal policy may be characterized by four scalar constants:


upper and lower adjustment boundaries (denoted U and L) for Z, together with optimal con-


traction and expansion amounts undertaken upon hitting each of these boundaries. That is,


if Z hits U at time t, the optimal adjustment is to an interior point Z = H < U which cor-


responds to a contraction of ∆A = (U − H)θt. And when Z hits L, the optimal adjustment


is to Z = G > L which corresponds to an expansion of ∆A = (G − L)θt.
10 Thus the firm’s


solution is stationary and scale-invariant in the sense that it lives forever on the Z interval


[L,U ] regardless of the magnitude of A.


9Irreversibility is usually interpreted in the investment literature to imply that the firm’s only contraction op-
tion is to shut down entirely, i.e., ∆A = A, which our model does not impose. See, e.g., Cooper (2006) for details.


10Notice that the scaling implies that decreases in Z correspond to good news (high productivity) for the firm.
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For reference, the following table summarizes the key notation.


Notation Index


Quantity: Symbol:


firm scale A


returns-to-scale γ


scale decay δ


quasi-fixed operating costs m


productivity θ


growth rate of θ µ


volatility of θ σ


expected lifetime of firm 1/η


rescaled productivity Z = A/θ


expansion boundary (rescaled) L


contraction boundary (rescaled) U


proportional expansion cost PL
proportional contraction cost PU
fixed expansion cost FL
fixed contraction cost FU


instantaneous expected equity return EER


instantaneous volatility of return V OL


riskless interest rate r


pricing kernel volatility σΛ


systematic θ risk ρ σ


Let J(θ,A) denote the market value of the firm’s equity. Given the optimal policy, HJ show


that, subject to some regularity conditions, the rescaled value of the firm, V (Z) = J(θ,A)/θ,


is given by


V (Z) = B Zγ − S Z +DN ZλN +DP ZλP , (4)


where B and S are simple functions of the model parameters, and DN and DP are two additional


scalar parameters. Moreover these two constants together with the policy boundaries L,G,H


and U are characterized by a six-equation system of algebraic equations that is reproduced in


Appendix A. Although not solvable analytically in terms of the firm parameters, solutions are


readily obtainable numerically.
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The firm’s expected excess return on equity (the risk premium) and the instantaneous


volatility of equity returns are then given by


EER(Z) = πθ (1− ZV ′/V ), (5)


and


V OL(Z) = σ (1− ZV ′/V ), (6)


where πθ = ρ σ σΛ is the market price of θ risk.


2.2 Hypothesis Development


To explore empirically the effect of flexibility on firm risk and expected return, the first chal-


lenge is to measure flexibility. In the context of the model, it is clear that flexibility means the


ability to adjust scale with low adjustment costs. Unfortunately, neither adjustment costs nor


scale (in the general interpretation we have suggested) are directly observable characteristics of


firms. However, from the model’s depiction of optimal firm policies, we can plausibly map firm


behavior into a proxy that summarizes flexibility.


With no adjustment costs and a given productivity level θ, the firm will always set A to


the value (m/γ)1/(γ−1) θ to maximize the profit function. With adjustment costs, the firm


will pursue the discrete adjustment policy described above. Intuitively, as adjustment costs


increase, the firm will allow θ to wander farther from this optimal point before incurring the


deadweight losses to bring the ratio Z back towards optimality. Thus, inflexibility translates


directly into the width of the firm’s optimal inaction region. The width of the inaction region


will also scale with the potential variability of productivity shocks, which is not directly related


to flexibility. An implication of the model, therefore, is that a good summary statistic for


scale inflexibility is the distance between the adjustment boundaries, log(U/L), standardized


by the volatility of the productivity process σ. Moreover, the width of that inaction region also


describes the observed range of firm profitability, since profitability is a monotonic function of


Z. This observation about inaction regions is the basis for the empirical identification strategy


described in the next section.
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Given an empirical identification strategy for scale flexibility, we can use the model to di-


rectly solve for the risk premium function EER(Z), for the return volatility function V OL(Z),


as well as for the endogenous stationary distribution of Z for firms of differing degrees of flex-


ibility, in order to determine the cross-sectional asset pricing implications.11


The key characteristics of the expected excess return function EER(Z), derived in HJ,


follow from the superposition of opposing effects due to (a) assets-in-place; and (b) expansion


and contraction options. The risk from assets-in-place monotonically increases with Z due


to the increasing degree of operating leverage: as Z rises and profitability falls, quasi-fixed


production costs (mA) magnify the exposure of investor profits to fundamental shocks. By


contrast, the risk from both real options declines with Z: in response to good news (falling Z),


expansion options become closer to exercise and thus increase investor exposure to productivity


shocks; whereas bad news (rising Z) brings contraction options closer to exercise, which lowers


investor exposure to these shocks and hence to priced risk.


Thus, in comparing firms, the primary comparative static implication of the model concerns


the slope of the risk premium function, rather than its level. And the primary driver of this


slope is the relative value of the firm’s real options. Here we see the direct connection with


flexibility: lower scale adjustment costs imply more valuable real options, and thus a greater


contribution to the risk premium function from these options than from assets-in-place. In-


tuitively it is easier for flexible firms to adjust their scale to respond to profitability shocks.


For them, exposure to priced risk does not necessarily increase (and may actually decline) as


productivity falls, despite increasing operating leverage. For inflexible firms, exercise of both


options occurs only rarely at extreme ranges of productivity. Thus, over most of the range of


Z, their risk is determined by assets-in-place implying a positive slope.


In bringing these observations to the data, another identification issue arises from the un-


observability of the state variable Z. Since the model only encompasses a single dimension of


within-firm variability, essentially all measures of current profitability are monotonic transfor-


mations of Z. From the perspective of asset pricing, the salient feature of variation in Z is


the changing exposure to fundamental risk incurred due to quasi-fixed operating costs. Our


11The instantaneous volatility of the stock return, V OL(Z), can be expressed as −EER(Z)/(ρ σ), so it inherits
the properties of expected returns discussed in this section.
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approach will therefore emphasize the ratio of those costs to net sales (which is mZ1−γ) as the


primary conditioning variable. We also refer to this measure as QFC or simply as “operating


leverage.”


Figure 1 illustrates how a firm’s scale flexibility affects the relation between risk premia and


operating conditions. The left panel shows the effect of changing the liquidation parameter,


PU , on expected excess returns for a particular case (the parameters are given in the figure


caption). As the panel illustrates, making the firm’s technology more inflexible by lowering the


resale price, PU , has two effects. First, as just emphasized, it raises the average slope of the


curve: expected excess returns rise steeply with operating leverage (at least over the middle


part of the graph) for firms with nearly irreversible assets. Higher PU values result in the


opposite slope. Second, as PU declines and hence inflexibility increases, the operating range on


the horizontal axis increases: the firm chooses to increase U , delaying exercise of its contraction


option. Thus, as observed above, the inaction region increases with inflexibility.


[Insert Figure 1 Here]


The expected return pattern for low PU firms is consistent with existing models in the lit-


erature based on irreversible investment (see, e.g., Cooper (2006)). Less appreciated, however,


is the fact that for firms with even a mild degree of reversibility, the average slope of the risk


profile is negative: the firm’s equity becomes safer as profits decline and operating leverage


increases. For such a firm, the contribution of the contraction option actually overwhelms the


effect of operating leverage.12 Notice also that the effects in the left panel are economically


large. Even without invoking extreme ranges of PU , the effect on the slope and the inaction


region may be substantial.


The discussion shows the crucial contribution of PU in determining the relative contribution


of the contraction option to firm risk. Likewise, the key parameter determining the strength


of the expansion option is the installation cost parameter, PL. The right panel in Figure 1


exhibits the effect of varying it. As with the left panel, it is again the case that a less flexible


12In a simpler model, Guthrie (2011) shows the negative dependence of expected returns on operating leverage
for the case of a firm with a one-time abandonment option, but otherwise fixed scale. The intuition in this case is
identical to that in HJ. Moreover, the idea is related to the effect in Garlappi, Shu, and Yan (2008) and Garlappi
and Yan (2011) where firms approaching bankruptcy experience decreasing risk premia if the absolute priority
rule is violated and hence equity holders can extract (less risky) recoveries instead of nothing.
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firm (higher PL) exhibits a steeper (or more positive) average increase in risk premium with


operating leverage. Again, too, a less flexible firm inhabits a wider range on the horizontal axis:


the firm optimally chooses a lower L.


Comparing the two panels, the variation due to PL is less dramatic than that due to PU .


This conclusion is broadly true over a large range of parameter values. Also true numerically is


that the fixed component of adjustment costs have much less impact on firm risk profiles (and


on the width of the inaction region) than the variable components. For reasonable ranges of


variation of FL and FU , the induced effects on flexibility and risk are second order.


There is another interesting observation from the right panel of Figure 1: the average level


of the EER curves decreases as PL increases. Although the variation is not large, in this case,


higher inflexibility is not unconditionally associated with higher equity risk. This finding runs


somewhat counter to the intuition that firms utilize their real options to buffer investors’ expo-


sure to exogenous profitability shocks. Although this is true for the contraction options in the


left-hand panel (which represent a put on risky firm assets), growth options (a call on further


risky assets) raise investor exposure. Thus making those options more valuable via lowering


PL raises the required return on equity, even while conferring increased operating flexibility.


Therefore, the model offers no unambiguous prediction as to whether or not there should be an


unconditional relation in the data between measures of firm operating flexibility and average


stock returns.13


While Figure 1 illustrates the main conclusions that we will take to the data, the gen-


eral cross-sectional implications of the model may be complex because the population of firms


contains heterogeneity along numerous dimensions besides scale adjustment costs. Within the


context of the model, firms’ risk and expected return may also be affected by all the other


production parameters. These may also alter both the width of the inaction region (which we


will form the basis for our measurement of flexibility) and the distribution of states within that


region that firms inhabit. For example, a firm with valuable contraction options (and hence


potentially lower risk) may also have parameters (such as high depreciation or growth rates)


that push it towards low Z states where its risk is high because of its expansion options. Or a


13The model could be consistent with either sign of such a relation, depending on whether the cross-firm
heterogeneity in PU is more or less than that of PL.
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firm with a mostly upward sloping return profile (due to low flexibility) could still spend most


of its time in a downward sloping region near one of its adjustment boundaries.


To check the robustness of the relationship that we have inferred, we simulate long time-


series for a large number of parameter configurations. Specifically, we assign a high value and


a low value to each of nine different parameters in the model and this results in 29 = 512 com-


binations.14 Figure 2 shows a scatter plot of the average return slope for each firm versus that


firm’s own adjustment inflexibility, as measured by the scaled operating range σ−1 log(U/L).


For each firm’s history, the slope is determined from the regression of true expected returns


(sampled daily) on its operating leverage, measured by quasi-fixed costs over sales. The plot


affirms the positive association between inflexibility and the sensitivity of expected returns to


operating leverage. Importantly, the positive association holds whether or not one controls for


differences in systematic θ risk, as seen by the sets of distinct symbols corresponding to different


values of the product ρ σ.


[Insert Figure 2 Here]


Using the same simulations, Figure 3 illustrates our observation that, in general, firm in-


flexibility may not be a determinant of the unconditional level of expected returns. The plot


shows each firm’s average risk premium against our inflexibility proxy. Both within and across


asset-risk clusters, there is no evidence of a positive association.


[Insert Figure 3 Here]


To gauge the quantitative magnitude of the conditional inflexibility effect, we perform a


second simulation that restricts the parameter set more narrowly and realistically, and then


run tests that closely parallel our subsequent empirical work. Specifically, we now fix the model


parameters to be those estimated by HJ to most closely match an array of operating and fi-


nancial moments in the population of U.S. listed firms. We then augment their set of baseline


parameter values to include heterogeneity in the resale price parameter PU , which has the most


14The set of parameters is {γ, δ, PL, FL, PU , FU , µ, σ, ρ}. The sets of high and low values for those parameters
are {0.95, 0.10, 0.05, 0.60, 0.05, 0.04, 0.55, –0.10} and {0.75, 0.00, 1.00, 0.005,0.10,0.005, 0.00, 0.25, –0.90},
respectively.
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significant effect on the shape of the expected return profile.15


As a first exercise, we simulate a long sample for this panel and sort firm-months into


a two-by-two array of portfolios according to their inflexibility (as proxied by the operating


range σ−1 log(U/L)) and beginning-of-month operating leverage. Annualized portfolio returns


for the simulation are presented in Table 1. Panels A and B report the raw returns and the


true expected excess returns, respectively. As is shown in both panels, the portfolio returns


largely increase with operating leverage for the most inflexible firms, while the portfolio returns


decrease with operating leverage for the most flexible firms. These findings are consistent with


the hypothesis that scale flexibility is a primary determinant of the sensitivity of stock returns


to operating leverage.


[Insert Table 1 Here]


The model’s implication is also confirmed by the simulation of cross-sectional regressions


of monthly excess stock returns on observable firm characteristics. QFC is the beginning-of-


month ratio of quasi-fixed costs to sales, and Range is the standardized range of operating


costs for each firm. These variables are expressed in percentile rank in each cross-section. The


interaction variable is the product of the ranked variables. Table 2 shows the average regression


results for 200 simulated panels of 2000 firms across 50 years.


[Insert Table 2 Here]


Columns (1) to (4) Table 2 show the regression coefficients for four different specifications.


As seen in columns (3) and (4), the coefficients on the interaction term are positive and sta-


tistically significant. Moreover, the magnitude is non-trivial economically, as a coefficient of


0.0054 corresponds to 54 basis points of monthly excess return. Since the interaction variable


is a product of percentile ranks, the predicted spread between the expected return of the high-


est and lowest firm ranked by operating leverage is 54 basis points more positive for the least


flexible firms than it is for the most flexible firms.


In this panel, there is no unconditional effect of quasi-fixed operating costs (from Column


15The exercise uses the values PU = [0.01, 0.07, 0.13, 0.19, 0.25] with equal weight to each. Results incorporating
two-dimensional heterogeneity with simultaneous variation in PU and PL are similar.
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(1)). While there is a marginally positive unconditional effect of inflexibility on expected returns


(from Column (2)), this effect is relatively small and loses significance when interacting the two


variables. Finally, Column (4) shows that including a standard market risk measure (beta)


does not affect the statistical significance of the interaction coefficient.16 Estimated betas are


imperfect measures of true systematic risk because firms’ exposure of risk is rapidly changing.


For example, Figure 1 reveals that the within-firm risk premium (and hence true beta) can


easily vary by a factor of two as a result of productivity shocks. Thus, five-year rolling window


beta estimates are noisier proxies for within firm systematic risk than quasi-fixed costs to sales


(QFC), which are measured at a monthly frequency in the simulations. Moreover, to the ex-


tent that there is cross-firm variation in systematic risk, the inflexibility measure (Range) can


capture that. As a consequence, adding beta estimates to the return regressions in Table 2 can


not capture all variation in the model-simulated data.


To summarize, building on the results of HJ, this section has shown economically how and


why different degrees of scale flexibility affect firms’ risk/reward properties. The general lesson


is that operating options contribute a downward-sloping component to expected return (and


risk) plotted against operating leverage, while assets-in-place contribute an upward-sloping one.


Lower adjustment costs (i.e., higher flexibility) increase the influence of the former. Using nu-


merical simulations, we have shown that this relationship persists in the presence of other forms


of firm heterogeneity, as well as when using inaction or operating ranges to proxy for unobserv-


able adjustment costs. Finally, simulated panels using calibrated parameters imply that the


predicted effect should be detectable statistically and may be economically large.


3 Data and Measures


To test the model’s implications in the data, we must differentiate firms according to their


scale flexibility. We conjecture that an important determinant of a firm’s ability to adjust its


scale relates to industry-wide features of physical and technological capital. Economic intuition


suggests that industries differ as to what production inputs (e.g., labor input, raw materials,


organizational capital) are acquired under long-term contracts, and as to how easily productive


16Beta is the market-model regression coefficient computed in rolling 60-month lagged windows and the market
return is the equal-weighted average of all the firm returns.
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capital can be transformed. Hence, we regard adjustment costs as a “fact of life” for firms


within an industry and propose time-invariant measures of inflexibility at the industry level.


Within an industry, we can then assess each firm’s operating leverage based on its expected,


period-specific, quasi-fixed production costs. Thus, we attempt to measure time-varying quasi-


fixed costs at the firm level. In this section, we build the measures of industry-level inflexibility


and firm-level quasi-fixed costs, which we will then use in the tests of the next section.


3.1 Inflexibility Measure


The measure of inflexibility, INFLEX, is constructed as the standardized industry range,


which the previous section revealed as a sufficient statistic for adjustment costs.17 We compute


industry aggregate cost, sales, and assets by summing over all quarterly firm observations in


COMPUSTAT, with each calendar quarter using any available firm reported during that quar-


ter. Industry operating costs and industry sales are standardized by industry assets (i.e., the


industry’s aggregate value of COMPUSTAT’s ATQ). The standardized industry range equals


the historical range of aggregate, standardized operating costs over sales scaled by the residual


standard deviation from a regression of operating costs on contemporaneous sales and four lags


of operating cost over sales and a constant.18


[Insert Table 3 Here]


Table 3 lists industries with the lowest and highest value of the inflexibility measure. As Ta-


ble 3 shows, INFLEX ranges from 6.40 to 19.51. Thus, there is heterogeneity across industries,


as also reflected by the standard deviation of about 2.54 relative to a mean INFLEX value of


10.60. While not all the rankings produced by this procedure have obvious causes with respect to


industry features, the least flexible firms do include capital-intensive manufacturing businesses.


To gauge the validity of the inflexibility measure, we then examine the relation between


INFLEX and a list of variables that should be related to industry inflexibility, based on eco-


nomic intuition, industrial organization theory, etc. Table 4 reports the regression coefficients


17Fischer, Heinkel, and Zechner (1989) employ financial leverage ranges to measure a firm’s inaction region.
18Following the standard practice in the empirical asset pricing literature, we exclude banks (FF=44), insurance


companies (FF=45), trading firms (FF=47), and utilities (FF=31).
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of the inflexibility measure on those variables.19 First, Asset/Sales is defined as the ratio of


total assets to sales. Emp/Sales is the ratio of the number of employees to the value of sales.


We interpret these two variables as proxies for outsourcing. That is, industries with more out-


sourced operations tend to be more flexible and hence have lower values of Assets/Sales and


Emp/Sales. Thus, we should observe a positive correlation between the inflexibility measure


and these two proxies for outsourcing. Indeed, Table 4 reveals that both Assets/Sales and


Emp/Sales are reliably positively related to INFLEX.


[Insert Table 4 Here]


Second, we examine two total factor productivity (TFP ) dispersion measures. TFP1 is


the interquartile range of the Solow residual (i.e., the difference between the 75th and 25th


percentiles of the distribution). TFP2 is the variance of the Solow residual. We follow Basu


and Kimball (1997) and Balasubramanian and Sivadasan (2009) to estimate the Solow residual


of firm i in year t, TFPit:


TFPit = yit − αmmit − αk kit − αl lit, (7)


where y is the log of sales, m is costs of goods sold, k is plant, property, and equipment, and


l is the number of employees. According to standard models of industry equilibrium, such as


Hopenhayn (1992) and Melitz (2003), productivity dispersion increases with sunk entry costs,


which should increase industry inflexibility. Thus, we should observe a positive, significant re-


lation when regressing the industry inflexibility measure on productivity dispersion measures.


Table 4 shows that this is indeed the case.


Third, we consider an Inflexible Employment index in the spirit of Syverson (2004), which


we compute as the ratio of the cost for nonproduction workers to the cost of all employees.20


As nonproduction workers are generally regarded as skilled workers and production workers as


19We also compute the correlation coefficients between INFLEX and this list of six variables and find statis-
tically more significant results. However, we believe that regression coefficients with industry-clustered standard
errors are more convincing here. So we choose to report the regression coefficients instead of correlations. The
results for correlations are available upon request.


20The cost for nonproduction workers and the cost for all employees are from the U.S. Census Bureau’s
economic census data from 1987 to 1992. Variables in that database include “payment for production workers”
and “payment for all employees”.
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unskilled or semi-skilled workers, we assume that it is easier and less costly for firms to hire


or fire production workers compared with nonproduction workers. As such, we anticipate a


positive relation between the Inflexible Employment index and the inflexibility measure.


Fourth, we consider Advertising Intensity, which is defined as the total advertising expen-


diture in an industry divided by the total revenue (see, e.g., Balasubramanian and Sivadasan


(2009)). Since Advertising Intensity is positively related to barriers to entry and entry cost,


according to industry equilibrium models, high entry costs will reduce the cutoff productiv-


ity, indicating an increase in productivity dispersion, which is positively related to industry


inflexibility. Therefore, we should expect a positive relation between advertising intensity and


inflexibility. As Table 4 shows, the sign of the regression coefficients are consistent with the


above predictions, and all these coefficients are statistically significant.


Finally, we examine Balasubramanian and Sivadasan’s (2009) index of capital resalability


(i.e., the share of used capital investment in total capital investment at the four-digit SIC aggre-


gate level). These authors propose this index as a valid measure of physical capital resalability,


and this index should therefore be negatively related to the range measure of inflexibility. More-


over, we consider Kim and Kung’s (2014) asset redeployability measure, which is constructed as


the weighted average of 180 asset category’s redeployability score (i.e., the ratio of the number


of industries that use a given asset to the number of total industries in the BEA table, 123) for


each of the 123 BEA industries. Intuitively, industries with higher asset redeployability should


be more flexible; therefore, we predict a negative relation between redeployability and operating


inflexibility. Table 4 confirms these predictions. Overall, the table validates our inflexibility


measure using variables from the industrial organization literature that are informative about


entry or fixed costs and productivity dispersion.


In our robustness checks, we also construct an alternative inflexibility measure as the stan-


dardized mean firm range of operating costs (i.e., the sum of COMPUSTAT’s costs of good sold,


COGSQ, and, if available, selling, general, and administrative expenses, XSGAQ) over sales


(i.e., SALEQ). More specifically, for each firm in an industry, the historical range of operating


costs over sales is divided by the residual standard deviation from a regression of operating


costs over sales on four of its own lags and a constant. The mean firm range corresponds to the


mean value of these ranges across all firms in each of the 48 Fama and French (1997) industries.
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Anticipating, tests with this alternative measure deliver qualitatively and quantitatively similar


results.


3.2 Quasi-Fixed Cost Measure


We also need to measure the firm-specific state variable, Z, which represents the firm’s bundle


of assets-in-place, A, scaled by the firm’s productivity shock, θ. As discussed in Section 2, this


variable is inherently unobservable. However, the ratio of quasi-fixed production costs, mA, to


net sales, θ1−γAγ is mZ1−γ , which increases monotonically with Z, can be plausibly measured.


To identify componenets of operating costs and to limit noisiness of observations, we employ


a standard rolling-window regression methodology (instead of, e.g., annual or quarterly ratios)


to construct empirical counterparts of the ratio of quasi-fixed costs over sales. We denote the


resulting proxies of Z by QFC. Using quarterly COMPUSTAT data for the period 1980-2013,


we obtain annual, firm-level estimates of QFC by running five-year, rolling-window regressions


of operating costs on its first lag and contemporaneous sales, which yields reliable and smooth


estimates. The baseline measure of QFC in the year following the 5-year estimation period


equals the sum of the regression intercept and predicted operating costs, scaled by sales. This


baseline measure is useful, because, intuitively, the intercept proxies for fixed operating costs,


and the predicted value proxies for quasi-fixed operating costs.21


In a number of robustness tests, we analyze the importance of the two components of QFC


(i.e., the regression intercept and the predicted operating costs) by using only the regression


intercept scaled by sales as a measure of quasi-fixed costs. Alternatively, we reduce the noisiness


of QFC estimates by increasing the minimum number of observations from 10 to 15 for every


5-year window, which inevitably relies on a potentially biased and smaller sample.


21See, e.g., Fama and MacBeth (1973) for an early example of 5-year rolling window (beta) regression estimates.
To limit the impact of outliers on the regression results, we require that quarterly growth rates in assets, costs,
or sales lie inside the [–75%; +75%] interval and that the rolling-window regressions are based on at least 10
observations. We obtain qualitatively similar results when we require the quarterly growth rates in assets, costs,
or sales lie inside the [–65%; +65%] interval or the [–85%; +85%] interval.
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4 Empirical Results


4.1 Portfolio Sorts


Using these measures of inflexibility and quasi-fixed costs, we now test the model’s implication


that the sensitivity of returns to operating leverage depends on scale adjustment frictions. Our


hypothesis is that the strength of the relation between quasi-fixed costs over sales and expected


stock returns increases with inflexibility, that is, when inflexibility is higher, expected stock


returns increase more with QFC.


To gauge the economic magnitude of the hypothesized effect, we study the portfolios formed


based upon sorts on the two variables. Specifically, for each month, we assign stocks into quintile


portfolios based on the measure of industry inflexibility. We then intersect these quintiles with a


second sort of firms into quintiles according to their estimated quasi-fixed costs over sales. After


assignment to portfolios, stocks are held for one month. Table 5 reports the summary statistics


for the 25 sorted portfolios. Specifically, we report six different portfolio characteristics: the


inflexibility measure, quasi-fixed costs over sales, return on assets, capital expenditure, market


value of debt, and market equity.


Panels A and B of Table 5 show the sorting variables INFLEX and QFC, respectively.


Next, Panel C contains return on assets, which becomes much worse as quasi-fixed costs in-


crease. This finding makes intuitive sense, as quasi-fixed costs are inversely related to prof-


itability. Panel D shows a lower level of average capital expenditure for firms in inflexible


industries, which is in line with the primary prediction of models of irreversible investment


under uncertainty (see, e.g., Abel, Dixit, Eberly, and Pindyck (1996) and Abel and Eberly


(1996)). Market leverage in Panel E shows a similar pattern as capital expenditure in Panel D.


The table suggests that firms in inflexible industries are associated with lower debt levels than


firms in flexible industries, perhaps because financial and real flexibility are substitutes. That is,


negative productivity shocks could lead inflexible firms to financial distress or even bankruptcy


if such firms have not retained high financial flexibility (by taking on less debt). Lastly, mar-


ket equity in Panel F exhibits a strong pattern: market equity decreases as quasi-fixed costs
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increase, irrespective of the industry’s inflexibility level.22


[Insert Table 5 Here]


We calculate the monthly portfolio return as the equal-weighted average of the returns of


all the stocks in a portfolio. Table 6 presents the average monthly portfolio excess returns from


1980 to 2013. Panels A and B show the portfolio excess returns with the baseline measure of


QFC and the alternative measure of QFC, respectively.


[Insert Table 6 Here]


The results in Table 6 reveal a significant interaction effect between inflexibility and quasi-


fixed costs. Specifically, the excess return spread between the lowest and highest quasi-fixed


costs quintile is almost monotonically increasing from the most flexible industry to the least


flexible industry. In Panel A, the return spread is about 19 basis points per month and insignifi-


cant (t–statistic = 1.14) for the most flexible industry, it increases to 56 basis points (t–statistic


= 2.44) per month for the medium flexible industry, and in the least flexible industry, it is


about 72 basis points per month with a significance at the 1% level (t–statistic = 3.28). This


finding is consistent with the hypothesis that if inflexibility is high (low), then the expected


stock returns increase (decrease or flat) with operating leverage.


The results in Panel B is supportive. It remains the case that the return spread between the


highest and lowest quasi-fixed costs quintile is almost monotonically increasing from the most


flexible industry quintile to the least flexible industry quintile. Specifically, the return spreads


in the two most flexible industry quintiles are 26 basis points per month and statistically in-


significant or marginally significant (t–statistic = 1.63 or 1.75), whereas in the two least flexible


industry quintileis, the return spreads are around 40 basis points with significance at the 5%


level (t–statistic = 2.28 or 2.34).


4.2 Return Regressions


To control for other return determinants, we follow the cross-sectional return literature by test-


ing the hypothesis using Fama and MacBeth (1973) return regressions. In this context, the hy-


22To limit the impact from small stocks, we exclude penny stocks (stock price less than $1) from the test sample.
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pothesis suggests that the slope coefficient of an interaction term between inflexibility and quasi-


fixed costs over sales should be positive and significant. We carry out the tests using the inter-


section of the monthly stock returns from CRSP and quarterly COMPUSTAT accounting data


for every month from January 1980 to December 2013. The results are presented in Table 7.23


[Insert Table 7 Here]


In specifications (5) to (8), we include standard control variables, namely, reversal (R01),


momentum (R12), book-to-market ratio (BM), market leverage (ML), and size (SZ).24 All


variables are transformed into percentile ranks to diminish the possible influence of outliers.


With this specification, the coefficient on the interaction term, INTER, is positive and statis-


tically significant. For example, for specification (5) with the baseline definition of QFC, the


coefficient on the interaction term is 0.0084 with a t-statistic of 3.24. Note that the magnitude


of the coefficient is economically large, as a coefficient of 0.0084 corresponds to 84 basis points


of monthly excess returns. Since the interaction term is the product of percentile ranks that


range from 0 to 1, a coefficient of 0.0084 means that the return spread between the lowest and


highest QFC firms is 84 basis points higher for the most inflexible firms than it is for the most


flexible firms.


Moreover, in comparing specification (1) with specification (5), we observe that the co-


efficient estimates on BM are undiminished by the presence of our variables. Neither the


unconditional inflexibility effect nor the conditional (interaction) effect with quasi-fixed costs


over sales significantly lowers the explanatory power of the book-to-market ratio, suggesting


that the value effect is more likely driven by cross-firm differences in risk (i.e. ρ σ in the model)


than by within-firm variation caused by quasi-fixed costs.


Specifications (6)-(8) report results for alternative measures of quasi-fixed costs over sales.


Specification (6) uses the intercept of the rolling window regression of operating costs on sales


23Using clustered standard errors and Newey-West standard errors to account for heteroskedasticity and au-
tocorrelation provide similar t-statistics for the regression coefficients.


24The variable R01 is the stock return over the previous month; R12 is the stock return over the 11 months
preceding the previous month; BM denotes the log of the ratio of the book value of equity to the market value
of equity; ML is the log of the market leverage ratio defined as the book value of long-term debt divided by the
sum of the market value of equity and the book value of long-term debt; and SZ is the log of the market value
of equity.
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as QFC. Specification (7) uses the intercept plus the predicted costs from the rolling window


estimation divided by sales as QFC, and the minimum number of observations increase from 10


to 15. Specification (8) uses the intercept from the rolling window estimation divided by sales


as QFC, and the minimum number of observations increases from 10 to 15 as well. Notably,


all coefficient estimates for the interaction term are reliably positive and statistically significant


at the 10% level at least.


Taken together, the empirical findings in this section strongly support the hypothesis that


scale adjustment inflexibility and operating leverage have a positive interaction effect on stock


returns. For flexible firms, their contraction option becomes more valuable as their operating


leverage rises, lowering their exposure to fundamental (priced) risk and reducing expected stock


returns, whereas inflexible firms with fewer (or more costly) contraction options can not reduce


scale easily when operating leverage rises. Thus, firms with higher operating leverage are riskier


when they also exist in inflexible industries.


5 Further Evidence


Recall that, according to the model, the instantaneous volatility of the stock return, V OL(Z),


can be expressed as −EER(Z)/(ρ σ). If we assume ρ < 0, then equity return volatility should


follow the same pattern of expected returns. In the preceding section, we tested the model’s


predictions about the real option effect on equity returns. Now, we provide further evidence by


examining the real option effect on the second moments of expected returns.


Specifically, we double sort firms into 25 portfolios based on the value of the inflexibility


measure and quasi-fixed costs over sales and then compute the return volatility for each port-


folio. We construct portfolio return volatility in two ways. First, we compute portfolio return


volatility as the standard deviation of the time series of monthly portfolio returns. Second,


we calculate the volatility of each stock in the portfolio and use the average value of those


volatilities as the portfolio return volatility. The results are presented in Table 8.


[Insert Table 8 Here]


Panels A and B show the portfolio return volatility for two measures of quasi-fixed costs
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over sales, respectively. As Panel A shows, the return volatility pattern across portfolios closely


resembles the return pattern in Table 5. More precisely, the portfolio return volatility increases


monotonically as quasi-fixed costs over sales rises. This positive relation becomes more pro-


nounced as an industry becomes more inflexible. As Table 5 shows, the spread in portfolio


return volatility is monotonically increasing from INFLEX quintile 1 to quintile 5. This in-


teresting pattern also applies to the F -statistic of the one-tailed F test on the null hypothesis


that the portfolio return volatility for QFC quintile 1 is equal to that for QFC quintile 5.


Specifically, the annualized high-minus-low portfolio return volatility is 3.55% in flexible in-


dustries with a F -statistic of 1.46, this value increases to 7.80% with a F -statistic of 2.03 for


less flexible industries, and it further increases to 8.85% with a F -statistic of 2.14 for inflexible


industries. The F tests indicate that the alternative hypothesis – that the portfolio return


volatility for QFC quintile 1 is less than that for QFC quintile 5 – can not be rejected at the


0.1% significance level. Panel B with the alternative measure of quasi-fixed costs over sales


shows similar portfolio return volatility patterns. Specifically, the annualized high-minus-low


portfolio return volatility monotonically increases from 1.78% in flexible industries to 5.47% in


inflexible industries; meanwhile, the F -statistic for the one-tailed F test rises from 1.21 to 1.58.


Panels C and D report the average stock return volatility of each portfolio for two measures


of quasi-fixed costs over sales, respectively. Stock return volatility is constructed as the standard


deviation of CRSP daily return over a one year time period.25 As shown, this alternative test


supports the model’s prediction on volatility as well.


The results from portfolio sorts are also confirmed by regressions of stock return volatility


on the inflexibility measure, quasi-fixed costs over sales, the interaction term, and last month’s


return volatility. Again, the inflexibility measure, quasi-fixed costs over sales, and the inter-


action term are transferred into percentile ranks to minimize the potential impact of outliers.


Similar to Fama-MacBeth return regressions, we run the volatility regression every month and


then report the mean value of the coefficients in Table 9.


[Insert Table 9 Here]


Columns (1) and (2) show the coefficients when the baseline definition of QFC is employed.


25We also construct stock return volatility using daily return over a month and similar results are obtained.
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Columns (3) and (4) report the coefficients when the alternative definition of QFC is used. As


shown, the coefficient on the interaction term is always positive and significant at the 1% level;


including lagged return volatility in the regression decreases the magnitude of the coefficients,


but the pattern is not changed. For example, in column (2), the coefficient on the interaction


term is 0.0153 with a t-statistic of 10.96. Moreover, the marginal effect of inflexibility is much


smaller than the interaction effect, and this finding is consistent with the Fama-MacBeth re-


turn regression results in Table 7 where the unconditional effect of inflexibility on returns is


insignificant.


Moreover, the model implies that systematic risk should follow the same pattern of the


expected returns. To assess this prediction, we compute the average stock beta for each of


the double sorted portfolios. We obtain the stock beta by running a rolling window regression


of monthly stock returns on the value-weighted market return over the previous 36 months.


Panels A and B in Table 10 report the average portfolio beta for the baseline and alternative


measures of quasi-fixed cost over sales, respectively.


[Insert Table 10 Here]


As expected, the average portfolio beta follows the same pattern as stock returns in Table


6. In other words, a firm’s systematic risk as measured by the market beta is increasing as


operating leverage and the inflexibility level increases. Moreover, the beta spread across QFC


portfolios is almost monotonically increasing as the inflexibility level rises. For example, in


Panel B, the beta spreads in flexible, less flexible, and inflexible industries are –0.0108, 0.1134,


0.1852, respectively, with t-statistics of 0.15, 2.09, and 2.95, respectively. Panel A provides


supportive evidence as well. The corresponding beta spread in flexible, less flexible, and inflex-


ible industries are 0.1098, 0.2421, 0.2879, respectively, with t-statistics of 2.67, 4.55 and 4.28,


respectively. Also, the regression of firm’s market beta on the inflexibility measure, quasi-fixed


costs over sales, and their interaction term, while controlling for the market beta in the previous


year, delivers the same message. As Table 11 indicates, the beta always loads positively and


significantly on the interaction term.


[Insert Table 11 Here]


25







To summarize, the results from portfolio sorts and regressions of stock return volatility


and market beta largely support the model’s predictions with respect to the second moments


of equity returns: return volatility and systematic risk display interaction effects similar to


the ones found for stock returns. We therefore conclude that the presence and, in particular,


cross-firm variation of real option effects is important for us to gain a better understanding of


expected returns and risk.


6 Conclusion


Much insight about the cross-section of stock returns has emerged from viewing firms as being


essentially equal ex ante but differing in their capital and in their current production opportuni-


ties. We augment this class of models by examining the additional cross-sectional implications


of heterogeneity in operating flexibility, or adjustment costs. Of course, this is just one dimen-


sion along which firms may vary. The literature has, however, shown that flexibility is crucial in


determining how operating risks translate into shareholder risks. In particular, the extreme case


of irreversible capital, combined with quasi-fixed operating costs, implies strong relationship be-


tween productivity shocks and expected returns or risk. While parameter homogeneity isolates


effects that are solely attributable to differences in productivity shocks over time, this suggests


that heterogeneity in flexibility may entail interesting cross-firm differences in this relationship.


Indeed, in the context of a simple, one-state variable, partial equilibrium model, we show


that flexibility affects the relation between operating leverage and expected returns. We inter-


pret firm scale as a bundle of capital, labor, knowledge, etc. and construct a novel flexibility


measure. Empirically, we confirm the important role that inflexibility plays in determining the


validity of the operating leverage hypothesis. Specifically, we find that the association between


operating leverage and stock returns is weak for flexible industries and that this relation becomes


much stronger as an industry’s inflexibility level rises. Moreover, we find that inflexibility is


associated with higher expected returns when operating leverage is high. That is, we document


a strong interaction effect between scale inflexibility and operating leverage on stock returns.


Finally, we also find consistent evidence for second moments of stock returns, namely beta and


return volatility, which lends further support to the relevance of cross-firm variation in flexibility.
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Our findings cast doubt on a simple or unconditional effect of flexibility and operating


leverage on firms’ risk and return profiles. We emphasize that real option values can change


rapidly and significantly a firm’s exposure to priced risk when operating conditions deteriorate


or improve. That is, scale inflexibility not only affects a firm’s optimal investment policy in


good states, but also alters a firm’s disinvestment policy in bad states. As firms make other


operating decisions (e.g., debt policies, acquisition activities, hiring and firing of labor, research


and development), the range measure that we construct based on the neoclassical model can


certainly be applied to study how adjustment flexibility affects also other operating decisions,


which would be a fruitful avenue for future research.
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Appendix A. Model Solution


This appendix provides the system of equations that is needed to solve the model described in


Section 2. The firm’s objective is to increase or decrease its scale, A, to maximize the market


value of its equity:


J(θ,A) = max
Au,u≥t


Et


{∫ ∞
t


Π(θu, Au) Λu/Λt du


}
. (A.1)


In terms of the rescaled state variable Z and the rescaled value function V , the task is to


choose points G, L, U , H on the positive Z axis to maximize V . Absence of arbitrage imposes


the two value matching conditions (VMCs):


V (G) = V (L) + FLL
γ + PL (G− L) (A.2)


and


V (H) = V (U) + FUU
γ + PU (H − U) . (A.3)


The first equation requires that the post-investment value of the firm is the pre-investment


value plus the funds injected. The second imposes the same for pre- and post- disinvestment


(note H−U < 0). Given these, functionally differentiating with respect to the barrier positions,


yield the smooth-pasting conditions (SPCs) as necessary conditions of optimality. These are:


V ′(L) = −γ FLLγ−1 + PL, (A.4)


V ′(G) = PL, (A.5)


V ′(U) = −γ FUUγ−1 + PU , (A.6)


V ′(H) = PU . (A.7)


As described in the text, HJ show that, subject to some regularity conditions, the solution


function V satisfies an ordinary differential equation, the form of whose solution is given by


equation (4). The constants that appear in the equation are:


B =
1


r̂ + γδ + (γ − 1)µRN − 1
2γ(γ − 1)σ2


, and S =
m̂


r̂ + δ
,
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where


λP,N =
b±


√
b2 + 2(r̂ − µRN )σ2


σ2
,


b = µRN + δ + 1
2σ


2, µRN = µ+ ρ σ σΛ, m̂ = m− η PU , and r̂ = r + η.


When (4) is plugged into each of the SPCs and VMCs, the result is a system of six equations


in DN , DP , G, L, U , and H. The system is linear in the first two, given the last four unknowns.


But the nonlinearity in the last four renders numerical solution necessary.
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Figure 1


Effect of Resale Price and Purchase Price.


The left panel shows expected excess returns for firms with resale prices of PU = 0.01 (plotted as squares),


PU = 0.25 (circles), and PU = 0.6 (triangles) and a purchase price of PL = 1.0. The right panel shows expected


excess returns for firms with purchase prices PL = 1.0 (squares), PL = 1.5 (circles), and PL = 2.0 (triangles)


and a resale price of PU = 0.25. In both panels, the horizontal axis is the ratio of quasi-fixed cost, mA, to net


sales, θ1−γAγ , which equals mZ1−γ . The other firm parameters are γ = 0.85,m = 0.4, δ = 0.1, FL = 0.05, FU =


0.05, µ = 0.05, σ = 0.3, and ρ = −0.5, and the pricing kernel parameters are r = 0.04 and σΛ = 0.50.
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Figure 2


Flexibility and Conditional Returns.


This figure shows a scatter plot of the average slope of the expected return graph for each firm versus that firm’s


inflexibility, as measured by its scaled operating range, σ−1 log(U/L). For each firm’s simulated history, the slope


is determined from the regression of true expected returns (sample daily) on its operating leverage, measured by


quasi-fixed costs over sales. Cases with σ = 0.55; ρ = –0.9 are plotted as triangles. Cases with σ = 0.25; ρ =


–0.9 are plotted as circles. Cases with σ = 0.55; ρ = –0.1 are plotted as squares. Cases with σ = 0.25; ρ = –0.1


are plotted as asterisks.
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Figure 3


Flexibility and Unconditional Returns.


For each of the 512 models, unconditional expected excess returns are computed by integrating the theoretical risk


premium with respect to the distribution of the state variable Z obtained from 1000 year simulations. The average


risk premia are plotted against inflexibility, as measured by its scaled operating range σ−1 log(U/L). The set of


nine different parameters in the model are {γ, δ, PL, FL, PU , FU , µ, σ, ρ}. The set of high values and low values


for those parameters are {0.95, 0.10, 0.05, 0.60, 0.05, 0.04, 0.55, –0.10} and {0.75, 0.00, 1.00, 0.005,0.10,0.005,


0.00, 0.25, –0.90}, respectively. We assign a high value and a low value to each of the nine different parameters


in the model and this results in 29 = 512 combinations of parameters. Cases with σ = 0.55, ρ = −0.9 are plotted


as triangles. Cases with σ = 0.25, ρ = −0.9 are plotted as circles. Cases with σ = 0.55, ρ = −0.1 are plotted as


squares. Cases with σ = 0.25, ρ = −0.1 are plotted as asterisks.
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Table 1


Double Sorts on Flexibility and Operating Leverage with Simulated Data.


The table shows the annualized raw returns and true excess expected returns of 25 portfolios formed by sorting


on quasi-fixed costs over sales (QFC) and the measure of scale inflexibility (range: σ−1 log(U/L)) with simulated


data. The population consists of firms having the baseline parameter values of HJ with the disposal value of firm


assets taking on the values PU = [0.01, 0.07, 0.13, 0.19, 0.25]. Panels A and B show the portfolio raw returns and


excess expected returns, respectively. The portfolio returns are reported in %.


Panel A: Simulated raw returns


QFC(low) 2 3 4 QFC(high)


Range(low) 7.0320 5.9144 5.6839 4.8132 3.9060
2 7.9033 5.9074 5.0394 5.6894 4.8396
3 7.5372 5.9133 5.4802 5.9595 5.8382
4 8.0647 6.0983 5.9917 6.0157 6.7803


Range(high) 7.9383 6.0673 6.0588 6.9215 9.9343


Panel B: True excess expected returns


QFC(low) 2 3 4 QFC(high)


Range(low) 8.7356 6.6617 5.8044 5.4274 4.6242
2 8.7886 6.7036 5.9511 5.8822 5.3897
3 8.7984 6.7413 6.1010 6.3295 6.3581
4 8.8103 6.7647 6.2304 6.7606 7.1742


Range(high) 8.7922 6.8175 6.3555 7.1742 10.1504
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Table 2


Return Regression with Simulated Data.


The table shows the results of Fama and MacBeth (1973) regressions of realized monthly excess stock returns


on firm characteristics in 200 simulated panels of 2000 firms for 50 years. The simulation parameters are the


same as those used in Table 1. QFC is the beginning-of-month ratio of quasi-fixed costs to sales; range is the


standardized range (i.e., the inflexibility measure σ−1 log(U/L)). These variables are expressed as percentile


rank in each cross-section. The interaction variable is the product of the ranks. Beta is the market-model


regression coefficient computed in rolling 60-month lagged windows and the market return is the equal-weighted


average of all the firm returns. The coefficients and t-statistics in parentheses are the cross-panel means of the


Fama-MacBeth estimators. The numbers in brackets are the proportions of panels in which the corresponding


t-statistic is less than ±1.97. The significance levels 1%, 5%, and 10% are denoted by ***, **, and *, respectively.


Variable: (1) (2) (3) (4)


QFC –0.0013 –0.0055** –0.0043**
(0.80) (2.45) (2.37)


[0.68] [0.34] [0.38]


Range 0.0018** –0.0017* –0.0014*
(2.32) (1.93) (1.72)


[0.32] [0.51] [0.59]


Interaction term 0.0074** 0.0056**
(2.46) (2.34)


[0.31] [0.36]


Beta 0.0015 **
(2.03)


[0.48]
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Table 3


Industries with High and Low Inflexibility.


This table reports the seven industries with the largest and smallest values of the inflexibility measure, INFLEX.


The measure of scale inflexibility is constructed as the historical range of aggregate, standardized operating costs


over sales scaled by the residual standard deviation from a regression of operating costs on contemporaneous


sales and four lags of operating cost over sales and a constant. We compute industry aggregate cost, sales, and


assets by summing over all quarterly firm observations in COMPUSTAT, with each calendar quarter using any


available firm reported during that quarter. Industry operating costs and industry sales are standardized by


industry assets. Firm-level estimates of QFC is obtained by running five-year, rolling-window regressions of


operating costs on its first lag and contemporaneous sales. The measure of QFC in the year following the 5-year


estimation period equals the sum of regression intercept and predicted operating costs, scaled by sales. The


third and fourth columns show, for each industry, the average number of firm observations (Number of obs.) and


the average fraction of total market capitalization (% Mkt. Cap.) in each monthly cross-section of our sample


period. The sample period ranges from January 1980 through December 2013.


FF CODE INDUSTRY DESCRIPTION INFLEXIBILITY NUMBER OF OBS. %MKT. CAP.


Panel A: Seven industries with lowest inflexibility


6 Toys Recreation 6.40 27.78 0.45
15 Rubber and Plastic Products 7.49 5.37 0.20
40 Transportation 7.53 70.48 4.16
33 Personal Services 7.71 29.72 0.40
48 Other—Almost Nothing 7.91 12.77 0.50
14 Chemicals 8.06 59.86 3.55
2 Food Products 8.14 54.83 2.72


Panel B: Seven industries with highest inflexibility


13 Pharmaceutical Products 12.71 87.66 8.69
34 Business Services 13.02 269.06 6.33
37 Measuring and Control Equipment 13.21 63.41 0.93
18 Construction 14.33 38.79 0.44
10 Apparel 14.63 44.85 0.55
35 Computers 15.81 92.68 6.11
12 Medical Equipment 19.51 79.28 2.09
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Table 4


Validation Tests.


This table reports the regression coefficient of the inflexibility measure, INFLEX, on various kinds of variables.


The measure of scale inflexibility is constructed as the historical range of aggregate, standardized operating costs


over sales scaled by the residual standard deviation from a regression of operating costs on contemporaneous


sales and four lags of operating cost over sales and a constant. We compute industry aggregate cost, sales,


and assets by summing over all quarterly firm observations in COMPUSTAT, with each calendar quarter using


any available firm reported during that quarter. Industry operating costs and industry sales are standardized


by industry assets. Asset/sales is the ratio of total asset to sales. Emp/sales is the ratio of the number of


employees to the value of sales. TFP1 and TFP2 are productivity dispersion measures. TFP1 is the difference


between the 75th and 25th percentiles of the distribution of the Solow residual. TFP2 is the variance of the


Solow residual. The Solow residual is estimated following the procedure of Balasubramanian and Sivadasan


(2009). Inflexible Employment is defined as the ratio of the cost for nonproduction workers to the cost


of all employees. Advertising Intensity is the total advertising expenditure in an industry divided by the


total revenue. Resal Index is the capital resalability index defined in Balasubramanian and Sivadasan (2009).


Redeoloyability Index is the redeployability index defined in Kim and Kung (2014). The sample period ranges


from January 1980 to December 2013. t-statistics are reported in parentheses under the estimation coefficient.


Standard errors are clustered at the four-digit industry levels. The significance levels 1%, 5%, and 10% are


denoted by ***, **, and *, respectively.


Outsourcing Productivity Dispersion Entry Barriers Capital Reversibility


Asset Emp TFP1 TFP2 Inflexible Advertising Resal Redeployability


sales sales Employment Intensity Index Index


0.021** 2.55*** 3.64*** 1.71*** 11.18*** 965.21*** –11.47** –15.51***
(2.15) (3.20) (4.41) (3.02) (5.58) (3.80) (2.03) (5.19)
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Table 6


Portfolio Excess Returns.


The table shows the monthly excess returns of 25 portfolios formed by double sorting on firm-level quasi-fixed


costs over sales (QFC) and the measure of scale inflexibility (INFLEX). The measure of scale inflexibility is


constructed as the historical range of aggregate, standardized operating costs over sales scaled by the residual


standard deviation from a regression of operating costs on contemporaneous sales and four lags of operating cost


over sales and a constant. We compute industry aggregate cost, sales, and assets by summing over all quarterly


firm observations in COMPUSTAT, with each calendar quarter using any available firm reported during that


quarter. Industry operating costs and industry sales are standardized by industry assets. Firm-level estimates


of QFC is obtained by running five-year, rolling-window regressions of operating costs on its first lag and


contemporaneous sales. The measure of QFC in the year following the 5-year estimation period equals the sum


of regression intercept and predicted operating costs, scaled by sales. Panel A employs the baseline definition


of quasi-fixed costs over sales; Panel B uses an alternative definition of quasi-fixed costs over sales, which is the


intercept from a 5-year rolling window regression of operating costs on sales, divided by sales. The sample period


ranges from January 1980 to December 2013. The portfolio returns are reported in %. The significance level 1%,


5%, and 10% are denoted by ***, **, and *, respectively.


Panel A: Baseline definition of QFC


QFC(low) 2 3 4 QFC(high) High-Low t-stat


INFLEX(low) 1.09 1.07 1.25 1.07 1.29 0.19 (1.14)
2 0.94 0.94 0.98 0.96 1.51 0.57** (2.70)
3 1.17 1.18 1.22 1.46 1.72 0.56* (2.44)
4 0.99 1.07 1.18 1.22 1.65 0.66*** (3.10)


INFLEX(high) 1.12 1.04 1.26 1.46 1.84 0.72*** (3.28)


Panel B: Alternative definition of QFC


QFC(low) 2 3 4 QFC(high) High-Low t-stat


INFLEX(low) 1.07 1.02 1.06 1.38 1.34 0.26 (1.63)
2 1.02 0.93 0.93 1.00 1.29 0.26* (1.75)
3 1.40 1.13 1.17 1.33 1.60 0.20 (1.13)
4 1.15 1.05 1.05 1.24 1.57 0.42** (2.34)


INFLEX(high) 1.44 1.05 1.18 1.35 1.84 0.40** (2.28)
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Table 7
Fama-Macbeth Return Regressions.
The table shows results from monthly Fama-MacBeth regressions of returns on measures of inflexibility (INFLEX),
quasi-fixed costs over sales (QFC), and their product (INTER), as well as on controls for expected returns.
The measure of scale inflexibility is constructed as the historical range of aggregate, standardized operating costs
over sales scaled by the residual standard deviation from a regression of operating costs on contemporaneous
sales and four lags of operating cost over sales and a constant. We compute industry aggregate cost, sales, and
assets by summing over all quarterly firm observations in COMPUSTAT, with each calendar quarter using any
available firm reported during that quarter. Industry operating costs and industry sales are standardized by
industry assets. Firm-level estimates of QFC is obtained by running five-year, rolling-window regressions of
operating costs on its first lag and contemporaneous sales. The measure of QFC in the year following the 5-year
estimation period equals the sum of regression intercept and predicted operating costs, scaled by sales. The
variable R01 is the stock return over the previous month; R12 is the stock return over the 11 months preceding
the previous month; BM denotes the log of the ratio of book value of equity to market value of equity; ML is
the log of the market leverage ratio defined as book value of long-term debt divided by the sum of market value
of equity and book value of long-term debt; and SZ is the log of the market value of equity. All variables are
transformed into percentile rank form. Specification (5) uses baseline definition of QFC; specification (6) uses
the alternative definition of QFC; specification (7) uses the baseline definition of QFC from the 5-year rolling
window regression with 15 observations for every 5-year window; specification (8) uses the alternative definition
of QFC from the 5-year rolling window regression with 15 observations for every 5-year window. R2 reported is
the average value of R2 from all monthly regressions. The data are monthly observations from January 1980 to
December 2013. t-statistics are reported in parentheses under the estimation coefficient. The significance level
1%, 5%, and 10% are denoted by ***, **, and *, respectively.


Variables (1) (2) (3) (4) (5) (6) (7) (8)


INFLEX 0.0034* –0.0017 –0.0011 0.0011 –0.0013 0.0008
(1.87) (1.30) (0.92) (0.89) (1.06) (0.63)


QFC 0.0077*** 0.0033** 0.0002 –0.0007 –0.0005 –0.0018
(3.55) (2.03) (0.15) (0.56) (0.38) (1.36)


INTER 0.0079*** 0.0084*** 0.0044* 0.0095*** 0.0058**
(2.70) (3.24) (1.87) (3.63) (2.54)


R01 –0.0178*** –0.0181*** –0.0180*** –0.0176*** –0.0176***
(7.87) (8.25) (8.08) (8.55) (8.44)


R12 0.0037 0.0038 0.0037 0.0037 0.0036
(1.32) (1.43) (1.36) (1.43) (1.35)


BM 0.0097*** 0.0108*** 0.0105*** 0.0096*** 0.0092***
(4.99) (6.12) (5.75) (5.64) (5.26)


ML –0.0023* –0.0008 –0.0014 –0.0001 –0.0007
(1.72) (0.67) (1.14) (0.09) (0.56)


SZ –0.0177*** –0.0160*** –0.0168*** –0.0142*** –0.0151***
(5.94) (5.68) (5.87) (5.03) (5.26)


R2 0.033 0.003 0.004 0.008 0.037 0.036 0.038 0.037
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Table 8


Annualized Return Volatility for 25 Double-sorted Portfolios.


This table reports annualized return volatility for each of the 25 double sorted portfolios in Table 5.The measure


of scale inflexibility is constructed as the historical range of aggregate, standardized operating costs over sales


scaled by the residual standard deviation from a regression of operating costs on contemporaneous sales and


four lags of operating cost over sales and a constant. We compute industry aggregate cost, sales, and assets by


summing over all quarterly firm observations in COMPUSTAT, with each calendar quarter using any available


firm reported during that quarter. Industry operating costs and industry sales are standardized by industry


assets. Firm-level estimates of QFC is obtained by running five-year, rolling-window regressions of operating


costs on its first lag and contemporaneous sales. The measure of QFC in the year following the 5-year estimation


period equals the sum of regression intercept and predicted operating costs, scaled by sales. In Panels A and


B, volatility is constructed as the standard deviation of monthly portfolio returns and then the annualized value


is reported. In Panels C and D, stock return volatility is constructed as the standard deviation of CRSP daily


return data over one year time period, then the average annualized volatility is reported. The sample period


ranges from January 1980 to December 2013. The significance level 0.1%, 5%, and 1% are denoted by ***, **,


and *, respectively.


Panel A: Baseline definition of QFC: portfolio return volatility


QFC(low) 2 3 4 QFC(high) High-Low F -stat


INFLEX(low) 0.1716 0.1774 0.1739 0.1833 0.2071 0.0355*** (1.46)
2 0.1988 0.2023 0.1982 0.2059 0.2557 0.0568*** (1.65)
3 0.1836 0.1908 0.2001 0.2097 0.2616 0.0780*** (2.03)
4 0.1904 0.1972 0.2033 0.2199 0.2731 0.0827*** (2.06)


INFLEX(high) 0.1913 0.1951 0.2001 0.2210 0.2798 0.0885*** (2.14)


Panel B: Alternative definition of QFC: portfolio return volatility


QFC(low) 2 3 4 QFC(high) High-Low F -stat


INFLEX(low) 0.1791 0.1735 0.1852 0.1780 0.1969 0.0178** (1.21)
2 0.1977 0.2081 0.2024 0.2044 0.2217 0.0241** (1.26)
3 0.1926 0.1921 0.1984 0.2028 0.2391 0.0465*** (1.54)
4 0.1968 0.1976 0.2102 0.2130 0.2512 0.0544*** (1.63)


INFLEX(high) 0.2129 0.2017 0.2142 0.2127 0.2676 0.0547*** (1.58)


Panel C: Baseline definition of QFC: average stock return volatility


QFC(low) 2 3 4 QFC(high) High-Low t-stat


INFLEX(low) 0.4384 0.4570 0.4908 0.5118 0.5695 0.1311*** (10.73)
2 0.4211 0.4537 0.4548 0.4734 0.5930 0.1719*** (9.93)
3 0.4636 0.4713 0.5022 0.5649 0.6911 0.2275*** (11.00)
4 0.4725 0.4952 0.5221 0.5870 0.6981 0.2256*** (13.99)


INFLEX(high) 0.5048 0.5031 0.5233 0.5845 0.7178 0.2130*** (12.11)


Panel D: Alternative definition of QFC: average stock return volatility


QFC(low) 2 3 4 QFC(high) High-Low t-stat


INFLEX(low) 0.4766 0.4549 0.4728 0.4956 0.5713 0.0947*** (7.38)
2 0.4454 0.4344 0.4575 0.4664 0.5501 0.1047*** (12.19)
3 0.5207 0.4651 0.4852 0.5287 0.6612 0.1405*** (9.76)
4 0.5133 0.4873 0.5158 0.5545 0.6821 0.1688*** (14.45)


INFLEX(high) 0.5515 0.5112 0.5260 0.5726 0.7201 0.1686*** (11.72)
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Table 9


Volatility Regression.


The table shows the results of regressions of stock return volatility on the inflexibility measure, the quasi-fixed


cost over sales, their interaction term, and the volatility in the previous month. The measure of scale inflexibility


is constructed as the historical range of aggregate, standardized operating costs over sales scaled by the residual


standard deviation from a regression of operating costs on contemporaneous sales and four lags of operating cost


over sales and a constant. We compute industry aggregate cost, sales, and assets by summing over all quarterly


firm observations in COMPUSTAT, with each calendar quarter using any available firm reported during that


quarter. Industry operating costs and industry sales are standardized by industry assets. Firm-level estimates


of QFC is obtained by running five-year, rolling-window regressions of operating costs on its first lag and


contemporaneous sales. The measure of QFC in the year following the 5-year estimation period equals the sum


of regression intercept and predicted operating costs, scaled by sales. The stock return volatility is constructed


as the standard deviation of CRSP daily return data over one month time period. In columns (1) and (2), we


use the baseline definition of quasi-fixed cost over sales. In columns (3) and (4), we use the alternative definition


of quasi-fixed cost over sales. R2 reported is the average value of R2 from all monthly regressions. The sample


period ranges from January 1980 to December 2013. t-statistics are reported in parentheses under the estimation


coefficient. The significance level 0.1%, 5%, and 1% are denoted by ***, **, and *, respectively.


Variable: (1) (2) (3) (4)


QFC 0.0407*** 0.0177*** 0.0224*** 0.0100***
(32.95) (21.28) (24.61) (13.75)


Inflexibility 0.0099*** 0.0033*** 0.0112*** 0.0037***
(8.83) (4.28) (10.79) (4.87)


Interaction term 0.0348*** 0.0153*** 0.0404*** 0.0175***
(21.34) (10.96) (23.56) (12.39)


lagged volatility 0.5582*** 0.5641***
(81.79) (82.47)


R2 0.048 0.558 0.034 0.344
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Table 10


Average Beta for 25 Double-sorted Portfolios.


This table reports average beta for each of the 25 double sorted portfolios in Table 5. The measure of scale


inflexibility is constructed as the historical range of aggregate, standardized operating costs over sales scaled by


the residual standard deviation from a regression of operating costs on contemporaneous sales and four lags of


operating cost over sales and a constant. We compute industry aggregate cost, sales, and assets by summing over


all quarterly firm observations in COMPUSTAT, with each calendar quarter using any available firm reported


during that quarter. Industry operating costs and industry sales are standardized by industry assets. Firm-


level estimates of QFC is obtained by running five-year, rolling-window regressions of operating costs on its


first lag and contemporaneous sales. The measure of QFC in the year following the 5-year estimation period


equals the sum of regression intercept and predicted operating costs, scaled by sales. We regress monthly stock


return on the monthly value-weighted market return over the past 36 months. Stock beta is constructed as the


regression coefficient on the market return. The sample period ranges from January 1980 to December 2013.


The significance level 1%, 5%, and 10% are denoted by ***, **, and *, respectively.


Panel A: Baseline definition of QFC


QFC(low) 2 3 4 QFC(high) High-Low t-stat


INFLEX(low) 0.9531 0.9539 0.9784 0.9990 1.0629 0.1098*** (2.67)
2 1.1314 1.1499 1.1027 1.1485 1.2834 0.1520** (2.20)
3 1.0309 1.0919 1.0885 1.1819 1.2730 0.2421*** (4.55)
4 1.1339 1.1126 1.1687 1.2660 1.4687 0.3348*** (3.67)


INFLEX(high) 1.1420 1.1437 1.1669 1.3012 1.4299 0.2879*** (4.28)


Panel B: Alternative definition of QFC


QFC(low) 2 3 4 QFC(high) High-Low t-stat


INFLEX(low) 0.9790 0.9790 0.9730 0.9807 0.9682 –0.0108 (0.25)
2 1.1706 1.1443 1.1622 1.1136 1.1852 0.0146 (0.26)
3 1.0754 1.1219 1.0945 1.1076 1.1888 0.1134** (2.09)
4 1.1667 1.1942 1.2025 1.2377 1.3336 0.1669* (1.92)


INFLEX(high) 1.2061 1.1916 1.2452 1.2275 1.3913 0.1852*** (2.95)
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Table 11


Beta Regression.


The table shows the results of regressions of stock beta on the inflexibility measure, the quasi-fixed cost over sales,


their interaction term, and the beta in the previous year. The measure of scale inflexibility is constructed as the


historical range of aggregate, standardized operating costs over sales scaled by the residual standard deviation


from a regression of operating costs on contemporaneous sales and four lags of operating cost over sales and a


constant. We compute industry aggregate cost, sales, and assets by summing over all quarterly firm observations


in COMPUSTAT, with each calendar quarter using any available firm reported during that quarter. Industry


operating costs and industry sales are standardized by industry assets. Firm-level estimates of QFC is obtained


by running five-year, rolling-window regressions of operating costs on its first lag and contemporaneous sales.


The measure of QFC in the year following the 5-year estimation period equals the sum of regression intercept


and predicted operating costs, scaled by sales. The stock beta is constructed by regressing monthly stock returns


on the value-weighted market return over the previous 36 months. In columns (1) and (2), we use the baseline


definition of quasi-fixed cost over sales. In columns (3) and (4), we use the alternative definition of quasi-fixed


cost over sales. R2 reported is the average value of R2 from all monthly regressions. The sample period ranges


from January 1980 to December 2013. t-statistics are reported in parentheses under the estimation coefficient.


The significance level 0.1%, 5%, and 1% are denoted by ***, **, and *, respectively.


Variable: (1) (2) (3) (4)


QFC 0.2032*** 0.0649*** 0.1084*** 0.0334***
(13.98) (9.26) (8.95) (5.44)


Inflexibility 0.1079*** 0.0275*** 0.1802*** 0.0459***
(12.92) (5.51) (19.07) (9.19)


Interaction term 0.1946*** 0.0419*** 0.1094*** 0.0200**
(8.62) (3.74) (6.75) (2.14)


Lagged Beta 0.6495*** 0.6509***
(57.72) (57.55)


R2 0.036 0.509 0.025 0.510
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1 Introduction


Since Modigliani and Miller (1958), economists have relaxed many of their assumptions to under-


stand the observed behavior of leverage ratios. Arguably, the trade-off theory has emerged as one of


the leading paradigms, even though it has often been challenged by empirical tests that appear to


favor other theories or suggest taxes are not that important. Therefore, there is still no consensus


in the literature. Moreover, none of the extant theories address jointly the following questions in


a parsimonious and simple framework: (1) why firms tend to use debt financing so conservatively,


(2) whether there is indeed a target leverage ratio and partial adjustment towards it, (3) why the


leverage-growth relation is negative and (4) why average leverage paths persist for over two decades.


To answer these questions, we analyze a framework in the spirit of Hackbarth and Mauer (2012),


in which investment and financing decisions are endogenously determined. In particular, we develop


two versions of a dynamic model While the multi-stage model features two sequentially exercisable


investment options, the single-stage model has only one investment option. The single-stage model


serves as a benchmark to gauge investment-financing interactions in the otherwise identical multi-


stage model. In both versions, the capital expenditure can be financed by a mixture of equity and


debt. This mixture not only trades off tax benefits of debt against bankruptcy costs (triggered by


an endogenous default decision) but also recognizes financial flexibility in the multi-stage model.


The solution of the model generates a rich set of testable predictions that link the behavior


of a firm’s leverage ratios to its investment opportunities. First, dynamic financing-investment


interactions between investment stages lead to an “intertemporal effect” in the multi-stage model:


reaping investment benefits sooner by issuing more debt in the first stage to fund the investment


cost reduces financial flexibility for funding more of the investment cost with debt in the second


stage. In comparison to the single-stage model, firms underutilize debt in the multi-stage model


when financing investment the first time to retain financial flexibility. In fact, underutilization of


debt persists when firms mature (i.e. exercise their last investment options), and it is more (less) se-


vere for more back-loaded (front-loaded) investment opportunities. It is worth noting that leverage


does not vary with investment in the single-stage model. Only in the multi-stage model leverage


dynamics crucially hinge upon the structure of the investment process and otherwise identical firms


appear to have significantly different target leverage ratios.1


1Consistent with these observations, capital structure tests that recognize investment emerged relatively recently
(e.g. Harford et al. (2009), Denis and McKeon (2012), Eckbo and Kisser (2015), or Elsas et al. (2015)).
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Second, optimizing behavior by firms in a dynamic trade-off model with investment generates


without any other frictions (e.g. agency conflicts or transaction costs) a significant fraction of low


and zero leverage firms and also path-dependent, persistent leverage ratios. Our analysis shows


how incentives to retain financial flexibility in the first stage crucially depend on the structure of


the investment process. Given the wide range of optimal target leverage ratios, the model suggests


that leverage ratios can greatly vary depending on how the firm grows assets-in-place by exercising


its real options. Third, structural models without dynamic financing-investment interactions (1)


overestimate target leverage ratios, and (2) can be misleading in that they imply a fixed target


leverage ratio that is largely taken to be exogenous to the investment process. It thus seems dif-


ficult to determine target leverage in the conventional sense. This also suggests that there is no


meaningful measurement of partial adjustment towards target leverage (as e.g. in Flannery and


Rangan (2006)) without recognizing the structure of the investment process.2


To test the model’s ability to match observed outcomes, we estimate key model parameters


via Simulated Method of Moments (SMM).3 Intuitively, SMM finds the set of parameters, which


minimizes the difference of the simulated model moments and the data moments from COMPUS-


TAT’s annual tapes for the period of 1965 to 2009. We then split the full sample into low, medium,


and high market-to-book (or Q) subsamples, and employ SMM also to fit the four parameters for


each subsample. We split the sample based on Q to proxy for investment opportunities. Low Q


firms tend to have fewer investment opportunities, whereas high Q firms tend to have more invest-


ment opportunities. Therefore, the relative value of Q is informative about the structure of the


investment process in the real data. Our estimation results reveal that high Q firms have the most


back-loaded investment processes, and low Q firms have the most front-loaded ones.


Graham (2000) reports that firms, even stable and profitable, use less debt than predicted by


the static view of the tax benefits of debt. Two out of five firms have an average leverage ratio of


less than 20%, and the median firm uses only 31.4% leverage over the 1965 to 2000 period, which


implies a “low leverage puzzle.” In addition, Strebulaev and Yang (2012) find that on average 10%


of firms have zero leverage and almost 22% firms have less than 5% quasi-market leverage, which


represents a “zero leverage puzzle.” We emphasize the importance of real frictions in a dynamic


2This is in line with recent research (e.g. Hovakimian and Li (2012)), which argues partial adjustment regressions
are ill-suited for determining the performance of dynamic trade-off models. In addition, Denis (2012) concludes that
traditional models do a remarkably poor job of explaining the dynamics of observed capital structures.


3A careful calibration, as e.g. in Strebulaev (2007), would suffice for our purposes, as we estimate four parameters.
A benefit of SMM, is, however, that it informs us about the role of taxes and the variation in investment characteristics.
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trade-off model and thereby provide an economically meaningful mechanism for why firms tend to


use debt financing so conservatively. Based on the structural estimation results for the full sample,


the simulated economies feature a significant fraction of low (and zero) leverage firms. Moreover,


in contrast to much higher point estimates in prior studies, we report, on average, 20% leverage in


dynamics (i.e. for all firms) and 19% at investment points (i.e. for investing firms).


In addition, we perform capital structure regressions on simulated data and show that the model


can replicate stylized facts established by empirical research. In the spirit of Strebulaev (2007), sim-


ulation of the multi-stage model of corporate investment and financing dynamics reinforces the need


to differentiate investment points from other data points when interpreting coefficient estimates for


market-to-book or profitability in a dynamic world. Consistent with Frank and Goyal (2009) and


others, we find leverage is negatively related to the risk of cash flows, the cost of bankruptcy, and


market-to-book, but positively related the size of the firm and the tax rate.


Finally, we document that real frictions in a dynamic model can produce average leverage paths


that closely resemble the ones in the data (e.g. Lemmon, Roberts and Zender (2008)).4 That is, en-


dogenous investment and financing decisions in a dynamic model can largely explain the otherwise


puzzling patterns that, despite of some convergence, average leverage ratios across portfolios are


fairly stable over time for both types of sorts (i.e. actual and unexpected leverage) performed by


these authors.5 To do so, we extend the multi-stage model to randomly imposed initial variation


in leverage. If model firms are “born” with high (low) leverage ratios at the beginning, then they


maintain their relatively high (low) levels for over two decades (despite of the fact that leverage


ratios converge somewhat to more moderate levels over time). This result illustrates that corpo-


rations, which know the structure of their investment processes, take it into account and make


decisions on debt usage accordingly. This leads to fairly stable leverage ratios, and serves in the


simulations as an important, unobserved determinant of the permanent component of leverage.


Our paper contributes to the growing literature that extends Leland (1994) to interactions be-


tween investment and financing decisions (see e.g. Morellec and Schuerhoff (2011), Hackbarth and


Mauer (2012), or Sundaresan, Wang, and Yang (2015)). To the best of our knowledge, however, this


paper is the first that derives the capital structure implications of the structure of the investment


4Eckbo and Kisser (2015) find that much of the leverage ratio instability reported by DeAngelo and Roll (2015)
is driven by high-frequency net-debt issuers, whose real frictions might be low in spite of their high investment rates.


5In this part of the paper, we employ the structural estimation results for the three subsamples to introduce
industry variation, so sorting on “unexpected leverage” defined as the residuals from a cross-sectional regression of
leverage on firm characteristics and industry indicator variables is different from sorting on actual leverage.
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process (cf. the intertemporal effect) in a multi-stage model of jointly optimal financing and invest-


ment decisions and that reports structural parameter estimates for this class of models.6 This allows


us to generate additional insights for capital structure research and to better understand (heretofore


puzzling) empirical regularities by studying simulated data panel sets with real (i.e. investment)


frictions, such as, capital structure persistence and profitability-leverage (or Q-leverage) dynamics.


Furthermore, our paper relates to dynamic capital structure models without investment that


rely on transaction costs (see e.g. Fischer, Heinkel, and Zechner (1989), Leary and Roberts (2005),


and Strebulaev (2007)). While transaction costs are largely constant over time, time-variation of


real frictions is a realistic and useful modeling tool, because some firms have more front-loaded


investment opportunities whereas others have more back-loaded ones, but all firms exhaust their


investment opportunities over time. Like us, Hennessy and Whited (2005, 2007) analyze a dy-


namic trade-off model with investment and perform structural estimation. While we focus on the


structure of the investment process in a real options model with multiple issues of risky debt, they


largely focus on the role of tax regimes in a different class of models. More recently, Tserlukevich


(2008) also invokes real fictions to produce gradual and lumpy leverage adjustments in the absence


of financial frictions. Two key differences are that there is no intertemporal effect in his model and


that leverage ratios produced by his model are much higher than ours.7 In addition, we perform


various tests of the model’s ability to explain observed leverage patterns (i.e. structural estima-


tion, capital structure regressions, and leverage portfolio sorts). DeAngelo, DeAngelo, and Whited


(2011) study transitory debt that arises due to unexpected (positive) shocks to investment oppor-


tunities whose properties are uncertain as of time zero. Our model firm optimizes at the beginning


knowing the structure of the investment process, so there is no role for transitory debt. Consistent


with our findings, Li, Whited and Wu (2015) show that the value of preserving financial flexibility


is important even in an environment with limited enforcement where collateral constraints matter


more for capital structure than tax benefits. In contrast, our estimates suggest that sizable tax


benefits can coexist with financial flexibility.


The paper is organized as follows. Section 2 presents and solves the model. Section 3 studies the


intertemporal effect. Section 4 estimates structural parameters using SMM. Section 5 first describes


simulated panel data sets on which we then perform capital structure tests. Section 6 concludes.


6See Strebulaev and Whited (2012) for review of structural models and structural estimation in corporate finance.
7He assumes free leverage adjustments in a world with taxes but without bankruptcy costs. Unlike our setup, debt


is risk-free in his setup and rebalanced continuously. Hence leverage ratios are high relative to empirical estimates.
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2 Model


This section provides a simple framework to study the effects of financial flexibility. In particular,


we develop two versions of a dynamic model with endogenous financing and investment decisions,


where capital expenditures are financed by a mixture of equity and debt. While the multi-stage


model features two sequentially exercisable investment options, the single-stage model has only one


investment option. The single-stage model serves as a benchmark to gauge interactions between


corporate investment and financing decisions in the otherwise identical multi-stage model.


2.1 Setup


We consider a partial equilibrium model of corporate investment and financing dynamics. Time t is


continuous and uncertainty is modeled by a complete probability space (Ω,F ,P). Corporate assets


generate a continuous stream of cash flows, Xt, which evolve for t > 0 according to a geometric


Brownian motion with drift µ, volatility σ, and initial value initial cash flow X0 > 0 at time t = 0.


Corporate taxes are paid on cash flows at a constant rate τ based on full loss offset provisions.


Agents are risk-neutral and discount cash flows at a constant interest rate r > µ.


At time t = 0, the firm has no assets-in-place and a two-stage project, i.e. a compound option


in that the implementation of the second stage investment is contingent upon the completion of the


first stage. The two constants Π1 and Π2 represent the scales of the two investment options (or,


more broadly, the structure of the investment process). Suppressing time dependence of cash flows,


ΠiX is the cash flow from investing in stage i = 1, 2, which requires a capital expenditure, Fi.


The investment cost, Fi, can be financed with a mix of debt and equity. We assume that debt


has an infinite maturity and denote the coupon rate on debt issued in stage i by Ci.
8 The optimal


time to invest is the one that maximizes the market value of equity. The optimal time to default on


debt coupon payments is also endogenously determined (i.e. maximizes equity value). In the event


of default, equityholders receive nothing and debtholders assume ownership of the firm’s assets net


of bankruptcy costs. Bankruptcy costs include the loss of interest tax shields, the loss of the second-


stage option (if it has not been exercised), and the fraction α of the value of assets-in-place. The


endogenous investment thresholds and default thresholds in stage i are XSi and XDi for i = 1, 2.9


8Elsas, Flannery, and Garfinkel (2015) document that large investments are mostly externally financed and,
in particular that firms issue debt to move toward target debt ratios. The reliance on consol bonds simplifies the
analysis substantially but does not alter the economic insights.


9See Appendix A and Section 5.3 for a multi-stage model extended to have also an initial debt coupon C0.
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At time t = 0, equityholders wait to exercise the first investment option, which is triggered


when cash flows rise to the investment threshold XS1 ∈ (X0,∞) for the first time from below. We


denote this waiting period “stage 0” and call the firm in this stage a “juvenile” firm. When the


first option is exercised, the firm issues debt D1 and equity E1 to finance the fixed investment cost


F1. Then the firm enters “stage 1” and becomes an “adolescent” firm.


In stage 1, the firm has assets-in-place, another investment option, and a default option because


of D1. If cash flows decline to the default threshold XD1 ∈ (0, XS1) before reaching the second


investment threshold XS2 ∈ (XS1,∞), equityholders default. On the other hand, if cash flows reach


the investment threshold XS2 before decreasing to XD1, equityholders exercise the second option


and finance the investment cost F2 with a mix of debt, D22, and equity, E2. We assume that D22


has the same seniority as D1 whose value is denoted as D21 in the second stage. The firm then


enters “stage 2” and becomes a “mature” firm.


In stage 2, the firm has assets-in-place, no further investment options, and a default option


because of D21 and D22. Equityholders default when X touches the default threshold XD2 ∈


(0, XS2) for the first time from above. Finally, we assume that there are no conflicts of interest and


the debt coupons, C1 and C2, maximize equity value at time 0, E0. Table 1 provides a notational key.


[Insert Table 1 Here.]


To identify dynamic interactions of endogenous investment and financing decisions, we use a


single-stage model as a benchmark. This single-stage model is a truncated version of the multi-stage


model in that there is no intermediate stage 1. In stage 0, the juvenile firm has no asset-in-place and


no debt. It makes one investment of scale Π when X touches the investment threshold XS from be-


low for the first time, and then becomes a mature firm (i.e. enters stage 2). The capital expenditure,


F , is funded by a mixture of debt and equity, where C denotes the coupon of the firm’s debt issue.


2.2 Solution of the Multi-Stage Model


Using backward induction, we obtain values of debt and equity in each stage and then pin down


the endogenous investment and default thresholds via smooth-pasting conditions.


2.2.1 Mature Firm (Stage 2)


In the second stage, both investment options have been converted into assets-in-place. The second


debt issue, D22, which partially finances the investment cost, F2, and the first debt issue, D21, offer
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tax savings but give rise to a default decision (or threshold XD2). Following standard arguments,


the debt issue’s value, D2i(X,C1, C2), i = 1, 2, has for X ≥ XD2 a solution of the form:10


D2i(X,C1, C2) = A1iX
a +A2iX


z +
Ci
r
, (1)


where the two exponents a < 0 and z > 1 are the negative and positive roots of the quadratic


equation y(y−1)1
2σ


2+yµ−r = 0. The constantsA1i andA2i solve the following boundary conditions.


When X ↑ ∞, debt becomes risk-free and its value equals the present value of a perpetuity:


D2i(∞, C1, C2) = Ci
r . On the other hand, when X declines to XD2, equityholders default and the


owners of D2i get a proportion of the liquidation value based on the coupon Ci for i = 1, 2:11


D2i(XD2, C1, C2) =
Ci


C1 + C2


(1− α)(1− τ)(Π1 + Π2)XD2


r − µ
, i = 1, 2. (2)


Equity value E2(X,C1, C2), on the other hand, has for X ≥ XD2 a solution of the form:


E2(X,C1, C2) = B1X
a +B2X


z + (1− τ)
((Π1 + Π2)X


r − µ
− (C1 + C2)


r


)
, (3)


where the constants B1 and B2 satisfy the following boundary conditions:


E2(XD2, C1, C2) = 0, (4)


E2(∞, C1, C2) = (1− τ)
((Π1 + Π2)X


r − µ
− (C1 + C2)


r


)
. (5)


Simple algebra yields the value of the two debt issues for X ≥ XD2:


D2i(X,C1, C2) =
Ci
r


(
1− (


X


XD2
)a
)


+
Ci


C1 + C2


(1− α)(1− τ)(Π1 + Π2)XD2


r − µ
(
X


XD2
)a, (6)


with i = 1, 2, and also the value of equity for X ≥ XD2:


E2(X,C1, C2) = (1− τ)
((Π1 + Π2)X


r − µ
− C1 + C2


r
− (


(Π1 + Π2)XD2


r − µ
− C1 + C2


r
)(


X


XD2
)a
)
, (7)


where ( X
XD2


)a denotes the state price for default. Finally, the total firm value in this stage is the


sum of D21, D22 and E2.


As mentioned earlier, the only decision that equityholders make in this stage is when to default.


The optimal default threshold, XD2, is the one that maximizes the value of equity, E2:


∂E2(X,C1, C2)


∂X


∣∣∣
X=XD2


= 0, (8)


which yields a closed-form solution for the endogenous default threshold in the second stage:


XD2 =
a (C1 + C2) (r − µ)


r (a− 1) (Π1 + Π2)
. (9)


10See e.g. Goldstein, Ju, and Leland (2001) and Hackbarth, Hennessy, and Leland (2007) for details.
11We use equal priority for D2i. See e.g. Hackbarth and Mauer (2012) for other priority structures.
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2.2.2 Adolescent Firm (Stage 1)


In the first stage, only the second investment option has not yet been exercised. The adolescent


firm has assets-in-place and its capital structure consists of a mixture of debt, D1, and equity, E1.


It has an option to default, an option to invest, and it can issue additional debt, so it solves a


joint financing and investment problem. That is, when cash flows rise to the investment thresh-


old, XS2, equityholders exercise the second investment option and issues D22. On the other hand,


equityholders default if cash flows decline to the default threshold, XD1.


The values of debt, D1, and equity, E1, have solutions similar to the ones in equation (1) and


(3), but obey different boundary conditions. When X ↓ XD1, debtholders receive the liquidation


value: D1(XD1, C1, C2) = (1−α)(1−τ)Π1XD1


r−µ . If the firm keeps growing and X rises to the investment


threshold, XS2, equityholders exercise the second-stage investment option, and the value of the


first debt issue satisfies: D1(XS2, C1, C2) = D21(XS2, C1, C2). For XD1 ≤ X ≤ XS2, these value-


matching conditions imply the following solution for the value of first debt issue in stage 1:


D1(X,C1, C2) =
C1


r


(
1− L(X)− (


XS2


XD2
)aH(X)


)
+ (1− α)(1− τ)


(Π1XD1


r − µ
L(X) +


C1


C1 + C2


(Π1 + Π2)XD2


r − µ
(
XS2


XD2
)aH(X)


)
, (10)


where


L(X) =
XzXa


S2 −XaXz
S2


Xz
D1X


a
S2 −Xa


D1X
z
S2


and H(X) =
Xz
D1X


a −Xa
D1X


z


Xz
D1X


a
S2 −Xa


D1X
z
S2


(11)


denote state prices for default and investment. Intuitively, debt value, D1, is the weighted average


of the present value of the coupon payments C1 up until default in either the first or the second


stage, and the liquidation value that debtholders get when equityholders default in either stage.


Equity value E1, on the other hand, approaches zero when X ↓ XD1: E1(XD1, C1, C2) = 0. As


X ↑ XS2, it satisfies E1(XS2, C1, C2) = E2(XS2, C1, C2)− [F2−D22(XS2, C1, C2)], because the fixed


investment cost, F2, is funded by a mixture of additional debt and equity. For XD1 ≤ X ≤ XS2,


these value-matching conditions yield the following solution for the value of equity in stage 1:


E1(X,C1, C2) = (1− τ)
[
(


Π1X


r − µ
− C1


r
)− (


Π1XD1


r − µ
− C1


r
)L(X) +


(Π2XS2


r − µ
− C2


r
− (12)


F2 −D22(XS2, C1, C2)


1− τ
− (


(Π1 + Π2)XD2


r − µ
− C1 + C2


r
)(
XS2


XD2
)a
)
H(X)


]
.


The first two terms in square brackets of equation (12) denote the present value of after-tax cash


flows to equityholders until equityholders default in the current stage. The next few terms in
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this equation show the value from entering the next stage. Given the value of E1, equityholders


determine the optimal default threshold, XD1, by maximizing equity value:


∂E1(X,C1, C2)


∂X


∣∣∣
X=XD1


= 0. (13)


Similarly, the optimal investment threshold, XS2, solves the smooth-pasting condition:


∂E1(X,C1, C2)


∂X


∣∣∣
X=XS2


=
∂E2(X,C1, C2)


∂X


∣∣∣
X=XS2


+
∂D22(X,C1, C2)


∂X


∣∣∣
X=XS2


. (14)


2.2.3 Juvenile Firm (Stage 0)


In the initial stage, the juvenile firm has no assets-in-place, an option on a two-stage investment


project, and no pre-existing debt.12 The value of equity in this stage, E0, has a solution similar to


the one in equation (3) but without the last term on the right-hand side. As X ↓ 0, equity value goes


to zero: E0(0, C1, C2) = 0. When X touches the investment threshold XS1 for the first time from


below, the option is exercised, and debt and equity finance the exercise cost, F1: E0(XS1, C1, C2) =


E1(XS1, C1, C2)− [F1 −D1(XS1, C1, C2)]. For X ≤ XS1, this yields the following solution:


E0(X,C1, C2) = (1− τ)(
X


XS1
)z
[
(
Π1XS1


r − µ
− C1


r
)− F1 −D1(XS1, C1, C2)


1− τ
−


(
Π1XD1


r − µ
− C1


r
)L(X) +


(Π2XS2


r − µ
− C2


r
− F2 −D22(XS2, C1, C2)


1− τ
−


(
(Π1 + Π2)XD2


r − µ
− C1 + C2


r
)(
XS2


XD2
)a
)
H(X)


]
. (15)


Equity value in this stage equals the present value of after-tax cash flows conditional on exercise of


the first-stage option until equityholders default in stage 1 (the first three terms in square brackets


of equation (15)). If cash flows grow further and the firm expands a second time, then it enters


into stage 2 with the added value given by the next few terms in square brackets of equation (15).


In this stage, equityholders’ choose when to invest and how much debt and equity to issue to fi-


nance the investment cost, F1. When X is low, the benefit from exercising the option is outweighed


by the value of waiting-to-invest, hence the equityholders keep the option alive. When X rises suf-


ficiently, equityholders exercise the first option at XS1, which solves the smooth-pasting condition:


∂E0(X,C1, C2)


∂X


∣∣∣
X=XS1


=
∂E1(X,C1, C2)


∂X


∣∣∣
X=XS1


+
∂D1(X,C1, C2)


∂X


∣∣∣
X=XS1


. (16)


Finally, the debt coupons C1 and C2 maximize initial equity value, E0(X0, C1, C2), subject to the


above-mentioned smooth-pasting conditions for the thresholds XS1, XS2, XD1 and XD2.13


12We relax this assumption in Appendix A and Section 5.3 to examine the variation in the initial debt coupon, C0.
13For brevity’s sake, we suppress the non-linear equations (13), (14), and (16) that determine XD1, XS2, and XS1.
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2.3 Solution of the Single-Stage Model


When X ↑ ∞ in the last stage, the firm becomes risk-less, so its equity value EB1(X,C) and its


debt value DB1(X,C) converge to the present value of perpetual dividend and interest payments.


On the other hand, when X ↓ XD, equityholders default, and debtholders obtain the entire liq-


uidation value (net of bankruptcy costs). In the initial stage, the firm has a single investment


option, so firm value equals the value of this option. If X decreases to zero, the option becomes


worthless: EB0(0, C) = 0. But if X rises to the investment threshold, XS , the option is exercised:


EB0(XS , C) = EB1(XS , C)− [F −DB1(XS , C)].


The above-mentioned boundary conditions yield the following solutions for X ≥ XD:


DB1(X,C) =
C


r


[
1− (


X


XD
)a
]


+ (1− α)(1− τ)
ΠXD


r − µ
(
X


XD
)a, (17)


EB1(X,C) = (1− τ)
[ ΠX


r − µ
− C


r
− (


ΠXD


r − µ
− C


r
)(
X


XD
)a
]
, (18)


and for X ≤ XS :


EB0(X,C) =
[
(1− τ)


ΠXS


r − µ
+
τC


r
− F − [(1− τ)


ΠαXD


r − µ
+
τC


r
](
XS


XD
)a
]
(
X


XS
)z. (19)


The optimal default threshold, XD, maximizes the value of equity, EB1, that is:


∂EB1(X,C)


∂X


∣∣∣
X=XD


= 0, (20)


which implies the following closed-form solution:


XD =
aC (r − µ)


(a− 1) Π r
. (21)


The optimal investment threshold, XS , also maximizes the value of equity, EB1, that is:


∂EB0(X,C)


∂X


∣∣∣
X=XS


=
∂EB1(X,C)


∂X


∣∣∣
X=XS


+
∂DB1(X,C)


∂X


∣∣∣
X=XS


. (22)


Finally, debt coupon C maximizes in initial equity value, EB0, subject to the above-mentioned


smooth-pasting conditions for the thresholds XD and XS .


3 Financial Flexibility and the Investment Process


This section studies the key difference between the multi-stage model and the single-stage model


(i.e. the intermediate stage of an adolescent firm). This intermediate stage links financial flexibility


to the structure of the investment process. We illustrate how financing and investment decisions


of the adolescent firm influence those of the mature firm and vice versa.
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3.1 Intertemporal Effect


In the multi-stage model, suppose equityholders issue more debt in the first stage (i.e. C1 is higher).


This means that equityholders will bear less of the investment cost (i.e. F1 − D1 is lower). This


reduction in the equity-financing of the exercise cost expedites the exercise of the first option. As


a result, the firm produces first-stage cash flows, in expectation, earlier, which translates into a


higher initial equity value, E0. A higher C1, however, reduces financial flexibility going forward.


Therefore, the firm has to wait longer to exercise the second option and to receive second-stage cash


flows, which translates into a lower initial equity value, E0. Thus, the level of C1 has two opposing


forces in the multi-stage model, and the optimal level strikes a balance between the two forces.


On the other hand, suppose equityholders issue more debt in the second stage (i.e. C2 is higher).


This means that the firm uses more debt to fund the second-stage investment cost and hence equi-


tyholders bear less of the investment cost (i.e. F2−D22 is lower). This expedites the exercise of the


second option, raises the expected present value of cash flows from the second stage, and increases


initial equity value, E0. But the firm is more likely to go bankrupt when there is more second-stage


debt, which decreases the expected present value of cash flows from the second stage. In addition,


the anticipation of the higher second-stage debt level lowers financial flexibility in the first stage.


This delays the exericise of the first-stage option and decreases initial equity value, E0. So, the


optimal level of C2 also trades off two opposing forces on initial equity value that follow from the


dynamic interactions between financing and investment decisions in the multi-stage model.


Dynamic financing-investment interactions between the adolescent and mature stages lead to


an “intertemporal effect,” i.e. reaping exercise (i.e. cash flow) benefits from issuing debt in stage 1


against retaining financial flexibility for funding more of the investment cost with debt in stage 2.14


To illustrate the intertemporal effect, we select economically plausible base case parameter values.


The initial cash flow level, X0, is set to $5 and the risk-free rate equals r = 6%. The growth rate of X


is µ = 1% and the volatility of X is σ = 25%, which are close to estimates by Morellec et al. (2012).


The bankruptcy cost is α = 30% and the effective corporate tax rate is τ = 10%.15 The scales of the


investment options are Π1 = 1 and Π2 = 1, and the investment costs are F1 = $100 and F2 = $200.


14This does not depend on bankruptcy costs or taxes, which are constant over time and hence cannot cause timing
differences. As we will see, the intertemporal effect is largely attributable to the structure of the investment process.


15This tax rate is lower than those used in other studies. We do this on purpose, because we want to limit tax
effects and emphasize the intertemporal effect due to the structure of the investment process. In addition, structural
estimation of the multi-stage model in Section 4 provides fairly low point estimates of the effective corporate tax rate.


11







Using this base case environment, Figure 1 displays the intertemporal effect by mapping debt


coupon pairs, C1 and C2, into initial equity value, E0, on the basis of equation (15). The figure


reveals that E0 is convex C1 and C2 and, in particular, that an interior optimum is clearly present.


Thus, the intuition behind the intertemporal effect discussed above leads indeed to an optimal pair


of (C1, C2) that corresponds to the highest attainable point of initial equity value on the surface.


[Insert Figure 1 Here.]


Table 2 reports, for the base case environment, optimal capital structure choices, investment


thresholds, default thresholds, and market leverage ratios. Market leverage is defined as the ratio


of market value of debt over the sum of market value of debt and market value of equity. Panel


A tabulates the optimization results for the single-stage model, while Panel B shows the corre-


sponding outputs for the multi-stage model. One of the key differences between the first column


in Panel B and the first two columns in Panel A is the role played by financial flexibility.16 That


is, the underutilization of debt capacity, which we can gauge by the difference in leverage ratios


between the single-stage model (42%) and the multi-stage model (28% and 38%), shows that the


firm in the multi-stage model has a strong incentive to retain financial flexibility in the first stage.


In addition, the firm in the multi-stage model continues to have a lower target leverage ratio in the


second stage. That is, underutilization persists and leverage ratios are lower in both stages of the


multi-stage model relative to the ones of an otherwise identical firm in the single-stage model.


[Insert Table 2 Here.]


It is remarkable that leverage does not vary with nature of the investment option in the single-


stage model (Panel A). Hence the underutilization of debt in the multi-stage model (Panel B) is


closely related to the intertemporal effect. On the one hand, using more debt to finance the first


investment lowers equityholders’ contribution to the first investment cost, so equityholders will in-


vest earlier (i.e. at a lower investment threshold). On the other hand, the pre-existing debt issued


in the first stage creates default risk and reduces financial flexibility in the second stage, so equity-


holders will invest later (i.e. at a higher investment threshold). These countervailing forces lead to


a variety of realistic outcomes, which depend crucially on the relative size of the investment scales,


Π1 and Π2. In particular, the results in Table 2 indicate that equityholders underutilize debt in


stage 1 to maximize the value of their financing and investing options. Absent any other frictions


16Note that in Panel A the benchmark model’s investment cost, F , equals either $100 or $200 to make it comparable
to the first or the second stage of multi-stage model in Panel B. The same applies to the choice of investment scales.
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(e.g. agency conflicts or transaction costs), optimization generates path-dependent and persistent


leverage ratios in a dynamic trade-off model that incorporates irreversible investment.


In sum, these findings imply that structural models without dynamic financing-investment in-


teractions (1) overestimate target leverage ratios, and (2) can be misleading in that they imply a


fixed target leverage ratio that is largely taken to be exogenous to the investment process. The


latter point also suggests that there is no meaningful measurement of partial adjustment towards


target leverage without recognition of firm-level heterogeneity in the investment process. Therefore,


we examine the role of the structure of the investment process in the next subsection.


3.2 Structure of the Investment Process


To study how leverage changes with the structure of the investment process, we modify the base


case of Π1 = 1 and Π2 = 1 (see first column in Panel B of Table 2) in columns 2–4. Column 2


depicts optimization results for a back-loaded investment structure (Π1 = 0.75 and Π2 = 1.25),


while column 3 contains a front-loaded one (Π1 = 1.25 and Π2 = 0.75). Finally, column 4 reports


the corresponding outcomes for a very front-loaded investment structure (Π1 = 1.5 and Π2 = 0.5).17


These columns highlight several interesting features of the multi-stage model. First, the firm


retains less (more) financial flexibility in the first stage when the structure of the investment process


is front-loaded (back-loaded). For example, if we reduce the first-stage investment scale by 25%


and raise the second-stage investment scale by 25%, then leverage in stage 1 decreases substantially


from 28% to 20% (a decline of almost a third) and leverage in stage 2 increases from 38% to 40%.


This result for the first stage helps explain the debt conservatism puzzle (see Graham (2000)).


Second, the difference in target leverage ratios across the two stages declines (rises) when the


structure of the investment process is front-loaded (back-loaded). Consider the case in column 2,


where 25% of the first-stage investment scale are pushed into the second stage, so the structure of


the firm’s investment process is more back-loaded than in the base case of column 1. As a result,


the difference in target leverage ratios effectively doubles (it increases from 10% to 20%). Hence


firms that only differ in terms of their investment options (i.e. are otherwise identical) neither have


the same target leverage nor follow the same leverage dynamics in the multi-stage model.


Third, the results in Panel B indicate that typically first-stage leverage is lower than second-


17Changing Π1 and Π2 in lock step produces the same coupons and leverage ratios as in column 1. All else equal,
only the ratio of Π1 and Π2 matters because of of the scaling property. So we only consider asymmetric changes.
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stage leverage, which is consistent with dynamic capital structure models without investment (see


e.g. Goldstein, Ju, and Leland (2001) and Strebulaev (2007)). However, a sufficiently front-loaded


investment process produces higher leverage in stage 1 than in stage 2 (see column 4). Intuitively,


there is very little incentive to retain financial flexibility in this case and hence the firm utilizes its


debt capacity more aggressively already in the first stage. Thus, unlike dynamic capital structure


models without investment, the multi-stage model can produce increasing and decreasing leverage


ratios over time, which are largely driven by the structure of the firm’s investment process.


Finally and related to the previous point, it is perhaps also surprising that the mature firm with


front-loaded investments selects lower leverage in the second stage (see columns 3 and 4) relative to


the base case (see column 1). As in Childs et al. (2005), lower leverage ratios in later stages could be


due to increases in the firm’s asset risk (e.g. because mature markets tend to be more competitive


and hence riskier). It turns out, however, that even when the firm’s asset risk is constant over time


leverage ratios can nevertheless decline over time.


Overall, the analysis shows how incentives to retain financial flexibility in the first stage cru-


cially depend on the investment process. The lower the first-stage investment scale, Π1, is relative


to Π2, the more the firm saves debt capacity in stage 1. Given the wide range of optimal (target)


leverage ratios, the results in Table 2 suggest that leverage ratios can greatly vary depending on how


the firm grows assets-in-place by exercising its real options. Therefore, it is difficult to determine


target leverage in the conventional sense unless the structure of investment process is recognized in


future empirical studies on target leverage and speed of adjustment to target leverage. In addition,


financing-investment dynamics in the multi-stage model produce a significant fraction of low (and


zero) leverage firms and also path-dependent, persistent leverage ratios (see also Section 5.3).


3.3 Other Comparative Statistics


We implement a sensitivity analysis on how dynamic financing-investment interactions and leverage


ratios change with parameter values unrelated to the investment process. We vary the effective


corporate tax rate, τ , the bankruptcy cost, α, the cash flow volatility, σ, and the cash flow growth


rate, µ. In particular, we increase and decrease each parameter by 50% of its base case value, while


keeping the other parameters unchanged. Similar to Table 2, Table 3 reports optimal debt coupons,


investment thresholds, default thresholds, and market leverage ratios.


[Insert Table 3 Here.]
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Not surprisingly, leverage goes up in both stages if the effective corporate tax rate, τ , rises. This


follows from trade-off theory, because higher taxes lead to higher tax benefit of debt. The firm issues


more debt and hence defaults earlier. The net effect of more debt issuance and more default risk is


that optimal investment thresholds do not respond much to higher tax rates. The bankruptcy cost,


α, has a negative impact on the value of debt, so it works in the opposite direction. Because higher


bankruptcy costs lower the firm’s debt capacity to fund the investment expenditure, investment


takes place, in expectation, later. Yet, similar to the role of taxes, bankruptcy costs are also more


related to debt and hence investment thresholds do not change significantly. Finally, notice that


leverage ratios are sensitive to both changes in bankruptcy costs and changes in tax rates.


Since the volatility of cash flows, σ, is a measure of uncertainty, the investment option’s value


rises with σ and, as a result, optimal investment occurs, in expectation, later. In the multi-stage


model, initial equity value equals the value of a sequential investment (compound) option. There-


fore, changes in volatility greatly change investment decisions. When volatility goes up, it is more


valuable to keep the option alive, so the firm waits longer to invest in both stages (XS1 rises from


12.36 to 17.51 in stage 1 and XS2 rises from 23.67 to 33.08 in stage 2 for the case in column 6).


Consistent with many studies building on Leland (1994), varying volatility also leads to significant


variation in leverage. When volatility is high, the firm is riskier (i.e. more likely to go bankrupt) and


hence uses debt more conservatively in both stages and leverage ratios drop significantly relative


to the base case. Thus, it can pose a challenge for structural estimation that volatility strongly


affects both financing and investment decisions.


Finally, a higher growth rate of cash flows, µ, also makes the firm’s options more valuable,


because their intrinsic value is higher for any level of cash flows and hence waiting to invest becomes


costlier. A rise in µ leads to, in expectation, earlier investment (i.e. XS1 declines from 12.36 to 11.99


in stage 1 and XS2 declines from 23.67 to 22.91 in stage 2 as seen in column 8). A rise in µ also


leads more debt-financed investment in both stages. However, leverage ratios are fairly insensitive


to changes in the growth rate, which might also make structural estimation of µ more challenging.


For the base parameter values, the multi-stage model produces leverage ratios, which closely


match those observed in practice. In the next section, we tackle the question whether several sim-


ulated model moments can simultaneously match a number of desirable data moments for a set of


estimated parameter values. While the sensitivity analysis in this section sheds additional light on


model, it also helps us find informative moments for estimating parameters in the next section.
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4 Simulated Moments Parameter Estimation


To test the model’s ability to match observed outcomes, we turn to simulation methods based on


indirect inference techniques in Gourieroux, Monfort, and Renault (1993) and Gourieroux and Mon-


fort (1996). Like Hennessy and Whited (2005, 2007), we use Simulated Method of Moments (SMM)


to estimate a set of structural parameters of the model. To do so, we solve the multi-stage model nu-


merically and then use this solution to generate simulated panels of firms. SMM selects parameter


values by minimizing the distance between moments from actual data and corresponding moments


from simulated data. That is, the goal of SMM is to find an optimal vector of unknown structural pa-


rameters, say b∗, by matching a set of simulated model moments with corresponding data moments.


Let b = (Π1,Π2, α, τ) be the vector of unknown structural parameters to be estimated by SMM.


We simulate S = 6 artificial panels data sets consisting of N = 1, 000 firms for 200 years using the


multi-stage model and a given b. In each panel, we only keep T = 100 years (or 400 quarters given


that ∆t = 0.25) after discarding the first 100 years to avoid undue influence of initial conditions.


Once a firm defaults, we replace it by a new firm with the same characteristics to keep the size of


the simulated data sets constant over time. By iterating b and calculating the distance between the


model moments, Mm, and data moments, Md, we estimate the optimal vector of parameters, b∗.18


The moments to match are selected such that they are a priori informative about the unknown


structural parameters, b. Intuitively, a moment is informative about b if it can identify at least some


elements in b, which means it is sensitive to changes in b. Informative moments enable SMM to


converge faster and to provide more robust economic insights. We select the following five moments


to estimate the four structural parameters (Π1,Π2, α, τ):19


1. Quasi-Market Leverage (QML): Let QMLit denote the quasi-market leverage ratio (i.e. the


book value of debt divided by the sum of market value of equity and book value of debt) of


the simulated firm i, with i = 1...N , at time t, with t = 1..., T . We first calculate the cross-


sectional average for every time t and then take the average of the cross-sectional averages


over time, i.e. QML = 1
T


∑T
t=1( 1


N


∑N
i=1QMLit). This moment reflects how the net benefits


of debt and, in particular, the structure of the investment process affects the level leverage.


So we expect it to be sensitive to e.g. Π1 and also responsive to α and τ .


2. Dispersion of Quasi-Market Leverage (DispQML): This moment is defined as the cross-


18See Strebulaev and Whited (2012) for benefits and relevance of indirect inference techniques in corporate finance.
19Appendix B provides a more detailed description of the structural estimation procedure that we implement here.
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sectional average of the time-series standard deviations of firms’ quasi-market leverage ratios,


i.e.DispQML = 1
N


∑N
i=1


√
Vari(QMLi1, ..., QMLiT ). This moment reflects how firms respond


to shocks when optimally financing their investment projects. Hence this moment is also likely


to be informative about Π1 as well as α and τ , but it captures cross-firm variation in leverage.


3. Debt Issuance (D/K): We compute D/K as the ratio of net debt issuance to capital at


investment points. This moment reflects the proportion of debt used to finance investment


expenditures, which is higher if bankruptcy costs are lower or if tax rates are higher. It should


be sensitive to the parameters α and τ that determine the net benefits of debt issuance.


4. Market-to-Book (Q): We first calculate the cross-sectional average for every time t and then


take the average of the cross-sectional averages over time, i.e. Q = 1
T


∑T
t=1( 1


N


∑N
i=1Q


i
t), where


Qit is the market value of firm i divided by the book value of firm i at time t. Q proxies for


investment opportunities and hence it should be informative about Π1 and especially Π2.


5. Investment-to-Equity (Inv/Eq): This moment is defined as investment cost (i.e. F1 or F2)


divided by book value of equity at investment points. Since the investment costs are fixed,


this moment depends more on when the firm exercises its options and, in particular, how high


equity value has to rise for exercise to be optimal. Therefore, it is likely related to Π1 and


Π2, but potentially also to τ because equity is a claim on after-tax cash flows.


Table 4 presents the sensitivities of the five moments to changes in the model parameters b. The


base case scenario is in the first column. In the other columns, each of the four parameters, namely


Π1, Π2, α and τ , is separately increased by 50%. Panel A displays the absolute changes of the


moments and Panel B shows percentage changes relative to the base case in the first column. The


table reveals that QML and DispQML are indeed most sensitive to Π1. This is because QML


reflects the investment and financing activities in the past, i.e. the level and dispersion of early


stage leverage ratios are primarily determined by how high Π1 is. Tax rate τ and bankruptcy cost


α most strongly affect the debt issuance moment, D/K, because they are the key determinants


of both debt capacity and net tax benefits. Q is very sensitive with respect to changes in Π2.


Recall that initial equity value corresponds to a compound option in the multi-stage model. All


else equal, firms with more a back-loaded investment process (i.e. higher Π2) will have much higher


market-to-book ratios. The investment to book equity ratio Inv/Eq responds the most to τ and


Π2 and also a bit less so to Π1. In sum, Π1 influences mainly QML and DispQML, Π2 matters


the most for Q and also changes D/K, α and τ have the strongest effect on D/K but also affect
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QML, and finally τ (but not α) impacts Inv/Eq.


[Insert Table 4 Here.]


We use the COMPUSTAT annual tape for the 45-year period between 1965 and 2009 to esti-


mate the data moments.20 We refer to this vector as the “Full Sample” moments. We run SMM


also on various subsamples to provide insights into the structure of companies’ investment process.


Therefore, the COMPUSTAT sample is split into three subsamples according to Q. For each firm-


year, firms are ranked by the value of Q from the lowest to the highest. Firms in the lowest 33% of


the distribution are classified as the “Low Q” sample, firms in the highest 33% belong to the “High


Q” sample, and those in between are in the “Medium Q” sample. For each of the subsamples, we


also compute the corresponding data moments. We then run SMM for each of the four samples and


collect the vector of structural parameter estimates, b∗, along with the (fitted) model moments.


The parameter estimates for the full sample and the three subsamples are presented in Panel A


of Table 5. The numbers in the parentheses are the standard deviations of model estimates across


the 1,000 panels with the exception of the χ2 test, for which that number is the p-value for the


overidentification test. In particular, the χ2 test of the overidentifying restrictions does not produce


a rejection at the 10% level for any of the four structural estimations in Panel A. Panel B of Table


5 reports the data moments and the fitted (model) moments for the full sample and the three


subsamples. For all four estimations, the fitted moments are very close to the data moments. This


implies that the simulated economy with these parameter estimates closely mimics the real economy.


[Insert Table 5 Here.]


As argued earlier, the ratio of investment scales, Π2/Π1, captures the structure of investment


process. Panel A reveals that the “High Q” sample has a fairly back-loaded investment processes


(Π2/Π1 = 2.284 > 1), whereas the other three samples display various front-loaded investment


processes. For example, the “Low Q” sample shows the most front-loaded investment process


(Π2/Π1 = 0.175 < 1), which is also the only case of Π1 not being reliably measured. Importantly,


these results of the structural estimation are consistent with the theoretical discussion in Section 3.2.


Specifically, firms in the “High Q” sample tend to have many future investment opportunities


and thus large growth potential — the structure of the investment process of these firms is indeed


20We remove financial firms (SIC between 6000 and 6999) and utilities (SIC between 4900 and 4999), because they
operate in regulated industries. We also remove firm-year observations with total assets less than two million and
plant, property, and equipment less than one million to avoid biases caused by small firms.
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back-loaded, so they initially retain more financial flexibility (i.e. save more debt capacity). This


is why we observe the lowest leverage ratio for this sample. The “Low Q” sample has more mature


firms and they do not have many future investment opportunities. Their investment process tends


to be more front-loaded, so they do not have a motive to save debt capacity for future investments


and this is why we observe the highest leverage ratio for this sample. On average, the 45-year


COMPUSTAT sample contains more firms having fairly front-loaded investment process.


Another interesting observation is that the estimated tax rate, τ , is low for all four samples,


ranging from 4% to 7%. There is more variation in the estimates of the bankruptcy costs, α, but if


we put less weight on the “Low Q” sample, then it is also roughly 30%. This implies that the net


tax benefit of debt is not driving the result, confirming the conclusion of Section 3. While, these


findings are also consistent with the debt conservatism puzzle in that the data moments of observed


leverage ratios are in line with relatively low effective tax rates, they establish, more importantly,


that the structure of the investment process is likely to be a more important determinant of leverage


ratios than tax rates or bankruptcy costs, because the SMM indicates that its parameters, Π1 and


Π2, vary much more widely across subsamples than α and τ .


To summarize, unobserved heterogeneity in terms of the precise structure of the investment


process (e.g. front-load, mid-loaded, or back-loaded) seems to be large and important for under-


standing the cross-sectional distribution of corporate investment and financing decisions within an


industry or for the entire economy. Thus, future capital structure research should try to move more


into the direction of recognizing and treating this important source of cross-firm heterogeneity.


5 Capital Structure Tests


Simulation is a useful tool for testing theoretical models (see e.g. Hennessy and Whited (2005), Leary


and Roberts (2005), Strebulaev (2007), and Tserlukevich (2008)). In this section, we investigate


the cross-sectional properties of leverage ratios in dynamic, simulated economies where firms make


endogenous investment and financing decisions. We compare capital structure regression results


for simulated data to the corresponding results for real data. Finally, we perform leverage portfolio


sorts used for COMPUSTAT data by Lemmon, Roberts, and Zender (2008) for simulated data.
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5.1 Panel Simulations


We begin by detailing the procedure of simulating dynamic economies with heterogeneous firms.


The simulations take solutions for the valuation equations and, in particular, for the optimal invest-


ment and financing decisions in Section 2.2 as given and do not involve any additional optimizations.


It is well-known that systematic (or economy-wide) and idiosyncratic (firm-specific) shocks


have explanatory power for leverage ratios. The former create cross-firm dependencies in dynamic


economies. Hence we decompose the cash flow process into systematic and idiosyncratic components


to allow for a more realistic correlation structure:


dXi(t)/Xi(t) = µdt+ βi σS dW
S(t) + σIi dW


I
i (t), Xi(0) = X0 > 0, i = 1, ..., N, t = 1, ..., T (23)


where constants σS and σIi represent, respectively, volatilities of systematic and idiosyncratic


shocks. The stochastic processes dWS(t) and dW I
i (t) are independent Wiener processes, dW (t) =


βi dW
S(t) + dW I


i (t), and the parameter βi measures firm i’s exposure to systematic shocks. Thus,


the total risk can be calculated as σi = (σ2
Ii + β2


i σ
2
S)


1
2 .


Based on a discretization of equation (23), we simulate 1,000 panel data sets with N = 3, 000


firms for T = 400 quarters. More specifically, we generate 200 years of data (or 800 quarters given


that ∆t = 0.25) based on the multi-stage model and then drop the first 400 quarters to obtain


a stationary sample for each simulated economy and to limit the influence of initial conditions.


All firms in the same panel are governed by the same series of systematic shocks, dWS(t), but


the dynamics of economies are different across the 1,000 panels. At time t = 0 of each panel, the


optimal policies are determined as a function of firm characteristics (i.e. parameter values). For all


t > 0, firms follow their optimal investment, debt and equity issuance, and default policies given


that they observe the evolution of their cash flow process every quarter. If a firm defaults, it is


“reborn,” i.e. it is replaced in the next quarter by a juvenile firm with identical initial conditions.


Panel A of Table 6 provides an overview of the values and distributions of model parameters


that are set once and for all at time t = 0 to produce the simulated economies. To begin, we use


the structural estimation results for the full sample in Section 4. That is, the investment scales are


estimated for all firms to Π1 = 1.966 and Π2 = 1.286. The bankruptcy cost, α, and the tax rate, τ ,


are uniformly distributed with means corresponding to the SMM’s full sample results and ranges of


+/–20% around the means. Similarly, the investment costs, F1, and F2, have uniform distributions


with supports [80, 120] and [160, 240], respectively. The systematic shock is fixed to σS = 0.148
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based on estimates reported by Schaefer and Strebulaev (2008). The idiosyncratic shock, σIi, varies


around a mean of 0.217 based on a chi-squared distribution: σIi ∼ 0.05+ 1
30 χ


2(5). Firm i’s exposure


to systematic shocks, βi, follows a uniform distribution, whose first two moments correspond to the


empirical distribution with mean of 0.993 and standard deviation of 0.47 reported by Strebulaev


(2007). Finally, the other parameters assume the base case values, i.e. risk-free rate r = 6%, growth


rate of cash flows µ = 1%, and initial cash flow level X0 = $5.


[Insert Table 6 Here.]


Panel B of Table 6 presents the cross-sectional distribution of leverage both at investment points


and across all panels (i.e. in dynamics). For each simulated data set, we first calculate statistics


for each quarter. We then average across quarter within each simulated economy, and then average


across economies. However, the rows “Min.” and “Max.” report, respectively, the minimum and


the maximum assumed by the corresponding quantities. Investment points are further classified as


first and second investment points, because the multi-stage model features two investment options.


Market leverage, ML, is defined in Section 3.1. Quasi-market leverage, QML, equals book value


of debt divided by the sum of market value of equity and book value of debt in this model, where


book value of debt is defined as the value of debt at the beginning of a stage (i.e. at X = XS1 or


X = XS2). Hence quasi-market leverage and market leverage coincide at investment points.


The table confirms that ML and QML are not very different. Across all panels, average ML


is 19.7% and the average QML is only 0.8% higher. Yet, market leverage ratios at first investment


points are almost half of those at second investment points, which is attributable to the strong


incentive of adolescent firms to retain financial flexibility. Taken together, average leverage at


investment points equals 18.7%. This is significantly lower than in similar models without endoge-


nous investment by Goldstein, Ju, and Leland (2001) and Strebulaev (2007), who report 37% and


26%. Hackbarth and Mauer (2012) obtain optimal leverage ratios as low as 12%, but their success is


largely due to debt overhang and debt (dilution) dynamics, whereas our simulations do no rely at all


on agency problems. Moreover, the standard deviations of leverage ratios at investment points are


about half of those for all data points. This is due to the fact that firms tend to make infrequent in-


vestments that occur at optimal times. Thus, even though target leverage ratios differ across firms,


they are less dispersed than leverage ratios in dynamics. In addition, the distribution of leverage


ratios at investment points are almost symmetric, whereas the ones in dynamics are right-skewed


(i.e. the mean exceeds the median). Intuitively, because firms in various (investment) stages of the
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model or, more generally, their life-cycle, respond differently to economic shocks of the same mag-


nitude, the behavior of leverage ratios at investment points is quite different from that in dynamics.


In sum, the simulations of heterogeneous firms generate much lower average leverage ratios


than prior work, both at the investment points and in dynamics, and yet it is still able to generate


leverage ratios spanning over the [0, 1] interval. Therefore, we conclude that the structure of firms’


investment process is crucial for obtaining realistic distributions of leverage ratios in simulated


economies. Intuitively, firms endogenously preserve debt capacity (i.e. retain financial flexibility)


for future investment stages. That is, the intertemporal effect of the multi-stage model of corporate


investment and financing dynamics captures an important mechanism which helps explain the low-


leverage puzzle of Graham (2000). More recently, Strebulaev and Yang (2012) document a closely


related, so-called zero-leverage puzzle given that e.g. 14.0% of large, public companies had no debt


outstanding in the year 2000. Consistent with their findings, our model produces, on average, also


produces a large and persistent fraction of zero-leverage firms. As seen from the 10th percentile


in Panel B of Table 6, the fraction of zero-leverage firms in dynamics exceeds, on average, 10% for


the 1,000 simulated panel data sets. Clearly, this suggest that, at the very least, the model is able


to explain a substantial part, if not most, of the low- and zero-leverage puzzles. It seems that this


success cannot be achieved by alternative models without endogenous investment, so considering


dynamic interactions between corporate investment and financing is crucial.


5.2 Cross-Sectional Regressions


In this section, we focus on the behavior of quasi-market leverage, market-to-book, and profitability


in simulated data sets. In particular, we estimate capital structure regressions both at investment


points and for all observations in the panels (i.e. in dynamics). This also allows us to examine the


role of other determinants of capital structure that are typically used in the empirical literature.


Growth options might have a negative debt capacity, because debt overhang rises with leverage


(Myers (1977)). Indeed, numerous empirical studies find a negative relation between leverage and


market-to-book, a commonly used proxy for growth options, and interpret it as evidence for agency


problems. For example, Smith and Watts (1992) document a negative relation between quasi-


market leverage ratios and market-to-book ratios. Similarly, Rajan and Zingales (1995) report


a reliably negative relation between quasi-market leverage and the market-to-book ratio across


seven different countries. However, they conclude: “From a theoretical standpoint, this evidence
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is puzzling. If the market-to-book ratio proxies for the underinvestment costs associated with high


leverage, then firms with high market-to-book ratios should have low debt...” Yet, Chen and Zhao


(2006) find leverage is positively related to market-to-book for all firms except those with the highest


market-to-book ratios. We therefore study the leverage-growth relation in our simulated economies.


A distinct yet related line of research studies the relation between leverage and profitability.


Myers (1993) argues that the negative relation between leverage and profitability is one of the most


pervasive patterns of empirical capital structure research. According to Strebulaev (2007), it is


also one of a few relations that enables us to distinguish between the (static and dynamic) trade-off


model and pecking order behavior. We therefore examine whether conclusions from prior research


on the leverage-profitability relation in dynamic capital structure models without investment carry


over to the simulated data sets, in which corporate investment and financing are endogenous.


More specifically, the empirical variables of interest are profitability, π, and market-to-book, Q.


The interaction of leverage with these two factors is widely used to differentiate implications of the


trade-off theory of capital structure from the pecking order. Based on the standard trade-off theory,


higher profitability enables firms to reduce the costs of bankruptcy and increase the tax benefit of


debt. Thus, a positive leverage-profitability relation is predicted. This prediction is challenged by


a large body of empirical research, such as Titman and Wessels (1988), Rajan and Zingales (1995),


and Fama and French (2002), and Baker and Wurgler (2002), who all find a negative association


confirming the pecking order’s prediction. Firm behavior according to the pecking order means that


higher profitability allows firms to use more retained earnings. Holding investment fixed, leverage


is thus lower for more profitable firms. As a result, the negative leverage-profitability relation has


traditionally been regarded as evidence in favor of pecking-order and against trade-off behavior.


Regarding the leverage-growth relation, these two theories have opposite predictions too. In the


trade-off world, high growth firms tend to have lower collateral values and hence higher bankruptcy


costs. Trade-off firms with high growth should therefore issue less debt. In the pecking-order world,


debt increases when capital expenditures are higher than retained earnings, and decreases when


capital expenditures are lower than retained earnings. Holding profitability fixed, leverage is thus


higher for pecking-order firms with high growth. Taken together, a positive (negative) leverage-Q


(or leverage-π) relation follows from pecking order (trade-off) arguments.


Recall that we generate 1,000 panel data sets with 800 quarters based on the multi-stage model


and then drop the first 400 quarters to obtain a stationary sample for each simulated economy
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and to limit the influence of initial conditions. Using these simulated economies, we estimate four


versions of a standard capital structure regression model for quasi-market leverage:


QMLi = β0 + β1 xi + β2 σi + β3 αi + β4 τi + εi, (24)


where x is either profitability, π, in Panel A of Table 7 or market-to-book, Q, in Panel B of Table


7. In Panel C of Table 7, we include both profitability, π, and market-to-book, Q, as regressors.


We measure profitability, π, as earnings before interest and tax (or cash flows) scaled by firm value,


whereas the market-to-book ratio, Q, is the ratio of total market value of asset over book value of


asset. The other independent variables are time-invariant firm attributes: volatility of cash flows,


σ, bankruptcy cost, α, tax rate, τ , and firm size, ϕ, which equals the sum of book value of debt and


book value of equity. We focus on QML as regressand, because distributions of market leverage


and quasi-market leverage closely mimic each other in the simulated economies (see Table 6).


[Insert Table 7 Here.]


In Table 7, the first column reports the regression results at investment points and the other


columns report the ones on simulated economies.21 In particular, the first version of equation (24)


is the “Investment Points” regression, whose estimation results are tabulated in the first column


(Inv. Pts.) of Table 7.22 The second column (BJK) of Table 7 reports OLS regression results


in the fashion of Bradley, Jarrel, and Kim (1984). The dependent variable, QMLi, is calculated


as the sum of book values of debt over the 400 quarters divided by the sum of book values of


debt and market values of equity over the 400 quarters. The independent variables are calculated


similarly (if possible). Note that for this regression the dependent variable and independent vari-


ables are contemporaneous. In the third column (RZ), the independent variables are averaged


over quarters t − 1 to t − 4 to reduce noise as in Rajan and Zingales (1995), while the dependent


variable, QMLi, is measured at time t. Finally, the fourth column (FF) adopts the Fama-MacBeth


regression approach as in Fama and French (2002). At each time t, QML is regressed on lagged


independent variables. We report averages of the quarter-by-quarter coefficient estimates along


with Fama-MacBeth standard errors that are corrected with the Newey-West method.


Strebulaev (2007) points out empirical capital structure regressions should differentiate refinanc-


ing points from other data points. He develops a dynamic trade-off model with financing frictions,


21Coefficient estimates and t-statistics reported in this table are the averages across the 1,000 simulated economies.
22In Strebulaev (2007), the first regression is run at refinancing points only as he considers only financing friction.


Our paper considers only investment frictions. In reality, one would, however, expect both frictions to be important.
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where firms size if fixed over time. An important question is therefore whether similar conclusions


obtain if firm size is not fixed over time, so firms can make a sequence of endogenous investment and


financing decisions. To this end, Table 7’s Panel A reveals that the leverage-profitability relation


is positive and significant at investment points (see first column), which is consistent with static


trade-off behavior. Interestingly, it is reliably negative in the other columns, in which we estimate


BJK, RZ, and FF regressions using all data points (i.e. in dynamics). This is the pecking order’s


prediction, but derives entirely from data produced by a dynamic trade-off model with investment


frictions. The effects of cash flow volatility, bankruptcy cost, tax rate, and firm size on leverage


are also significant and go in the expected directions. The upshot of Panel A is that infrequent,


lumpy investment provides an economically important alternative to financing frictions, because


we observe remarkably different patterns at investment points versus in dynamics.


Furthermore, the intertemporal effect of the multi-stage model has implications for the leverage-


growth relation, which we examine in Panel B of Table 7. For example, Frank and Goyal (2009)


summarize that market-to-book has a reliably negative relation with leverage, which is consistent


with the prediction of both trade-off theory and market-timing theory. Absent agency problems or


market inefficiencies, this phenomenon is strongly borne out in the regressions on all data points


(i.e. in dynamics). Again, the sign is reversed at investment points. Thus, the interpretation of


cross-sectional tests of the leverage-Q relation changes depending on whether firms are active (i.e. at


investment points) or passive (i.e. in between investment points). While firm size, ϕ, and firm risk,


σ, are both economically and statistically significant in Panel B, bankruptcy cost, α, and tax rate τ


are less reliable variables, consistent with Frank and Goyal (2009). Consider, for example, the RZ


regressions, where α and τ are not even 10% significant. In contrast, α and τ are highly significant


in Strebulaev (2007), where Q is not included as independent variable in the regression analysis.


Finally, Panel C includes both profitability, π, and market-to-book, Q, as regressors. The results


are similar to the ones in Panels A and B. Interestingly, neither π nor Q lose statistical power, even


though both are influenced by the same underlying sources of uncertainty. Thus, this last part of


the regression analysis suggests that profitability and market-to-book are independently important


for explaining the behavior of leverage ratios. More generally, we expect in reality both financing


frictions and investment frictions. So, these complementary types frictions will be present at differ-


ent points in time (i.e. at separate investment and refinancing points) and also at the same points


in time as assumed by the model. Clearly, this can only strengthen the relevance of our conclusions.
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To summarize, the regression results based on simulated data using our structural estimation re-


sults are able to replicate stylized facts established by empirical research. In the spirit of Strebulaev


(2007), simulation of the multi-stage model of corporate investment and financing dynamics rein-


forces the need to differentiate investment points from other data points when studying corporate


behavior in a dynamic world.


5.3 Leverage Portfolio Sorts


In a recent article, Lemmon, Roberts and Zender (2008, LRZ) chart the evolution of leverage ratios


for four portfolios constructed by sorting firms based on their actual leverage (Figure 1) or unex-


pected leverage (Figure 2). LRZ report the puzzling evidence that, despite of some convergence,


average leverage ratios across the four portfolios are fairly stable over time for both types of sorts


(i.e. actual and unexpected leverage). Using the annual COMPUSTAT database for the 1965 to


2003 period, firms with relatively high (low) leverage tend to maintain relatively high (low) lever-


age for over 20 years. LRZ conclude that the striking stability in leverage paths is unexplained by


previously identified determinants (e.g. firm size, profitability, market-to-book, industry, etc.) or


changes in sample composition (e.g. firm exit).


In this section, we establish that real frictions in a dynamic trade-off model can produce average


leverage paths that closely resemble the corresponding ones documented by LRZ. Put differently,


endogenous investment and financing decisions in a dynamic model can largely explain the other-


wise puzzling patterns. To this end, we extend the multi-stage model with endogenous financing


and investment decisions in Section 2 by introducing an initial coupon, C0, at beginning of a firm’s


life. This will enable us to create exogenous variation in initial leverage based on which we can sort


firms into leverage portfolios. At time t = 0, firms are also endowed with an initial scale, Π0, so


that they can generate cash flows to service their initial debt issues. Given that each firm has debt


in place in stage 0, there is also an endogenous default threshold, XD0. The values of initial debt


in stages 0, 1, 2 are, respectively, denoted by D0, D10, and D20. All other variables are the same


as in Section 2 (see Appendix A for more details).


We proceed by generating simulated economies for the extended multi-stage model. The panel


simulations in this section follow closely the procedure outlined in Section 5.1 with the exception


that we now also allow for three different industries based on the structural estimations for sub-


samples of low, medium, and high Q firms in Section 4. In particular, the sample consists of 3,000


26







firms over 39 years in 1,000 panel data sets with three industries, which have 1,000 firms each and


are defined based on the subsample (i.e. low, medium, high Q) estimation results for b∗ in Table


5. Thus, the modeling of firm-level heterogeneity also maintains the assumptions from Section 5.1,


except that we replace the SMM’s full sample by the SMM’s three subsample estimation results.


For example, the “Medium Q” industry has investment scales for all firms equal to Π1 = 2.032


and Π2 = 0.848, the bankruptcy cost, α, and the tax rate, τ , are centered around 0.267 and 0.047,


respectively, based on a uniform distribution with ranges of +/–20% around their centers, etc. The


initial scale is normalized to one, Π0 = 1. Firms have an exogenously assigned initial coupon, C0,


that is drawn from a lognormal distribution with mean 0.5 and variance 1: C0 ∼ LogNormal(0.5, 1).


For each point in time or quarter, t = 0, ..., 156, in the simulated economies, we compute book lever-


age and quasi-market leverage for each firm.23


For the simulated data sets, we implement the same procedure as outlined in LRZ for COMPU-


STAT data to track average leverage ratios of firms across four portfolios, denoted by “Very Low”,


“Low”, “High” and “Very High,” which are based on quartile sorts of these firms’ actual leverage.


Figure 2 presents the average book and quasi-market leverage ratios for these portfolios in “event


time,” both for all simulated firms in Panels A and B and for survivors (i.e. firms that exist at least


for 20 years) in Panels C and D.24 As in the real data, firms leave the simulate data because of


bankruptcy. In addition, from quarter 76 onward, the length of time for which we can follow each


portfolio is censored because we only simulate data for 156 quarters. So, we perform the portfolio


formation through quarter 76, which corresponds to 1984 in their sample, for the subsample of


firms required to survive for at least 80 quarters (Survivors) in Panels C and D.


[Insert Figure 2 Here.]


The figure shows that average leverage paths for the four portfolios formed as in LRZ converge


to stable levels in the long run. However, they do not converge to target leverage, which would


be predicted by static trade-off models in which firms always converge to target as soon as they


23We find qualitatively identical results if we simulate 139 years and drop the first 100 years or when C0 obeys e.g.
a uniform distribution: C0 ∼ Uniform[0.01, 6]. These unreported results are available from the authors on request.


24Each panel presents the average leverage of four portfolios in event time (i.e. quarters), where event time zero
is the portfolio formation period. That is, for each quarter in the simulated economies, we form four portfolios by
ranking firms based on their actual leverage. Holding the portfolios fixed for the next 20 years, we compute the
average leverage for each portfolio. We repeat this process of sorting and averaging for every quarter in the simulated
economies. After performing this sorting and averaging for each quarter from quarter 0 to quarter 156, we then
average the average leverages across “event time” in each of the simulated economies and then average them across
the 1,000 simulated economies to obtain the lines in the figure. We suppress 95% confidence intervals, because they
almost coincide with the average leverage lines due to the large scale of the simulations.
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make adjustments (or as soon as adjustment costs allow them to do so). Recall that the analysis


in Section 3 shows that firms that are otherwise identical (i.e. without considering the structure


of investment process) need not have the same target leverage ratios. That is, within the multi-


stage model, firms that are otherwise identical (i.e. without considering the structure of investment


process) need not follow the same target leverage ratios. Given that the structure of investment


process is hard to observe perfectly, the persistence of leverage in Figure 2 therefore means that


this unobservable heterogeneity can give the appearance of a transitory or short-term component


of debt, even though firms dynamically optimize their permanent or long-term component of debt


in our model by trading off bankruptcy costs, tax benefits, and investment benefits.


Furthermore, LRZ point out that a potential concern regarding their main finding is that con-


structing portfolios based on actual leverage can implicitly pick up cross-sectional variation in un-


derlying factors, which themselves influence cross-sectional variation in leverage, such as bankruptcy


costs or industry attributes. Like LRZ, we therefore also form four portfolios by ranking firms based


on their “unexpected leverage” and then track again the portfolios’ averages of actual leverage in


event time. Unexpected leverage is defined as the residuals from a cross-sectional regression of lever-


age on market-to-book, Q, profitability, π, volatility of cash flows, σ, bankruptcy cost, α, tax rate,


τ , firm size, ϕ, and industry indicator variables, where all independent variables are lagged one year.


Figure 3 presents the evolution of average book and quasi-market leverage ratios in event time


for unexpected (instead of actual) leverage portfolios. It reveals that the results are nearly iden-


tical to those for actual leverage portfolios in Figure 2. While there is slightly less cross-sectional


variation in average leverage, the differences in average leverage across the four portfolios do not


quickly disappear in the simulated economies. Thus, unexpected leverage portfolios cannot remove


the key variation in C0 that creates the initial cross-firm differences and then as a result of large


enough, real frictions the striking stability in average leverage paths for very long periods of time.


So we conclude that persistence is not a special case of some parametrization, simulation, or sorting


procedure but rather a general result of the dynamic trade-off model with investment frictions.


[Insert Figure 3 Here.]


In sum, this section implies that the corporate investment process can be the driving force be-


hind leverage ratios’ pronounced persistence after long periods of time elapse. To better understand


financing dynamics, we thus need to focus more on the heterogeneity in investment dynamics.
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6 Conclusion


This paper examines interactions of corporate investment and financing in a dynamic trade-off


model with a sequence of irreversible investment opportunities. The model produces an intertem-


poral effect, which links financial flexibility to the investment process. Firms trade off reaping


investment (i.e. cash flow) benefits from issuing debt in an earlier stage against retaining financial


flexibility for funding more of the investment cost with debt in a later stage. Taking future financing


and investment opportunities into account, (juvenile) firms tend to underutilize debt when financ-


ing investment the first time to retain financial flexibility. Surprisingly, the underutilization of debt


persists even when the adolescent firm matures (i.e. exercises its last investment opportunity).


In addition, underutilization of debt is more (less) severe for the more back-loaded (front-loaded)


investment opportunities. That is, even within a standard trade-off model, firms that are identical


without considering their investment opportunities do not follow the same target leverage ratios.


Parameter estimation via Simulated Method of Moments takes the model to the real data.


Structural estimation results reveal that high growth firms have, on average, a more back-loaded


investment process, which helps explain why they tend to have low leverage ratios. Furthermore,


capital structure regression results for simulated data using these estimation results produce styl-


ized facts consistent with the empirical literature. Notably, the dynamic trade-off model with a


series of endogenous investment and financing decisions is capable of producing a negative leverage-


profitability relation and, in the absence of agency problems or other frictions, a negative leverage-


growth relation. Therefore, empirical tests without incorporation of the structure of the investment


process (and in particular cross-firm variation thereof) are largely uninformative to the extent that


their interpretation is not robust to heterogeneity in companies’ investment opportunities. Finally,


an extension of our dynamic framework to randomly imposed initial variation in leverage at the


beginning of the simulated economies reveals that the model can explain the empirical puzzle that


average leverage ratios are path-dependent and persistent for very long periods of time.


Overall, we conclude that it is important for studies of capital structure to recognize the struc-


ture of the investment process, which strongly influences both investment and financing dynamics.


The rather rich set of insights and predictions generated by embedding a sequence of irreversible in-


vestments in a dynamic trade-off model suggests that further extension of this class of (real options)


models will prove fruitful for future research.
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Appendix A. Extension of the Multi-Stage Model


This appendix presents an extension of the multi-stage model with an initial debt coupon. Let C0


denote the initial coupon, and Π0 the scale of the firm in stage 0. As the firm has debt in place in


stage 0, there is also an endogenous default threshold is XD0. The values of this initial debt issue


in stages 0, 1, 2 are denoted by D0, D10, and D20. Other variables are the same as in Section 2.


Mature Firm (Stage 2)


In the second stage, the investment options have been exercised, so the firm faces a pure financing


decision. The new debt D22 is issued in this stage to partially finance the investment cost F2 and


equityholders bear the remainder of the cost. The new debt D22 together with the debt issued in


the first stage D21 and the initial debt D20 offers tax savings but creates default risk. The solutions


of the debt values are simple generalizations of equation (6). We again assume that D22 has the


same seniority as D21 and D20. The values of the three debt issues for X ≥ XD2 are given by:


D2i(X,C0, C1, C2) =
Ci
r


(
1− (


X


XD2
)a
)


+


Ci
C0 + C1 + C2


(1− α)(1− τ)(Π0 + Π1 + Π2)XD2


r − µ
(
X


XD2
)a, (A.1)


where i = 0, 1, 2. The value of equity for X ≥ XD2 can be obtained similarly:


E2(X,C0, C1, C2) = (1− τ)
((Π0 + Π1 + Π2)X


r − µ
− C0 + C1 + C2


r
−


(
(Π0 + Π1 + Π2)XD2


r − µ
− C0 + C1 + C2


r
)(


X


XD2
)a
)
. (A.2)


The only decision that the firm’s equityholders make in stage 2 is when to default. To maximize


the value of this option, equityholders select an endogenous default threshold XD2 such that:


∂E2(X,C0, C1, C2)


∂X


∣∣∣
X=XD2


= 0, (A.3)


which yields a closed-form solution for the optimal default threshold in the second stage:


XD2 =
a(C0 + C1 + C2)(r − µ)


r(a− 1)(Π0 + Π1 + Π2)
. (A.4)


Adolescent Firm (Stage 1)


In the first stage, the first investment option has been exercised. The adolescent firm has some


assets-in-place and its capital structure is a mix of debt, D10 and D11, and equity, E1. It has both


an option to default and an option to invest, so it solves a joint financing and investment problem.
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Using similar arguments as in Section 2, each of the valuation equations for D10, D11 and E1


needs to satisfy two boundary conditions. Consider debt D1i(X,C0, C1, C2), with i = 0, 1. When


X ↓ XD1, equityholders default and debtholders get the liquidation value: D1i(XD1, C0, C1, C2) =


Ci
C0+C1


(1−α)(1−τ)(Π0+Π1)XD1


r−µ . If the firm keeps growing and X increases to the investment threshold


XS2, the firm will exercise the second-stage investment option, and debt values from stage 1 equal


debt values in stage 2: D1i(XS2, C0, C1, C2) = D2i(XS2, C0, C1, C2). For XD1 ≤ X ≤ XS2, these


conditions imply the following solution for debt value in stage 1:


D1i(X,C0, C1, C2) =
Ci
r


(
1− L(X)− (


XS2


XD2
)aH(X)


)
+ (1− α)(1− τ)( Ci


C0 + C1


(Π0 + Π1)XD1


r − µ
L(X) +


Ci
C0 + C1 + C2


(Π0 + Π1 + Π2)XD2


r − µ
(
XS2


XD2
)aH(X)


)
, (A.5)


where i = 0, 1 and where


L(X) =
XzXa


S2 −XaXz
S2


Xz
D1X


a
S2 −Xa


D1X
z
S2


(A.6)


H(X) =
Xz
D1X


a −Xa
D1X


z


Xz
D1X


a
S2 −Xa


D1X
z
S2


(A.7)


denote state prices that, respectively, take the value of one if X first reaches the default threshold


XD1 from above or the investment threshold XS2 from below.


The value of equity, E1, on the other hand, approaches zero when X ↓ XD1. When X ↑


XS2, it satisfies the value-matching condition E1(XS2, C0, C1, C2) = E2(XS2, C0, C1, C2) − [F2 −


D22(XS2, C0, C1, C2)] because the fixed investment cost, F2, is funded by a mix of debt and equity.


For XD1 ≤ X ≤ XS2, these conditions imply the following solution for equity value in stage 1:


E1(X,C0, C1, C2) = (1− τ)
[
(
(Π0 + Π1)X


r − µ
− (C0 + C1)


r
)− (


(Π0 + Π1)XD1


r − µ
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)L(X) +(Π2XS2


r − µ
− C2
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− F2 −D22(XS2, C0, C1, C2)


1− τ
−
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(Π0 + Π1 + Π2)XD2


r − µ
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XD2
)a
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H(X)


]
. (A.8)


The first two terms in equation (A.8) denote the present value of after-tax cash flows to equityhold-


ers until the firm defaults in the current stage. The next few terms in this equation show the value


from entering into the second stage. Given E1, equityholders can determine the optimal default


threshold, XD1, by maximizing equity value:


∂E1(X,C0, C1, C2)


∂X
|X=XD1


= 0. (A.9)


35







Furthermore, the optimal investment threshold, XS2, solves the smooth-pasting condition:


∂E1(X,C0, C1, C2)


∂X
|X=XS2


=
∂E2(X,C0, C1, C2)


∂X
|X=XS2


+
∂D22(X,C0, C1, C2)


∂X
|X=XS2


. (A.10)


Juvenile Firm (Stage 0)


In the initial stage, the juvenile firm now has some assets-in-place, an option on a two-stage invest-


ment project, and pre-existing debt. The firm thus faces a joint financing and investment problem.


As X ↓ XD0, equityholders default and end up with nothing, E0(XD0, C0, C1, C2) = 0, whereas


debtholders receive the liquidation value D0(XD0, C0, C1, C2) = (1 − τ)(1 − α)Π0XD0
r−µ . When X


touches the first investment threshold XS1 the first time from below, the first option is exercised


and hence:


E0(XS1, C0, C1, C2) = E1(XS1, C0, C1, C2)− [F1 −D11(XS1, C0, C1, C2)], (A.11)


because debt and equity finance the exercise cost F1. In addition, the initial debt satisfies the


value-matching condition:


D0(XS1, C0, C1, C2) = D10(XS1, C0, C1, C2). (A.12)


For XD0 ≤ X ≤ XS1, these conditions yield the following solutions for debt and equity values:
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and
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where H(X) and L(X) are defined in equation (A.6), and where


L̃(X) =
XzXa


S2 −XaXz
S1


Xz
D0X


a
S1 −Xa


D0X
z
S1


(A.15)


H̃(X) =
Xz
D0X


a −Xa
D0X


z


Xz
D0X


a
S1 −Xa


D0X
z
S1


(A.16)
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denote state prices that, respectively, take the value of one if X first reaches the default threshold


XD0 from above or the investment threshold XS1 from below.


Finally, the firm’s equityholders will choose an optimal pair (C1, C2) by maximizing initial firm


value subject to the smooth-pasting conditions for XD0, XD1, XD2, XS1 and XS2 mentioned above:


max
C1,C2


D0(X0, C0, C1, C2) + E0(X0, C0, C1, C2) (A.17)


subject to:


∂E0(X,C0, C1, C2)


∂X


∣∣∣
X=XD0


= 0, (A.18)


∂E1(X,C0, C1, C2)


∂X


∣∣∣
X=XD1


= 0, (A.19)


∂E2(X,C0, C1, C2)


∂X


∣∣∣
X=XD2


= 0, (A.20)


∂E0(X,C0, C1, C2)


∂X


∣∣∣
X=XS1


=
E1(X,C0, C1, C2)


X


∣∣∣
X=XS1


+
D11(X,C0, C1, C2)


X


∣∣∣
X=XS1


, (A.21)


∂E1(X,C0, C1, C2)


∂X


∣∣∣
X=XS2


=
E2(X,C0, C1, C2)


X


∣∣∣
X=XS2


+
D22(X,C0, C1, C2)


X


∣∣∣
X=XS2


. (A.22)
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Appendix B. Simulated Method of Moments


We estimate the structural parameters of the model via Simulated Method of Moments (SMM),


which is based on indirect inference techniques in Gourieroux, Monfort, and Renault (1993) and


Gourieroux and Monfort (1996). By varying the vector of model parameters, b, SMM minimizes the


distance between model moments, denoted as Mm(b), and data moments, denoted as Md. Note that


we explicitly state the dependence of the simulated moments, Mm(b), on the vector of structural


parameter values, b.


The simulated moments parameter estimation procedure can be summarized as follows (see e.g.


Hennessy and Whited (2005, 2007) or Strebulaev and Whited (2012) for further details):


1. We first compute Nd data moments from COMPUSTAT to generate the vector of data mo-


ments, Md. We use fixed firm and year effects in the estimation of all of our data moments


to remove heterogeneity from the actual data.


2. The inverse covariance matrix of the data moments yields the optimal weighting matrix:


Wd = [NdVar(Md)]
−1 , (B.1)


which places more weight on more precisely measured moments. Reliance on the influence-


function approach in Erickson and Whited (2000) yields qualitatively identical results.


3. For each vector of structural parameter values, b, we simulate a set of S panel data sets


with i.i.d. firms each containing 2 ∗ T firm-year observations. We discard the first T years of


data to avoid non-stationarity and other problems arising from the initial conditions of the


simulations. We then calculate the same set of moments as in step 1 using our S simulated


panel data sets to generate Mm(b).


4. We then calculate the weighted distance between the model moments and the data moments:


JNd
(b) =


[
Md −


1


S


S∑
i=1


Mm(b)
]′
Wd


[
Md −


1


S


S∑
i=1


Mm(b)
]
, (B.2)


where Wd is the positive definite weighting matrix from step 2.


5. Finally, by varying b iteratively, we find an optimal set of structural parameter values, b∗,


which minimizes the objective function, JNd
(b):


b∗ = arg min
b


[
Md −


1


S


S∑
i=1


Mm(b)
]′
Wd


[
Md −


1


S


S∑
i=1


Mm(b)
]
. (B.3)


38







Table 1. Description of Model Parameters and Variables


This table presents a notion index for the single-stage (benchmark) model and the multi-stage model.


Parameter Definition


r Risk-free interest rate
µ Growth rate of cash flows
σ Volatility of cash flows
τ Effective corporate tax rate
α Proportional bankruptcy cost
X0 Cash flow level (in $) at time t = 0


Πi,Π Investment scale of ith stage, i = 1, 2
Fi, F Investment cost (in $) of ith stage, i = 1, 2
Ci, C Debt coupon (in $) of ith stage, i = 1, 2


XSi, XS Investment threshold of ith stage, i = 1, 2
XDi, XD Default threshold of ith stage, i = 1, 2


DB Debt value in stage 1 of the benchmark model
D1 Debt value in stage 1 of the multi-stage model
D2i Debt value in stage 2 of the multi-stage model, i = 1, 2
EBi Equity value in stage i of the benchmark model, i = 0, 1
Ei Equity value in stage i of the multi-stage model, i = 0, 1, 2


MLi,ML Market leverage in ith stage, i = 1, 2
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Table 2. Financing and Investment in Single-Stage and Multi-Stage Models


This table shows the optimal investment and financing decisions of the single-stage benchmark model in
Panel A and the multi-stage model in Panel B. The base case parameter values are as follows: risk-free rate
r = 6%, growth rate of the cash flow process µ = 1%, volatility of the cash flow process σ = 25%, corporate
tax rate τ = 10%, bankruptcy cost α = 30%, initial value of the cash flow process X0 = $5, the scales of
investment Π1 = 1 and Π2 = 1, and the investment costs F1 = $100 and F2 = $200. The notation index is
given in Table 1.


Panel A. Single-Stage Model
Π = 1 Π = 1 Π = 1.5 Π = 0.5


F = $100 F = $200 F = $100 F = $200
C 6.522 13.034 6.521 13.034
XS 12.487 24.973 8.325 49.947
XD 2.830 5.657 1.887 11.313
ML 0.419 0.419 0.419 0.419


Panel B. Multi-Stage Model
Π1 = 1 Π1 = 0.75 Π1 = 1.25 Π1 = 1.5
Π2 = 1 Π2 = 1.25 Π2 = 0.75 Π2 = 0.5


C1 5.591 5.447 5.972 6.261
C2 19.428 14.760 27.205 43.219
XS1 12.364 16.424 9.930 8.300
XS2 23.666 19.359 30.764 44.611
XD1 2.154 2.477 1.959 1.770
XD2 5.429 4.385 7.199 10.737
ML1 0.283 0.201 0.349 0.390
ML2 0.378 0.401 0.359 0.343
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Table 4. Sensitivity of Model Moments


This table presents the sensitivities of the moments used in the Simulated Method of Moments (SMM)
estimation. The structural model parameters that we fit by SMM are the investment scales, Π1 and Π2,
the bankruptcy cost, α, and the tax rate, τ . The other parameters assume the base case values from Table
2. Column 1 presents the model moments for the base case (i.e. Π1 = 1, Π2 = 1, α = 0.3, and τ = 0.1).
In columns 2 to 5, each parameter is increased by 50% while keeping the others fixed. The following five
moments are used in the SMM. The average quasi-market leverage, QML, is obtained by first calculating
cross-sectional averages of quasi-market leverage ratios for every time t and then averaging across time.
Quasi-market leverage is defined as the book value of debt divided by the sum of market value of equity
and book value of debt. The dispersion of quasi-market leverage ratios, DispQML, is the cross-sectional
average of the time-series standard deviations of firms’ quasi-market leverage ratios. D/K denotes net
debt issuance normalized by capital. D/K is calculated only at the investment points. Q is the average
market-to-book ratio. Similar to QML, the average is taken first across firms and then across time. Inv/Eq
is the average of investment expenditure scaled by the book value of equity at investment points. Panel A
displays the sensitivities of the model moments in terms of their absolute changes, while Panel B displays
their changes relative to the base case values in the first column of Panel A.


Panel A. Absolute Changes
Base Π1 = 1.5 Π2 = 1.5 α = 45% τ = 15%


QML 0.064 0.115 0.064 0.067 0.057
DispQML 0.070 0.107 0.070 0.072 0.065


D/K 0.267 0.305 0.231 0.221 0.337
Q 1.184 1.335 1.678 1.190 1.139


Inv/Eq 0.413 0.427 0.394 0.405 0.432


Panel B. Relative Changes
Π1 = 1.5 Π2 = 1.5 α = 45% τ = 15%


QML 0.805 0.008 0.057 -0.105
DispQML 0.527 0.001 0.027 -0.064


D/K 0.140 -0.135 -0.172 0.260
Q 0.128 0.418 0.005 -0.038


Inv/Eq 0.033 -0.048 -0.020 0.046
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Table 5. Estimation of Model Parameters with Simulated Method of Moments


This table presents the estimation results of the model parameters via Simulated Method of Moments
(SMM). The structural model parameters that we fit by SMM are the investment scales, Π1 and Π2, the
bankruptcy cost, α, and the tax rate, τ . The other parameters assume the base case values from Table 2.
The following five moments are used in the SMM. The average quasi-market leverage, QML, is obtained by
first calculating cross-sectional averages of quasi-market leverage ratios for every time t and then averaging
across time. Quasi-market leverage is defined as the book value of debt divided by the sum of market
value of equity and book value of debt. The dispersion of quasi-market leverage ratios, DispQML, is the
cross-sectional average of the time-series standard deviations of firms’ quasi-market leverage ratios. D/K
denotes net debt issuance normalized by capital. D/K is calculated only at the investment points. Q is
the average market-to-book ratio. Similar to QML, the average is taken first across firms and then across
time. Inv/Eq is the average of investment expenditure scaled by the book value of equity at investment
points. The data moments are calculated using COMPUSTAT’s annual tapes for the 1965–2009 period.
Four sets of data moments are obtained by using the full sample and three subsamples, which are generated
by the tercile cutoffs of Q. Panel A presents the fitted model parameters. The numbers in parentheses are
the standard deviation of the fitted parameters b∗ across the iterations of SMM with the exception of the
χ2 column in Panel A, in which the numbers in parentheses are the p-values for the overidentification test.
Panel B presents the target and fitted moments for each sample.


Panel A. Parameter Estimates
Π1 Π2 α τ χ2


Full Sample b∗ 1.966 1.286 0.324 0.043 0.021
(0.104) (0.095) (0.055) (0.012) (0.111)


Low Q b∗ 3.036 0.531 0.440 0.039 0.034
(0.503) (0.389) (0.018) (0.003) (0.146)


Medium Q b∗ 2.032 0.848 0.267 0.047 0.036
(0.134) (0.144) (0.091) (0.015) (0.133)


High Q b∗ 1.264 2.887 0.284 0.071 0.035
(0.079) (0.402) (0.104) (0.030) (0.132)


Panel B. Fitted and Data Moments
QML DispQML D/K Q Inv/Eq


Full Sample Data 0.199 0.183 0.166 1.685 0.366
Fitted 0.198 0.157 0.166 1.761 0.412


Low Q Data 0.290 0.198 0.126 0.905 0.336
Fitted 0.284 0.207 0.134 1.054 0.407


Medium Q Data 0.216 0.169 0.210 1.335 0.373
Fitted 0.220 0.165 0.224 1.403 0.420


High Q Data 0.087 0.108 0.176 2.839 0.390
Fitted 0.086 0.086 0.189 2.731 0.394
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Table 6. Parameters for Simulation and Descriptive Statistics of Simulated Data


This table presents the parameter values and distributions used for the simulation in Panel A and the
descriptive statistics of the simulated leverage ratios in Panel B. To add heterogeneity to the simulated data,
several model parameters are randomized at time 0 and kept fixed over time: the investment costs, F1 and
F2, the bankruptcy cost, α, and the tax rate, τ . In addition, to allow for a correlation structure, the volatility
of cash flows is decomposed into a systematic part, σS , and an idiosyncratic part, σI . β measures a firm’s
exposure to systematic risk. The investment scales, Π1 and Π2, and the means of the bankruptcy cost, α, and
the tax rate, τ , are set to the full sample SMM estimates for b∗ in Table 5. The other parameters assume the
base case values from Table 2. Panel B reports the distributions of market leverage (ML) and quasi-market
leverage (QML). Investment points (Inv. Pts.) refers to the data points where firms are at their investment
points. Investment points are further classified as the first and second investment points because there are
two stages in the model. All other statistics are given for all data points (i.e. in dynamics). The market
leverage ratio, ML, is defined as the market value of debt over the sum of market value of debt and market
value of equity, and the quasi-market leverage ratio, QML, is the book value of debt over the sum of market
value of equity and book value of debt. For each leverage ratio, the mean, the 1st, 5th, 10th, 50th, 90th, 95th,
99th percentiles, and the standard deviation are reported. For each data set, the statistics are first calculated
for each quarter, then averaged across quarters, and then averaged across simulated data sets. Min. and
Max. give the minimum and maximum of statistics over the 1,000 data sets. The statistics are based on 1,000
simulated economies, which each contain 400 quarters (after dropping the first 400 quarters) for 3,000 firms.


Panel A. Model Parameters for Simulation
Parameter Value Parameter Distribution
Π1 2.093 F1 Uniform[80, 120]
Π2 1.304 F2 Uniform[160, 240]
σS 0.148 α Uniform[0.362, 0.542]
N 3,000 τ Uniform[0.022, 0.032]
∆t 0.25 β Uniform[0.179, 1.807]
T 100 σI 0.05 + 1


30 χ
2(5)


Panel B. Descriptive Statistics for Leverage
Percentiles


Mean 1% 5% 10% 50% 90% 95% 99% Std. Dev.
ML


Inv. Pts. 0.187 0.023 0.046 0.067 0.175 0.323 0.368 0.462 0.099
1st Inv. Pts. 0.162 0.021 0.039 0.057 0.152 0.283 0.318 0.386 0.086
2nd Inv. Pts. 0.237 0.042 0.080 0.109 0.225 0.380 0.426 0.521 0.106
Avg. 0.197 0.000 0.000 0.000 0.089 0.571 0.707 0.899 0.241
Min. 0.113 0.000 0.000 0.000 0.000 0.362 0.503 0.784 0.174
Max. 0.255 0.000 0.000 0.000 0.181 0.698 0.833 0.960 0.285


QML
Avg. 0.205 0.000 0.000 0.000 0.088 0.606 0.752 0.933 0.254
Min. 0.116 0.000 0.000 0.000 0.000 0.378 0.538 0.838 0.185
Max. 0.266 0.000 0.000 0.000 0.182 0.747 0.876 0.977 0.299
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Table 7. Capital Structure Regressions on Simulated Data


This table reports average coefficient estimates and average t-statistics (in parentheses) of four cross-sectional
regressions over the 1,000 simulated panel data sets from Table 6. That is, the regressions are based on 1,000
simulated economies, which each contain 400 quarters (after dropping the first 400 quarters) for 3,000 firms.
The regression model is as follows:


QMLi = β0 + β1 xi + β2 σi + β3 αi + β4 τi + β4 ϕi + εi, (B.4)


where x is either profitability, π, in Panel A or market-to-book, Q, in Panel B. In Panel C, we include
both profitability, π, and market-to-book, Q, as regressors. We measure profitability, π, as earnings before
interest and tax (or cash flows) scaled by total assets, whereas the market-to-book ratio, Q, is the ratio
of total market value of asset over book value of asset. The other independent variables are constant firm
attributes. They include volatility of cash flows, σ, bankruptcy cost, α, tax rate, τ , and firm size, ϕ, which
equals the sum of book value of debt and book value of equity. The first column (Inv. Pts.) shows OLS
regression results using data at investment points only. The regressions in the other columns are for all
data points (i.e. in dynamics). The second column (BJK) reports OLS regression results in the fashion of
Bradley, Jarrel, and Kim (1984). The dependent variable, QMLi, is calculated as the sum of book values of
debt over the 400 quarters divided by the sum of book values of debt and market values of equity over the
400 quarters. The independent variables are calculated similarly (if possible). This definition implies that
the dependent variable and independent variables are contemporaneous. The third column (RZ) follows
Rajan and Zingales (1995), who define all independent variables as averages over quarters t − 1 to t − 4.
In this version, the dependent variable QMLi is measured at time t. The last column (FF) adopts the
Fama-MacBeth regression approach as in Fama and French (2002). At each time t, QML is regressed
on lagged independent variables. Then the time-series of the coefficient estimates are averaged and the
standard errors are corrected using the Newey-West method with six lags.


Panel A. Profitability
Inv. Pts. BJK RZ FF


Constant 0.293 0.371 0.323 0.364
(18.67) (12.20) (6.40) (47.45)


π 2.208 -0.053 -0.004 -0.012
(10.25) (-11.04) (-5.46) (-11.83)


σ -0.791 -0.779 -0.754 -0.843
(-52.55) (-30.94) (-18.03) (-48.66)


α -0.328 -0.176 -0.097 -0.107
(-14.43) (-2.77) (-0.94) (-10.57)


τ 2.785 1.427 0.707 0.775
(16.40) (3.00) (0.92) (10.06)


ϕ 0.028 0.067 0.184 0.182
(7.45) (8.14) (18.93) (27.62)


R2 0.804 0.313 0.229 0.224
N 2,637 3,000 3,000 1,197,000
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Panel B. Tobin’s Q
Inv. Pts. BJK RZ FF


Constant 0.369 0.403 0.430 0.471
(38.06) (14.10) (9.02) (59.55)


Q 0.026 -0.049 -0.076 -0.084
(28.90) (-20.17) (-20.23) (-32.85)


σ -0.945 -0.937 -1.072 -1.152
(-112.52) (-37.49) (-25.65) (-66.97)


α -0.338 -0.208 -0.128 -0.136
(-16.67) (-3.49) (-1.31) (-14.37)


τ 2.892 1.679 0.916 0.966
(19.16) (3.77) (1.26) (13.58)


ϕ 0.033 0.167 0.265 0.259
(9.93) (19.96) (27.95) (36.20)


R2 0.844 0.405 0.344 0.233
N 2,637 3,000 3,000 1,197,000


Panel C. Profitability and Tobin’s Q
Inv. Pts. BJK RZ FF


Constant 0.212 0.423 0.444 0.485
(15.20) (15.21) (9.39) (59.39)


π 3.162 -0.058 -0.005 -0.015
(16.43) (-13.08) (-7.34) (-11.96)


Q 0.025 -0.052 -0.079 -0.088
(25.46) (-21.57) (-20.95) (-33.27)


σ -0.805 -0.958 -1.088 -1.161
(-58.13) (-39.36) (-26.25) (-67.00)


α -0.333 -0.208 -0.129 -0.136
(-17.70) (-3.59) (-1.33) (-14.44)


τ 2.752 1.681 0.924 0.980
(19.57) (3.89) (1.28) (13.76)


ϕ 0.065 0.157 0.259 0.252
(9.28) (19.11) (27.48) (36.01)


R2 0.866 0.439 0.357 0.240
N 2,637 3,000 3,000 1,197,000
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Figure 1. Initial Equity Values as a Function of Debt Coupon Choices


This figure charts the intertemporal effect by mapping debt coupon pairs (C1, C2) into initial equity value, E0, on
the basis of equation (16). C1 varies from $4 to $7, and C2 from $16 to $22. The base case parameter values are
as follows: risk-free rate r = 6%, growth rate of the cash flow process µ = 1%, volatility of the cash flow process
σ = 25%, corporate tax rate τ = 10%, bankruptcy cost α = 30%, initial value of the cash flow process X0 = $5, the
scales of investment Π1 = 1 and Π2 = 1, and the investment costs F1 = $100 and F2 = $200.
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Figure 2. Average Leverage of Actual Leverage Portfolios in Event Time


The sample consists of 3,000 firms over 39 years in 1,000 simulated economies based on the extended multi-stage model
in Appendix A with three industries, which have 1,000 firms each and are defined based on the subsample (i.e. low,
medium, high Q) estimation results for b∗ in Table 5. The modeling of firm-level heterogeneity follows the procedure in
Table 6, except that we use here the three subsample estimation results for b∗ in Table 5. While the initial investment
scale is normalized to one, Π0 = 1, firms have an exogenously assigned initial coupon, C0, which is drawn from a
lognormal distribution: C0 ∼ LogNormal(0.5, 1). Each panel presents the average leverage of four portfolios in event
time (i.e. quarters), where event time zero is the portfolio formation period. That is, for each quarter in the simulated
economies, we form four portfolios by ranking firms based on their actual leverage. Holding the portfolios fixed for the
next 20 years, we compute the average leverage for each portfolio. We repeat this process of sorting and averaging for
every quarter in the simulated economies. After performing this sorting and averaging for each quarter from quarter
0 to quarter 156, we then average the average leverages across “event time” in each of the simulated economies and
then average them across the 1,000 simulated economies to obtain the lines in the figure. The results for book and
quasi-market leverage are presented in Panels A and C, where book (quasi-market) leverage is defined as the ratio of
book value of debt to book value of assets (sum of book value of debt and market value of equity). Panels B and D
present similar results for book and quasi-market leverage, respectively, but for a subsample of firms required to exist
for at least 80 quarters (consequently, we can only perform the portfolio formation through quarter 76 for this sample).
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Figure 3. Average Leverage of Unexpected Leverage Portfolios in Event Time.


The sample consists of 3,000 firms over 39 years in 1,000 simulated economies based on the extended multi-stage
model in Appendix A with three industries, which have 1,000 firms each and are defined based on the subsample
(i.e. low, medium, high Q) estimation results for b∗ in Table 5. The modeling of firm-level heterogeneity follows
the procedure in Table 6, except that we use here the three subsample estimation results for b∗ in Table 5. While
the initial investment scale is normalized to one, Π0 = 1, firms have an exogenously assigned initial coupon, C0,
which is drawn from a lognormal distribution: C0 ∼ LogNormal(0.5, 1). Each panel presents the average leverage
of four portfolios in event time (i.e. quarters), where event time zero is the portfolio formation period. That is, for
each quarter in the simulated economies, we form four portfolios by ranking firms based on their unexpected leverage
(defined below). Holding the portfolios fixed for the next 20 years, we compute the average leverage for each portfolio.
We repeat this process of sorting and averaging for every quarter in the simulated economies. After performing this
sorting and averaging for each quarter from quarter 0 to quarter 156, we then average the average leverages across
“event time” in each of the simulated economies and then average them across the 1,000 simulated economies to
obtain the lines in the figure. The results for book and quasi-market leverage are presented in Panels A and C, where
book (quasi-market) leverage is defined as the ratio of book value of debt to book value of assets (sum of book value
of debt and market value of equity). Panels B and D present similar results for book and quasi-market leverage,
respectively, but for a subsample of firms required to exist for at least 80 quarters (consequently, we can only perform
the portfolio formation through quarter 76 for this sample). Unexpected leverage is defined as the residuals from a
cross-sectional regression of leverage on market-to-book, Q, profitability, π, volatility of cash flows, σ, bankruptcy
cost, α, tax rate, τ , firm size, ϕ, and industry indicator variables, where all independent variables are lagged one year.


0 20 40 60 80
0


0.1


0.2


0.3


0.4


0.5


0.6


Event Time (Quarters)


B
oo


k 
Le


ve
ra


ge


Panel A. Unexpected Book Leverage Portfolios


 


 
Very Low
Low
High
Very High


0 20 40 60 80
0


0.1


0.2


0.3


0.4


0.5


0.6


0.7


0.8


Event Time (Quarters)


Q
ua


si
−


M
ar


ke
t L


ev
er


ag
e


Panel B. Unexpected Quasi−Market Leverage Portfolios


 


 
Very Low
Low
High
Very High


0 20 40 60 80
0


0.1


0.2


0.3


0.4


0.5


0.6


Event Time (Quarters)


B
oo


k 
Le


ve
ra


ge


Panel C. Unexpected Book Leverage Portfolios (Survivors)


 


 
Very Low
Low
High
Very High


0 20 40 60 80
0


0.1


0.2


0.3


0.4


0.5


0.6


0.7


0.8


Event Time (Quarters)


Q
ua


si
−


M
ar


ke
t L


ev
er


ag
e


Panel D. Unexpected Quasi−Market Leverage Portfolios (Survivors)


 


 
Very Low
Low
High
Very High


49





