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Abstract

Most US households invest a substantial fraction of their wealth in a single asset: their
family home. I study the empirical properties of idiosyncratic housing risk and its welfare
cost from the perspective of homeowners. Using micro-data from the metropolitan areas of
Los Angeles, San Diego, and San Francisco, I show that the fraction of house price volatility
determined by idiosyncratic risk is decreasing as the holding period increases. Idiosyncratic
risk makes up to 60% of capital gains volatility of home resales after one year, while it accounts
for less than 20% after five years. The welfare cost of house-specific risk is assessed using a
calibrated dynamic portfolio model. The cost is measured as the premium that homeowners
would pay to insure against idiosyncratic risk. I find that annual premiums can be larger than
one month of rent. The magnitude of the premiums critically depends on the likelihood of
moving.
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1 Introduction

Housing is the largest asset in the portfolio of most US households. Houses are by their nature a
lumpy investment and most households own a single home. Thus, idiosyncratic house risk cannot
be diversified away and has major implications for households and their economic welfare. The
behavior of house-specific risk and its welfare cost from the perspective of homeowners are the
focus of this project.

The first part of the paper is devoted to estimating idiosyncratic risk and studying its properties.
I use novel data on repeated house sales from the metropolitan areas of Los Angeles, San Diego,
and San Francisco. I compute the idiosyncratic volatility of capital gains for homes sold in each
year from 2001 to 2012 and within each metropolitan area. Consistently with previous research, I
find that idiosyncratic volatility is large realtive to the volatility of metropolitan-area price indexes.
Moreover, I show that idiosyncratic volatility has increased in all metropolitan areas during and
after the housing crisis of 2007-2009.

The key empirical finding is that the magnitude of idiosyncratic volatility does not depend on the
length of the investment horizon. In other words, house-specific risk does not scale with the (square
root of the) holding period. Thus, the behavior of idiosyncratic risk in housing stands in sharp
contrast to evidence from public equity markets, where idiosyncratic stock volatility scales with
the square root of time. Unlike idiosyncratic risk, the volatility of metropolitan-area house price
fluctuations is increasing in the investment horizon. Thus, the relative contribution of idiosyncratic
risk to house price volatility changes with the holding period. Idiosyncratic risk can make up to
60% of the volatility of capital gains when a home is resold after one year. However, after five
years, idiosyncratic volatility is at most 20% of total volatility.

The results on the term structure of idiosyncratic risk also shed light on the nature of house-
specific shocks. If house-specific shocks were generated by a sum of i.i.d. components accumulating
over time, their magnitude would scale with the investment horizon. In the data, house-specific
risk is more likely to be determined by a single shock, whose size does not depend on the holding
period. In fact, one can think that the shock is realized at the time of sale. There is a broad body
of literature that documents how housing markets are illiquid and segmented (see the work on
search and segmentation of Piazzesi and Schneider (2009b), Piazzesi et al. (2014) and several other
studies reviewed by Han and Strange (2014)). The primary driver of house-specific risk might not
be a change in house quality or physical characteristics, but rather price uncertainty due to market
inefficiency.

In the second part of the paper, I use a quantitative portfolio model to assess the impact of
idiosyncratic risk on household welfare. To my knowledge, this paper is the first to quantify the
cost of house-specific risk. I measure the welfare cost as the annual premium that a homeowner
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would be willing to pay to insure against house-specific shocks. I find that premiums are sizable
and can exceed the value of one month of rent.

In the model, a homeowner may sell her house over a finite planning horizon. A home sale can
be determined either by an optimal decision or by an exogenous mobility event that forces the
household to move. In line with my findings from the empirical section, I model idiosyncratic
risk as a one time shock that affects the house price at the time of sale. This implies that the
homeowner has no information on house-specific shocks until the house is sold. The setup is
a reasonable approximation to the data. Houses are usually valued only when a sale listing is
prepared. Furthermore, house prices are only observable when home sales take place. Finally, the
idiosyncratic shock may be realized at the time of sale.

The dynamics of the “systemic” component of house prices are calibrated to match the ones
of metropolitan-area house price indexes. Real housing services are kept constant over the entire
holding period of the house. In the model, after a house sale takes place, the household buys a
new home in the same metropolitan area. The capital gains and the ratio of price to housing
services for the new house are perfectly correlated with the ones of the original home, with the
exception of the idiosyncratic shock. This is a simplification1, broadly consistent with evidence
from the data. According to the US Census, most household mobility takes place within the same
metropolitan area or the same state. Metropolitan-area house price indexes are highly correlated
within California.

In the context of the model, I study how insurance premiums change when I assign to homeowners
different probabilities of facing exogenous mobility shocks and different amounts of initial non-
housing (financial) wealth. Ceteris paribus, higher mobility leads to higher insurance premiums
since idiosyncratic risk has a greater impact on house capital gains for shorter holding periods.
Households who have greater financial wealth can use it as a buffer to absorb idiosyncratic house
price shocks. This is particularly important when the homeowner is forced to sell due to exogenous
mobility. In fact, insurance premiums are the largest for households that have small non-housing
wealth and a high likelihood of being hit by mobility shocks.

The model is calibrated to take into account life-cycle effects on income for households of different
ages. The impact of exogenous mobility shocks is the largest for young households. When household
age is in between 25 and 29, increasing the probability of exogenous mobility shocks from 0% to
30% on an annual basis more than doubles insurance premiums for homeowners with non-housing
wealth below $50,000.

1The perfect correlation (excluding the idiosyncratic shock) between price fluctuations of the first and the new
house maximizes the hedging benefits of home ownership. In fact, the house (again, excluding the idiosyncratic
shock) perfectly hedges the household against future house prices or rent expenses. For more details on the hedging
effects of home ownership, see Sinai and Souleles (2005), Lu (2010) and Lu (2013).
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My work brings novel contributions to several branches of the financial economics literature on
housing. The data and methodology that I use to measure idiosyncratic housing risk are novel. My
empirical analysis is based on a unique dataset of home resales built by Giacoletti and Westrupp
(2016). The data are constructed by merging sales records from Corelogic deed files with data on
remodeling permits collected by Buildzoom2. By including remodeling expenses, I follow the entire
stream of investment cashflows that takes place in between house resales3.

Measuring idiosyncratic house price risk with sales micro-data is challenging for several reasons.
The performance of individual transactions is observed only at the time of sale. Furthermore,
due to the inclusion of remodeling expenses, each deed can involve multiple cashflows. Similar
issues emerge in assessing the performance of private equity funds. Kaplan and Schoar (2005)
introduce the public market equivalent (PME) as a measure of abnormal performance of a fund
on an investment in the S&P 500 with the same cash inflows. In a similar manner, Giacoletti
and Westrupp (2016) develop the local market equivalent (LME) to measure abnormal returns on
ZIP-code level house price indexes.

In the current paper, I compute local market equivalents on metropolitan-area indexes. I measure
the local market equivalent as the difference between the house sale price and the terminal value of
an investment with the same cash inflows, capitalized at the rate of return on the local metropolitan-
area house price index. The local market equivalent would already be a satisfactory measure
of abnormal capital gains only if the loading of metropolitan-area market fluctuations on each
house was equal to one or, in other words, only if each home had a beta of one with respect to
index returns. However, house capital gains are determined by local factors, as well as by physical
characteristics of the house. Moreover, Piazzesi et al. (2015) show that, during the years of the
housing boom, lower quality (cheaper) houses systematically appreciated more than higher quality
homes.

These effects are taken into account by my empirical strategy. I group resales by year of sale
and run regressions of local market equivalents on several control variables. These account for
differences in location, as well as house and sale (houses sold through short sales experience
substantial price discounts) characteristics. As already pointed out above, I verify that residuals
from these regressions are not locally clustered. This ensures that there are no omitted local factors
confounding my estimates of house-specific risk. Eventually, idiosyncratic risk is computed as the
dispersion of regression residuals within a metropolitan area.

My findings on the relationship between idiosyncratic risk and holding period, but related to
2Buildzoom is an intermediary in the remodeling market for residential and commercial real estate. I thank Issi

Romen and Buildzoom for making the data available.
3Investment in remodeling has to be included in the calculations of individual home returns, since it has an

impact on resale prices, as documented by Knight and Sirmans (1996) and Wilhelmsson (2007) with sales data, as
well as by Harding et al. (2006) with survey evidence from the American Housing Survey (AHS).
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previous research on housing and other illiquid asset classes. There has been work documenting the
magnitude of the dispersion in prices and capital gains for individual houses within a metropolitan
area. Seminal work by Case and Shiller (1988) highlights that prices of individual homes are twice
more volatile than city-level house price indexes. Similar findings are later reported by Flavin and
Yamashita (2002), Piazzesi et al. (2007) and Piazzesi et al. (2015). This last paper also shows
evidence hinting that idiosyncratic risk has increased during the housing crisis.
With the exception of Case and Shiller (1988), all the papers just mentioned assume that

idiosyncratic risk scales with time. On this issue, Case and Shiller (1987) and Goetzmann (1993)
document that the volatility of individual house capital gains does not converge to zero as the
holding period shrinks. This result suggests that idiosyncratic housing risk can not be modeled
only has a sum of i.i.d. shocks, but a transitory component is also needed.
However, these papers do not investigate in detail the properties of idiosyncratic risk across

different investment horizons4. In my study, I not only show that there is a transitory component in
idiosyncratic risk, but I argue that this component is the dominant driver of house-specific risk. I
show that there is no evidence of a persistent component (scaling with time) even when considering
longer holding periods. This has implications for households that are planning to hold their house
over periods of multiple years.
Moreover, I go to greater length than the previous literature to identify the idiosyncratic

component of house capital gains. My aim is to provide reliable estimates of house-specific shocks.
Thus, I control for variation that can be explained by metropolitan-area risk, local (ZIP-code
level) fluctuations and house characteristics. To ensure that the effects of local market factors are
fully removed, I verify that the estimated house-specific shocks are not clustered. To this end, I
show that the shocks have zero spatial auto-correlation. In other words, there is no correlation of
estimated house-specific shocks among houses that are geographically close.
There is research on other illiquid asset classes that studies the behavior of idiosyncratic risk

as a function of the holding period. Axelson et al. (2015), who study leveraged buyout funds in
private equity, find that idiosyncratic volatility does not converge to zero as holding periods become
shorter. Similar findings are also reported by Peng (2015) and Sagi (2015) for commercial real
estate. Sagi (2015) shows, using a quantitative model (based on the framework developed by Duffie
et al. (2005)), that the transitory component of idiosyncratic risk can be generated by trading
in illiquid markets, where sellers bear transaction cost, and asset valuations are persistent but
heterogeneous. While I believe that this explanation is appealing also for housing, it is hard to
identify the determinants of idiosyncratic risk in the data without information on the individual

4Moreover, their empirical evidence is largely based on data from the 1970s and 1980s. Information efficiency
and conditions in housing markets are likely to have substantially changed over time. While Case and Shiller (1987)
work with data from US cities (Atlanta, Chicago, Dallas and San Francisco), Goetzmann (1993) uses data from the
Swedish housing market.
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house listing processes. Thus, in the current paper I am agnostic about the sources of house-specific
risk, and defer this topic to further research.
Other quantitative models in the housing literature have included idiosyncratic housing risk in

their structure. However, my paper is the first to focus its analysis on the cost of house-specific
risk. Moreover, previous models have been calibrated so that idiosyncratic housing volatility scales
with the investment horizon. This is the case for Flavin and Yamashita (2002), for Favilukis et al.
(2010) and for Piazzesi et al. (2015).

The quantitative portfolio model in this paper is inspired by the frameworks in Campbell and
Cocco (2003), Cocco (2005b) and more recently Chen et al. (2013). The homeowner consumes a
basket of numeraire good and housing services and earns an income stream subject to persistent
idiosyncratic shocks. The menu of financial assets available to the household is limited to a risk-free
bank account. I consider both a version of the model where the household owns the entire capital
invested in her house and a version where the household is financing her house with a nominal fixed
rate mortgage (FRM). The dynamics of prices, interest rates, rent rates and income shocks are
exogenously determined. My model is separately solved for households of different ages. Optimal
decisions are taken over a planning horizon of five years, at the end of which the household receives
terminal wealth as consumption. In the calibration, I take into account life-cyle effects. Income
level and expected income growth are estimated for households of different ages using data from
the Current Population Survey for California. Financial wealth accumulation at different stages of
the life-cycle is calibrated to match data from the Survey of Consumer Finances.
My work is also related to papers that study the relationship between house price fluctuations

and consumption for young and old households (from the seminal contribution of Campbell and
Cocco (2007) to the more recent work of Gan (2010), Iacoviello (2011), Attanasio et al. (2011) and
Badarinza et al. (2016)). Moreover, it is related to work that focuses on the relationship between
house price fluctuations and household portfolio decisions (Yao and Zhang (2005), Cocco (2005a)
and the empirical work in Chetty et al. (2016)). I show that house-specific risk is costly for young
households. Since young households are the ones most likely to be entering the housing market
for the first time, idiosyncratic house risk might critically affect their choice between owning and
renting.
The rest of the paper proceeds as follows. A first part is devoted to the description of the

micro-data, the estimation methodology and the empirical findings. This consists of sections from
2 to 7. Section 2 focuses on the repeated house sales micro-data. Section 3 discusses in detail the
methodology used to measure house-specific shocks and provides estimates of idiosyncratic housing
risk. Section 4 studies whether idiosyncratic risk changes across subsamples of house resales with
different characteristics, and most importantly shows that idiosyncratic risk does not scale with
investment horizon. Section 5 shows that the findings on the term structure of idiosyncratic risk
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are robust to different definitions of idiosyncratic shocks, and in different sub-samples of the data.
Section 6 documents the relationship between idiosyncratic risk and investment horizon in equity
markets. Section 7 investigates the relative importance of idiosyncratic and metropolitan-area risk
for different holding periods. The second part of the paper is devoted to the calibrated model and
starts with section 8. Section 8 introduces and describes the quantitative model, while section 9
discusses in detail its calibration. Section 10 reports the welfare costs and insurance premiums
generated by the model. Finally, my concluding remarks are in section 11.

2 House Sales Data

The key empirical results in the paper are based on a unique database consisting of micro-data
on both house repeated sales and remodeling permits that has been originally built by Giacoletti
and Westrupp (2016). Information on house transactions is provided by Corelogic Solutions5. In
the data, housing units are identified by their address and Assessor Parcel Number (APN). The
latter is an identifier assigned to each plot of land by tax assessors for record-keeping purposes.
The Corelogic “deeds” dataset provides information on transaction prices, sellers, buyers and
the mortgage originated by the buyer at the time of the house sale. Corelogic also provides tax
assessment data for the fiscal year 2013-2014, which contain geo-location information for each APN
(in terms of latitude and longitude) as well as a snapshot of house characteristics (housing unit
square feet size, number of bathrooms, number of bedrooms and other features). After merging
deeds and tax assessment information for each APN, I select house sales carried out as arm’s length
transactions and exclude nominal sales.
Information on remodeling activity in the state of California is provided by Buildzoom6. The

company acts an intermediary matching owners and contractors in the commercial and residential
real estate remodeling market. Buildzoom collects information on house remodeling and building
permits from local Census authorities. The data report the kind of job that was performed (for
example, kitchen renovation, plumbing or roof repair), the job cost and the fees paid by the
contractor. Housing units are again identified by their address and APN. This makes it possible
to merge the Buildzoom data with the Corelogic database. Details on the methodology and the
issues faced in the merge can be found in appendix C. I organize the data so that I can keep track
of repeated sales for the same housing unit. Thanks to the remodeling data, for each resale I can
collect all investment flows, from the time when the house is bought to the time when the house is
sold.
I focus my analysis on three main urban areas of California: the counties of Los Angeles and
5Information on the data provider is available at http://www.corelogic.com/industry/real-estate-solutions.aspx
6Information on the company is available at https://www.buildzoom.com/about.
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San Diego and the Metropolitan Statistical Area (MSA) of San Francisco (which includes Alameda
county, Contra Costa county, Marin County, San Francisco County, San Mateo County) extended
to include Santa Clara County. These are some of the most important housing markets in the
United States, which are well covered both in Corelogic and the Buildzoom datasets. Furthermore,
an argument can be made that California markets are ideal for studying house-specific risk. In
fact, even though in my analysis I will be very careful in accounting for all factors that might
explain systematic differences in returns between houses, it is still true that house structures are
very heterogeneous. Some very specific features of house layouts might be hard to account for and
might have an impact on house capital gains. However, in California the dominant determinant of
house value is residential land value. This appears very neatly if we look at land value and house
structure value indexes developed by Davis and Palumbo (2006) for all the main US cities. In
figure B.25, using Davis and Palumbo (2006) data, I compute the average fraction of house value
that is determined by land value within the metropolitan areas of Los Angeles, San Diego and San
Francisco over the period from the first quarter of 1990 to the last quarter of 2012. Over the entire
period, on average 70% of house value is determined by land value in Los Angeles and San Diego,
and almost 80% in San Francisco. This is in contrast with the national average, where land value
was 40% of house value before the housing crisis and only 30% thereafter.

In the final datset, I exclude resales that are sold as REOs, both because it is hard to assess
the total performance of these trades and because foreclosed homes frequently experience drops in
their maintenance and conditions (see for example the evidence in Anenberg and Kung (2014)).

I also exclude all trades with holding period shorter than one year. Both Bayer et al. (2012) and
Giacoletti and Westrupp (2016) show that this segment of the market is dominated by middlemen
and professional investors. Giacoletti and Westrupp (2016) show that transactions with holding
period shorter than one year earn on average large abnormal returns with respect to local house
price indexes. This is not the case for transactions with longer holding periods.

In the final dataset, transactions carried out by agents that appear to be professional traders
are quite rare. Giacoletti and Westrupp (2016) identify professional traders as either legal entities
or individuals that have been recently involved in multiple house trades. Panel (a) of figure B.26
reports for each year from 2001 to 2012 the fraction of resales undertaken by individuals that bought
more than one other house over the two years preceding the sale. The fraction is frequently smaller
than 10 % and peacks in 2006 at 11.5%. Panel (b) shows the fraction of resales carried out by legal
entities (including both corporations and trusts). This fraction is below 3 % for most years and
reaches 5 % only at the end of the sample. From table 1, we can see that house resales represent
approximately 20 % of all house sales available in my dataset each year. There is a concern that
the distribution of resales might end up being clustered in specific geographies, delivering biased
information on the metropolitan areas included in the study. Section D of the appendix shows in
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detail that this is not the case. Resales in my final dataset are widely spread across metropolitan
areas and are present in both high and low sale density neighborhoods.

Table 1 reports sample statistics of the data for the years from 2001 to 2012, where I group house
resales based on the year of sale. The column with header “All” shows the total number of house
sales available for a specific year after discarding non arm’s length transactions, nominal sales and
incomplete records, as I explain in detail in appendix C. Column “All no REOs” shows the total
number of sales excluding REOs.

The first column (“N Obs”) shows the number of sales that I have successfully identified as
resales and are included in the final database. For each resale, I was able to match the sale record
with the record of the previous transaction with which the current seller became owner of the house.
While Corelogic data extend back to the the eighties and seventies, the quality of the records is
higher for more recent entries and seems to be best from the nineties onwards. Moreover, coverage
from the Buildzoom dataset is best only after 1998. Thus, I base resale transactions only on deed
data from January 1990 onwards. Table 1 reports the fraction of resales that were “initiated” before
1998 and therefore potentially missing remodeling cashflows, as well as the fraction of resales that
involved remodeling activity. While may be missing data on remodeling activity for the first few
years, both the fraction of pre-1998 trades moves downwards and the fraction of remodeled homes
goes upwards quickly.

N Obs Med HP Med Price Med LTV Fr Pre-1998 Fr Rem Fr Sh Sales All no REOs All
2001 21, 961 3.42 382, 372 $ 90.00% 48.98% 4.97% − 81, 495 83, 458
2002 29, 602 3.67 434, 272 $ 90.00% 36.27% 6.18% − 96, 799 98, 437
2003 32, 351 3.83 486, 590 $ 90.00% 27.14% 7.76% − 107, 450 108, 201
2004 33, 655 3.83 577, 998 $ 90.00% 20.38% 8.48% − 112, 638 113, 125
2005 33, 510 3.58 660, 098 $ 90.00% 15.13% 9.27% − 106, 275 106, 556
2006 27, 088 3.33 680, 431 $ 90.00% 11.08% 10.22% 0.37% 84, 164 84, 620
2007 17, 795 3.67 732, 181 $ 88.33% 9.15% 12.00% 3.25% 57, 208 61, 378
2008 13, 095 3.92 597, 194 $ 90.00% 7.66% 12.33% 25.26% 43, 141 74, 025
2009 16, 284 4.58 475, 770 $ 90.00% 6.69% 11.79% 35.76% 53, 955 87, 676
2010 18, 245 5.33 468, 098 $ 89.96% 6.44% 13.01% 35.18% 62, 292 83, 871
2011 18, 163 6.17 433, 585 $ 89.66% 5.96% 14.60% 37.32% 66, 607 87, 619
2012 22, 477 6.75 423, 495 $ 87.50% 5.46% 15.08% 34.13% 76, 481 91, 046

Table 1: Sample statistics for house sale in years from 2001 to 2012. Columns 1 to 7 refer to resales,
while the last two columns show the total number of sales without and with REOs.

3 Idiosyncratic Risk in House Sales

The aim of this section is to measure idiosyncratic risk in the metropolitan areas of Los Angeles,
San Diego and San Francisco. I focus my analysis on houses sold in the period from January 2001 to
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December 2012. Due to data quality issues, I consider only resales of houses bought from January
1990 onwards.

As a first step, it is important to assess the magnitude and behavior of “aggregate” fluctuations
that impact the entire metropolitan area. To this end, I use S&P Case-Shiller indexes7 for the
cities of Los Angeles, San Diego and San Francisco. Figure 1 reports the monthly time series of
the indexes over the period between January 1990 and December 2013. I rescale the time series to
reflect real returns8. Table 2 shows correlations among real monthly returns of the city-wide indexes,
as well as monthly volatility and annual volatility (obtained by multiplying monthly volatility times
√

12) for each index. I consider both the entire sample (from January 1990 to December 2013) and
a shorter sample starting on December 2001. Index returns are highly correlated across the three
metropolitan areas. Estimated correlations are similar in the two samples and are always larger
than 0.8 and larger than 0.9 in between Los Angeles and San Diego. Estimates of annual standard
deviations are around 4% for the longer sample and around 5% for the most recent sample.
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240
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Figure 1: Real S&P Case-Shiller home price indexes for the cities of Los Angeles, San Diego and
San Francisco. Monthly data from January 1990 to December 2013.

I measure idiosyncratic risk on top of index volatility using the micro-data on house resales
described in section 2. These transactions involve multiple cash inflows, due to remodeling expenses.
Kaplan and Schoar (2005) face similar issues when computing the abnormal returns of private
equity funds in excess of a public equity benchmark. They introduce the Public Market Equivalent
(PME), which measures the abnormal performance of a fund measured against a portfolio with the

7Available from the St. Louis Federal Reserve Bank database at https://research.stlouisfed.org/
8I deflate the price indexes using the consumer price index for all goods less food and energy provided by the US

Bureau of Labor Statistics (more information can be found at http://stats.bls.gov:80/cpi/cpifaq.htm).
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From 1990/01 to 2013/12
Los Angeles San Diego San Francisco

Los Angeles 1
San Diego 0.9087 1
San Francisco 0.8068 0.8418 1
Std 1.17 % 1.13 % 1.28 %
Std Annualized 4.07 % 3.90 % 4.42 %

From 2001/01 to 2013/12
Los Angeles San Diego San Francisco

Los Angeles 1
San Diego 0.9222 1
San Francisco 0.8452 0.8490 1
Std 1.41 % 1.37 % 1.51 %
Std Annualized 4.90 % 4.75 % 5.24 %

Table 2: Correlation matrix and standard deviation of real returns for S&P Case-Shiller indexes for
the cities of Los Angeles, San Diego and San Francisco.

same inflows invested in the S&P 500. Giacoletti and Westrupp (2016) follow the same principle
and compute the Local Market Equivalent (LME) to measure the abnormal return of a house trade
with respect to a local house price index.

In this paper, I use a “forward” version of the local market equivalent, which measures the price
premium (or discount) of a house with respect to an equivalent investment in the metropolitan-area
market index. The “forward” LME for house transaction i is computed as in equation 1:

LMEfwd,i =
Pi,Ti − P loc

i,Ti

P loc
i,Ti

(1)

P loc
i,Ti

=
Hi∑
h=1

Di,τi,hR
Loc
τi,h,Ti

+ Pi,tiR
Loc
ti,Ti

With Pi,ti being the nominal price at which the housing unit was bought, Pi,Ti the price at which
the unit was sold, and Di,τi,h are intermediate investments in home remodeling. P loc

i,Ti
is the nominal

price of the “mimicking portfolio” invested in the metropolitan area index. The LMEs can then be
consistently grouped by sale year. The cross-sectional volatility of the LMEs for homes sold in a
specific year is a first rough measure of idiosyncratic risk.

Note that the calculations in equation 1 do not explicitly account for rent income produced by the
house and by the mimicking portfolio. The LME, as a measure of the total abnormal performance
of the trade, is invariant to the inclusion of rents only when the house and the index investment
produce the same rent payments. This is a problem, since it is likely that houses with different
characteristics will earn different rent rates over time.

Moreover, as already pointed out by Kaplan and Schoar (2005), the PME (and by extension the
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forward LME in my calculations) is a measure of abnormal risk adjusted returns only if the loading
or beta of returns for the individual funds (or, in my case, for the individual houses) with respect
to the index is equal to one9.

This assumption is likely to be violated at the level of individual house transactions. House
capital gains are driven by local factors and house characteristics. Moreover, Piazzesi et al. (2015)
and Piazzesi and Schneider (2016) show that the magnitude of house price fluctuations during the
recent housing boom and bust were different for more and less expensive houses (which they use as
a proxy for high and low quality houses). They also show that the relationship between price and
house returns changed over time. Finally, it is reasonable that trade characteristics, such as the
presence of a short sale, may determine discounts in home sale prices.

These problems are similar to the ones faced in the labor economics literature. In order to isolate
idiosyncratic household income risk, researchers need to take into account household characteristics
that may systematically lead to higher or lower income prospects (such as education, see Meghir and
Pistaferri (2011) for a review of the literature). They do that by regressing relevant characteristics
on labor income and taking the unexplained residuals as a proxy for idiosyncratic shocks. Along
similar lines, I model the log LME so that its mean can depend on individual house and trade
characteristics:

lmefwd,i = log (1 + LMEfwd,i)

lmefwd,i = m(Xi) + εfwd,i

The conditional mean of the log LME m(Xi) is estimated according regression equation 2:

m(Xi) = ase(i)sy + a
se(i)
zip + Bse(i)hcharXi,hchar + βse(i)rem Irem,i + βse(i)p log(Pi,ti) (2)

+ β
se(i)
p,3y:6y log(Pi,ti) · Ii,3y:6y + β

se(i)
p,>6y log(Pi,ti) · Ii,>6y + β

se(i)
shrt Ishrt,i

The coefficient ase(i)sy is a fixed effect for the year in which the house was bought, while ase(i)zip is a
ZIP-code fixed effect. Time effects are meant to absorb differences in average house returns linked
to the holding period, which might be for example driven by the different treatment of capital gains
for fiscal purposes. ZIP-code fixed effects absorb differences in abnormal performance that are

9Korteweg and Nagel (2015) introduce the generalized public market equivalent (GPME), which weakens the
assumption that beta is equal to one. However, GPME calculations are based on the additional assumption that
beta is the same across all assets used in the calculation and that beta does change over time. The GPME basically
treats the entire group of investments as a uniform asset class and identifies the beta using the overall timing of
cashflows. If overall investment volume is pro-cyclical, the GPME will provide a beta estimate greater than one. If
the investment volume is counter-cyclical, beta will be negative. While GPME is a valid methodology when studying
private equity and venture capital as asset classes, it is not well suited for my settings, where I am focusing on
individual house risk.
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determined by local market fluctuations and shocks that are not captured by the other conditioning
information in equation 2. The vector Xi,hchar contains house characteristics, in particular number
of bedrooms, number of bathrooms and house size in squared feet. The dummies Irem,i and Ishrt,i
are equal to one respectively for houses that are remodeled and for houses that are sold through
a short sale. The variable log(Pi,ti) is the log of the price at which the house was bought, which
include as a proxy for house quality as done by Piazzesi et al. (2015).

The correlation between local market equivalent and log price might change based on the holding
period of the house. I therefore introduce holding period dummies. In the final specification
reported in 2, the dummy variables are Ii,3y:6y and Ii,>6y. They are equal to one respectively when
the holding period is in between three and six years and longer than six years. I have implemented
different specifications where the dummy variables are defined over different holding periods. My
results appear to be robust to the specification of these holding period dummies.

The holding period dummies are interacted with log(Pi,ti), so that the coefficient βse(i)p captures
the conditional correlation between log price and local market equivalent for houses with holding
period up to three years, while βse(i)p +β

se(i)
p,3y:6y captures the conditional correlation when the holding

period is in between three and six years and βse(i)p +β
se(i)
p,>6y captures the correlation when the holding

period is longer than six years.

Equation 2 is separately estimated for houses sold in each year and in each metropolitan area.
Coefficient estimates are reported in tables 3, 4 and 5. Consistently with the results in Piazzesi et
al. (2015), I find that there is a negative relation between the price at which a house was bought
and its abnormal performance with respect to the index. This result holds in all metropolitan
areas in the study, even though the coefficients on the log price and its interaction with the holding
period dummies are sometimes not significant. Remodeling seems to deliver value for homeowners,
since transaction involving remodeled houses generate on average positive abnormal returns. Short
sales are on average settled at a significant (and economically large) price discount with respect to
normal sales in all metropolitan areas.
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IsRemodeled log(P ) log(P ) · I3y:6y log(P ) · I>6y IsShort R2 N Obs
2001 0.0532

[4.7165]
−0.2792
[−30.8260]

−0.0015
[−3.6976]

−0.0009
[−1.9477]

− 0.3833 9, 299

2002 0.0428
[4.9637]

−0.2481
[−5.3083]

−0.0005
[−1.4259]

0.0002
[0.1654]

− 0.3518 12, 972

2003 0.0471
[4.6455]

−0.1815
[−2.6152]

−0.0010
[−1.9937]

0.0003
[0.0986]

− 0.3180 14, 384

2004 0.0321
[3.7466]

−0.2844
[−4.2102]

−0.0005
[−1.3214]

−0.0018
[−0.9249]

− 0.3819 14, 433

2005 0.0264
[4.2677]

−0.2951
[−4.4150]

−0.0009
[−1.5506]

0.0002
[0.0923]

− 0.4448 15, 113

2006 0.0373
[4.5404]

−0.2917
[−2.8931]

−0.0018
[−1.8235]

−0.0023
[−0.9298]

−0.2145
[−6.0910]

0.4976 12, 806

2007 0.0322
[3.8162]

−0.1153
[−1.6615]

−0.0019
[−2.2815]

−0.0001
[−0.0538]

−0.1780
[−11.2481]

0.3286 7, 453

2008 0.0282
[2.0434]

−0.0975
[−2.1791]

−0.0013
[−4.2994]

−0.0033
[−2.2860]

−0.1225
[−11.3910]

0.3995 4, 969

2009 0.0291
[2.5555]

−0.0387
[−1.7860]

−0.0006
[−1.1574]

0.0002
[0.1696]

−0.1099
[−12.6195]

0.5616 6, 667

2010 0.0155
[1.2199]

−0.0784
[−1.5614]

0.0028
[1.3706]

0.0009
[0.3320]

−0.1428
[−11.7153]

0.5787 7, 331

2011 0.0401
[5.6343]

−0.1046
[−1.5359]

0.0051
[1.0643]

0.0050
[1.0031]

−0.1396
[−13.6947]

0.5282 7, 131

2012 0.0293
[3.0574]

−0.0900
[−1.5642]

0.0040
[0.9488]

0.0063
[1.3833]

−0.1813
[−11.2752]

0.5228 8, 453

Table 3: Coefficient estimates for year by year regressions based on equation 2 for the city of Los
Angeles. T-stats are reported in brackets and are based on standard errors clustered by the year
the transaction was initiated and by census tract.

IsRemodeled log(P ) log(P ) · I3y:6y log(P ) · I>6y IsShort R2 N Obs
2001 0.0158

[2.2727]
−0.0319
[−1.4835]

0.0001
[0.3003]

0.0055
[1.5436]

− 0.2036 3, 706

2002 0.0101
[1.5698]

−0.0378
[−1.3060]

0.0005
[1.2006]

0.0020
[1.3344]

− 0.2588 4, 355

2003 0.0162
[2.7453]

−0.0698
[−1.6108]

0.0005
[1.7059]

0.0009
[0.6907]

− 0.3299 4, 671

2004 0.0098
[1.4879]

−0.0663
[−1.3453]

−0.0016
[−14.0417]

−0.0023
[−1.0618]

− 0.2742 4, 686

2005 0.0159
[1.9255]

−0.0956
[−1.4538]

−0.0009
[−1.4686]

0.0014
[0.7938]

− 0.2536 4, 530

2006 0.0368
[4.2027]

−0.0273
[−1.5370]

−0.0001
[−0.5423]

−0.0003
[−0.1612]

−0.1306
[−14.0852]

0.2047 3, 557

2007 0.0343
[4.7582]

−0.0096
[−1.5304]

−0.0020
[−12.3785]

−0.0001
[−0.0922]

−0.1297
[−15.0336]

0.1975 2, 566

2008 0.0212
[2.2215]

−0.0018
[−0.3273]

0.0008
[2.3159]

0.0032
[2.7205]

−0.0816
[−16.5757]

0.4387 2, 116

2009 0.0037
[0.7126]

−0.0128
[−0.5397]

−0.0004
[−1.0939]

−0.0011
[−1.5901]

−0.0961
[−9.7398]

0.5585 2, 696

2010 0.0011
[0.1750]

−0.0127
[−1.4505]

−0.0008
[−0.7375]

−0.0011
[−0.8245]

−0.1010
[−12.4243]

0.5001 3, 057

2011 0.0175
[3.3579]

−0.0144
[−2.8871]

0.0046
[2.9841]

0.0046
[2.4968]

−0.1000
[−9.0650]

0.4348 3, 088

2012 0.0011
[0.1333]

−0.0285
[−1.9933]

0.0004
[0.3621]

0.0004
[0.2089]

−0.1220
[−11.6319]

0.3948 4, 176

Table 4: Coefficient estimates for year by year regressions based on equation 2 for the city of San
Diego. T-stats are reported in brackets and are based on standard errors clustered by the year the
transaction was initiated and by census tract.
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IsRemodeled log(P ) log(P ) · I3y:6y log(P ) · I>6y IsShort R2 N Obs
2001 0.0069

[1.1061]
−0.0726
[−2.3206]

0.0003
[0.3091]

0.0218
[1.1454]

− 0.2153 7, 313

2002 0.0116
[3.4618]

−0.1128
[−1.9658]

−0.0003
[−0.3778]

0.0006
[0.2973]

− 0.3662 10, 299

2003 0.0125
[2.5100]

−0.0977
[−2.0223]

−0.0015
[−3.8043]

−0.0001
[−0.0643]

− 0.4269 11, 255

2004 0.0140
[2.8583]

−0.1184
[−2.0738]

0.0004
[0.6271]

0.0005
[0.2212]

− 0.3830 12, 406

2005 0.0202
[3.8314]

−0.0942
[−1.8782]

−0.0025
[−3.7726]

−0.0031
[−1.6983]

− 0.3938 11, 831

2006 0.0097
[1.5566]

−0.1097
[−2.1829]

−0.0008
[−1.9210]

−0.0022
[−1.5385]

−0.1875
[−4.7928]

0.3243 9, 187

2007 0.0304
[3.9056]

−0.0374
[−2.3423]

0.0001
[0.1674]

0.0033
[2.3947]

−0.1863
[−13.5419]

0.1748 6, 753

2008 0.0453
[6.7933]

−0.0136
[−1.9288]

0.0024
[5.7339]

0.0039
[2.6595]

−0.1099
[−16.0656]

0.5224 5, 102

2009 0.0217
[4.8959]

0.0015
[0.1848]

−0.0022
[−5.1923]

−0.0058
[−3.5291]

−0.1218
[−9.0139]

0.6330 5, 888

2010 0.0306
[5.6845]

−0.0307
[−1.7792]

0.0034
[1.2525]

0.0032
[0.9611]

−0.1488
[−10.9082]

0.6251 6, 822

2011 0.0266
[4.0566]

−0.0375
[−2.5368]

0.0074
[1.5087]

0.0074
[1.4516]

−0.1578
[−10.8343]

0.6161 6, 888

2012 0.0292
[4.4090]

−0.0517
[−2.2157]

0.0032
[0.7975]

0.0026
[0.5743]

−0.2170
[−11.5418]

0.5794 8, 520

Table 5: Coefficient estimates for year by year regressions based on equation 2 for the city of San
Francisco. T-stats are reported in brackets and are based on standard errors clustered by the year
the transaction was initiated and by census tract.

I use the residuals from regression equation 2 as a proxy for idiosyncratic shocks to house prices.
As a sanity check, I compute the spatial correlation of these residuals in each year and in each city.
My aim is to make sure that variation in residuals is not driven by other important spatial-economic
factors omitted from the conditioning information in equation 2. Spatial correlations are measured
using Moran’s I10. The Moran’s I coefficient can assume values in between 1 and -1. Positive spatial
correlation implies clustering of residuals. In my data, this would hint at the existence of local
omitted factors. Results for each year and city are reported in table 6. We can see that Moran’s
I estimates are always in a range between -0.1% and 1.5% and therefore extremely close to zero.
Table 6 also reports Moran’s I for the local market equivalents lmefwd. Local market equivalents
show positive correlations, especially in the years of the housing bust. Thus, the conditioning
information used in equation 2 seems to do a good job at accounting for factors that determine
differences in abnormal performance across different locations. The residuals are close to i.i.d. in a
spatial sense and therefore a good proxy of house-specific shocks.

10This measure of spatial correlation was first introduced by Moran (1950). It is computed as:

I = N∑
i

∑
j 6=i wi,j

∑
i

∑
j 6=i wi,j

(
Xj − X̄

) (
Xi − X̄

)∑
i

(
Xi − X̄

)2

Where N is the total number of observations, Xi is the value of the variable of interest for observation i, X̄ is the
sample mean of the variable we are interested in. The weights are wi,j = 1/di,j , with di,j the distance between i and
j.
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Residuals Moran’s I lmefwd Moran’s I
Los Angeles San Diego San Francisco Los Angeles San Diego San Francisco

2001 0.34% 0.86% 0.84% 3.25% 4.81% 5.67%
2002 0.30% 1.36% 0.71% 2.80% 7.34% 11.04%
2003 0.17% 0.92% 0.62% 2.61% 9.28% 14.79%
2004 0.16% 0.88% 0.55% 3.40% 9.66% 13.57%
2005 0.22% 1.21% 0.50% 5.85% 7.74% 13.70%
2006 0.30% 1.46% 0.55% 8.15% 6.62% 8.09%
2007 0.03% 1.04% 0.35% 5.37% 2.84% 3.01%
2008 −0.11% 0.83% 0.52% 10.89% 17.70% 16.35%
2009 0.31% 1.00% 1.53% 14.55% 23.36% 25.86%
2010 0.16% 0.20% 0.90% 15.84% 21.21% 25.82%
2011 0.17% 0.56% 0.91% 13.81% 15.46% 24.14%
2012 0.22% 0.24% 0.75% 12.58% 12.70% 19.02%

Table 6: Moran’s I for the residuals from regression equation 2 and for lmefwd in each metropolitan
area and sale year.

Figure 2 shows the distribution of residuals for each year from 2001 to 2012 for the city of Los
Angeles. The empirical distributions are not skewed, but slightly leptokurtotic (see tables 14 and 15
in appendix A). Residual dispersion is sizable and increases after 2008. Year by year distributions
of residuals for San Diego and San Francisco are also reported in figures B.27 and B.28 in appendix
B and show similar evidence.

Figure 3 shows measures of the cross-sectional dispersion of residuals in each year. The panels
in the first row report standard deviations, while the ones in the second and third row show
inter-quantile differences. Cross-sectional dispersion is very large, and increases across all three
metropolitan areas during and after the housing crisis. In Los Angeles, volatility goes from
approximately 13% in 2006 to 17% in 2012. In San Diego, it goes from 11% to 12%, while in San
Francisco it goes from slightly above 13% to almost 18%. A similar behavior can be observed for
the differences between the 75th and 25th quantile and between the 90th and 10th quantile from
the panels respectively in the second and third row of figure 3.

The panels in the first row of figure 3 also report year by year standard deviations of the local
market equivalents (lmefwd). We can see that the increase in volatility during and after the crisis
is substantially larger for local market equivalents rather than for the residuals. However, most of
the increase is explained by house and trade characteristics and by local market fluctuations. The
increase in the actual house-specific component is substantially smaller.

So far idiosyncratic risk has been computed by pooling house-specific shocks for transactions
with different characteristics. In particular, by pooling resales with different holding periods. This
is problematic. For example, if we believe that idiosyncratic risk is a sum of annual i.i.d. shocks, it
would make more sense to annualize house-specific residuals. The next section is therefore devoted
to further studying the properties of idiosyncratic shocks and the importance of composition effects
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Figure 2: Distribution of residuals from regression equation 2, years from 2001 to 2012, Los Angeles.

in the measurement of idiosyncratic risk.

The preceding calculations omit rent income, which is a significant part of housing returns. A
concern with my results in this section is that idiosyncratic risk might be dwarfed by the magnitude
and more importantly by fluctuations in rent rates. It is therefore important to assess the relative
magnitude of idiosyncratic price volatility with respect to rent rates.

Information on residential real estate rents in California is provided by the US department of
Housing and Urban Development 11 (HUD). The data consist of average annual fair market rents
and are available at county level for houses of different “sizes”, defined in terms of number of
bedrooms (ranging from one to four). County level house price indexes for houses with different
numbers of bedrooms are available from Zillow12. By merging the two datasets, I can compute
rent-price ratios for each county and for houses with different numbers of bedrooms.

Figure 4 reports the evolution of the rent-price ratio for houses with 2 bedrooms13 for the
metropolitan areas of Los Angeles, San Diego and San Francisco.

11Available at: http://www.huduser.org/portal/datasets/fmr.html
12House price index data are available from the Zillow Home Value Index dataset (ZHVI R©) and can be downloaded

at http://www.zillow.com/research/data/.
13The behavior of the rent-price ratio for houses with 1,3 and 4 bedrooms is similar to the one reported in figure 4.

The graphs for these series are available upon request.
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Figure 3: Measures of cross-sectional dispersion of residuals from equation 2. The panels in each
column correspond to a different city, while the different cities correspond to different dispersion
measures: volatility, inter-quartile difference and inter-decile difference. The sample covers year
from 2001 to 2012.
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Figure 4: Annualized rent/price ratio for houses with 2 bedrooms in the metropolitan areas of Los
Angeles, San Diego and San Francisco. Monthly data over the sample period between January 1990
and December 2013.
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Rent rates co-move across cities, similarly to what we have seen for house price indexes in figure
1. Rents have been stickier than house prices in the 2000s, so that figure 4 shows counter-cyclical
fluctuations of annual rent-price ratios. The series hit a bottom low in 2006 at 3 % and rise up to 5
% or 6 % (depending on the city) in 2010. Over the entire sample from January 1990 to December
2013, the average annual rent rate is close to 4.5 % for San Francisco and slightly above 5 % for
Los Angeles and San Diego.

While the rent-price ratio is volatile, idiosyncratic price risk appears to be large both with respect
to the fluctuations and the level of rent rates. Both in 2001 and 2010, one standard deviation of
the residuals from equation 2 is from two to three times as large as the annual rent payment. This
ratio becomes even larger during the housing boom.

4 The Properties of Idiosyncratic Volatility

In this section I investigate factors that may determine differences in idiosyncratic risk across
different house resales. A key focus is the relationship between idiosyncratic risk and home holding
period, even if I also explore other dimensions of the data.

In fact, differences in idiosyncratic risk across different houses could be driven by local geographic
factors, by characteristics of the trade and by characteristics of the asset that is being traded.

I start by assessing the importance of potential geographic factors. I do this by looking at spatial
correlations of squared residuals. Estimated correlations are small, always close to zero (see table 7).
This suggests that local geographic factors do not play a major role in determining the distribution
of squared residuals.

Los Angeles San Diego San Francisco
2001 1.92% 1.01% 1.03%
2002 0.23% 0.74% 1.10%
2003 0.11% 1.04% 1.02%
2004 0.04% 0.93% 0.55%
2005 0.04% 0.73% 0.77%
2006 0.06% 2.15% 0.74%
2007 0.48% 1.26% 1.78%
2008 1.23% 0.71% 1.62%
2009 0.87% 2.01% 2.52%
2010 0.77% 1.33% 2.33%
2011 0.66% 0.94% 1.85%
2012 0.85% 0.97% 1.66%

Table 7: Moran’s I for squared residuals from regression equation 2 for each year and city.

House and sale characteristics may drive differences in house-specific risk. I study the behavior
of residual volatility in subsamples split according to whether houses were sold trough a distress
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sale and whether houses were remodeled. Figure B.29 in appendix B compares city by city the
idiosyncratic volatility for normal and short sales in each year between 2001 and 2012. Short
sales volatility is larger for Los Angeles and San Francisco in 2006. However, short sales were
very infrequent at the top of the housing boom, and the 2006 volatility is computed using very
few observations. The dispersion of idiosyncratic residuals for short sales falls in 2007 and then
co-moves with the one of normal sales from there on. If anything, short sales in Los Angeles
appear to experience slightly smaller volatility of residuals rather than normal sales. Figure B.30 in
appendix B compares the volatility of residuals from 2 for houses that respectively were and were
not remodeled. In Los Angeles residuals volatility is approximately 5% larger for house that were
remodeled in each year between 2001 and 2012. Houses that were and were not remodeled appear
to have similar volatility in San Diego and San Francisco.

The relation to holding period is a key dimension of idiosyncratic risk14. Do house-specific
shocks accumulate and scale with time? Do homeowners with longer holding periods experience
larger idiosyncratic risk when selling their house? I estimate residuals variance conditional on
holding period using a non-parametric estimator developed by Phillips and Xu (2011) 15, which
is in principal similar to a kernel regression of squared residuals on holding period. Estimates of
conditional standard deviation as a function of holding period for the cities of Los Angeles, San

14Another potential driver of differences in idiosyncratic volatility is house quality. While actual house quality is
not observable, I use house price as a proxy. I split house sales based on whether at the time the house was bought,
its price was above or below the median price across all transactions taking place in the same metropolitan area and
the same year (when the house was bought). I then compute volatility for the two in each “sale” year. Figure B.31
in appendix B shows that houses with above median prices tend to have a more stable level of idiosyncratic risk
over time, and therefore have larger volatility during the boom years and smaller volatility during the bust. These
differences are small in Los Angeles and San Diego, but evident in San Francisco. Idiosyncratic risk is therefore more
cyclical for cheaper houses. While this finding is interesting, the effect is large only in San Francisco. I therefore
postpone a more detailed analysis of this aspect of the data to future work.

15Conditional variance is computed as:

σ̂2
i =

∑NTi
j=1 ŵj,iKH (Xj −Xi) ε̂2

fwd,j∑NTi
j=1 ŵj,iKH (Xj −Xi)

Where ε̂fwd,j are residuals from equation 2 and the vectors Xj and Xi are row vectors containing latitude and
longitude of houses j and i. I use a normal kernel KH(Z) = (2π)−d/2 exp

(
− 1

2Z
′HZ

)
, where H is a diagonal matrix

with the square of bandwiths. The weights ŵj,i solve the empirical likelihood problem:

{ŵ1,i, ..., ŵNTi
,i} = arg min

{w1,i,...,wNTi
,i}
− 2

NTi∑
j=1

log (NTi
wj,i)

subject to

wj,i ≥ 0 ∀ j
NTi∑
j=1

wj,i = 1
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Diego and San Francisco and years 2001, 2004, 2008 and 2012 are reported in figures 5, 6 and 7.
The 95% confidence intervals are computed by simulation using a sub-sampling algorithm. In each
figure, I add a term structure of volatility generated under the null of i.i.d. monthly shocks and
calibrated to match volatility estimates from the data for an holding period of two years. Volatility
estimates from the data are very close across different holding periods. The “term structure” of
volatility is far off from the one that would prevail under the null of risk scaling with time.

Figure 5: Conditional volatility estimates by holding period against null of iid shocks. City of Los
Angeles, different panels correspond respectively to years 2001, 2004, 2008 and 2012.
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Figure 6: Conditional volatility estimates by holding period against null of iid shocks. City of San
Diego, different panels correspond respectively to years 2001, 2004, 2008 and 2012.

Figure 7: Conditional volatility estimates by holding period against null of iid shocks. City of San
Francisco, different panels correspond respectively to years 2001, 2004, 2008 and 2012.
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Figure 8 shows the evolution of house-specific volatility over time for housing units held for three,
five and eight years. It is again evident that there is little differences in idiosyncratic volatility
across holding periods.
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Figure 8: Time series of volatility estimates for houses with holding periods of three, five and eight
years in Los Angeles, San Diego and San Francisco. Period from 2001 to 2012.

I now propose an alternative approach to illustrate the relationship between idiosyncratic housing
risk and holding period. I provide a decomposition of the idiosyncratic component of capital gains
into a transitory and a persistent shock. This methodology is widely use in the literature that
studies idiosyncratic labor income risk (see for example Meghir and Pistaferri (2004), Storesletten et
al. (2004) and the literature review by Meghir and Pistaferri (2011)). Consider εi,j,t, the abnormal
capital gain of house i, held for j years and sold in year t. I can write the decomposition of the
abnormal capital gain into a transitory and a persistent shock, in formulas:

εi,j,t = ηi,j + σu,tui,t (3)

ηi,j = ρηi,j−1 + σvvi,j

Where ηi,j is the persistent component, which accumulates over the house holding period. ui,t is
the transitory shock, which is determined at one point in time during the life of the trade. For
simplicity, in 3 I assume that the transitory shock is realized at the time of sale. The coefficients
σu,t, ρ and σv can be estimated using moments of squared abnormal capital gains. In fact, since
the panel regressions in 3 contain year fixed effects, the model in 3 implies the following moment
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conditions:

g(σu,t, ρ, σv, j) =
N∑
i=1

1
Nt,j

ε2
i It,j −

σ2
u,t +

j−1∑
k=0

ρ2kσ2
v


Where j is again a specific holding period, in years. N is the total number of observations in the

dataset, across all holding periods and years of sale. Nt,j is the number of observations with holding
period j in year of sale t. It,j is a dummy variable equal to one when an observation corresponds to
a house sale in year t with holding period j. All moments across different years and holding periods
are then collected in the vector g(χ), where χ = {σu,2001, ..., σu,2012, ρ, σv}. A minimum distance
estimator for the vector χ is found by solving numerically:

χ∗ = min
χ
g(χ)′Wg(χ)

In the estimation, W is an identity matrix. This choice is based on the study by Alntonji and
Segal (1996), which shows that the use of the optimal weighting matrix as suggested in Hansen
and Singleton (1982) would introduce substantial small sample bias. Parameter estimates are
reported in in table 8. Standard errors are in brackets and are computed using a bootstrapping
algorithm. Panel (a) shows estimates of the autoregressive coefficient ρ and the conditional volatility
of persistent shocks σv, as well as estimates of the volatility of transitory shocks σu,t. Estimates
are based on the sample covering the years-of-sale from 2001 to 2012, and the coefficients are
estimated separately for each city (Los Angeles, San Diego and San Francisco). Under the null that
idiosyncratic risk is entirely determined by a component that scales with the investment horizon, ρ
is equal to one and the volatility of transitory shocks is negligible. Panel (a) of table 8 describes a
very different picture: ρ is very close to zero, and σv is very small. On the other hand, the volatility
of transitory shocks σu,t are large and absorb the full volatility of the data (this is evident when
comparing the estimates from the table to the statistics reported in figure 3). Panels (b) and (c) of
table 8 report estimates of ρ and σv respectively for the sub-sample containing years-of-sale from
2001 to 2006 and the one covering years-of-sale from 2007 to 2012. Again, estimates are reported
separately for each city. Results are qualitatively similar to the ones obtained using all observations.
Overall, the transitory component seems to be the key driver or volatility in abnormal capital

gains, while the date reject the existence of a persistent component.

5 Robustness

This finding is robust to how I measure house-specific risk. Figures 9 and 10 and 11 show volatility
as a function of holding period for the local market equivalents (lmefwd). Again, I compare the
estimated term structure against the null of iid shocks accumulating over time. We can see that
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Panel (a): Years from 2001 to 2012
Los Angeles San Diego San Francisco

ρ 0.0020
(0.0054)

0.0053
(0.0031)

0.0030
(0.0023)

σv 0.0015
(0.0005)

0.0315
(0.0062)

0.0363
(0.0076)

σu,2001 0.1317
(0.0016)

0.0960
(0.0014)

0.1347
(0.0019)

σu,2002 0.1335
(0.0031)

0.1002
(0.0014)

0.1227
(0.0021)

σu,2003 0.1365
(0.0027)

0.0962
(0.0018)

0.1274
(0.0019)

σu,2004 0.1327
(0.0045)

0.1055
(0.0020)

0.1308
(0.0020)

σu,2005 0.1274
(0.0047)

0.0996
(0.0023)

0.1325
(0.0017)

σu,2006 0.1272
(0.0053)

0.1092
(0.0016)

0.1330
(0.0021)

σu,2007 0.1506
(0.0026)

0.1125
(0.0018)

0.1457
(0.0017)

σu,2008 0.1564
(0.0015)

0.1168
(0.0019)

0.1554
(0.0019)

σu,2009 0.1596
(0.0017)

0.1107
(0.0016)

0.1644
(0.0022)

σu,2010 0.1576
(0.0020)

0.1150
(0.0016)

0.1654
(0.0019)

σu,2011 0.1653
(0.0022)

0.1200
(0.0015)

0.1695
(0.0019)

σu,2012 0.1691
(0.0017)

0.1220
(0.0013)

0.1782
(0.0016)

Jstat 2.3848 1.4302 6.8849
Jstat 95th Q 2.9305 3.6581 18.8035

Panel (b): Years from 2001 to 2006
Los Angeles San Diego San Francisco

ρ 0.0127
(0.0093)

0.0129
(0.0051)

−0.0011
(0.0074)

σv 0.0018
(0.0010)

0.0383
(0.0113)

0.0492
(0.0107)

Jstat 0.8375 1.4857 5.4502
Jstat 95th Q 1.3035 4.6470 21.3517

Panel (c): Years from 2007 to 2012
Los Angeles San Diego San Francisco

ρ −0.0141
(0.0078)

0.0119
(0.0061)

0.0040
(0.0039)

σv 0.0029
(0.0007)

0.0231
(0.0035)

0.0157
(0.0053)

Jstat 1.2107 0.1345 1.8062
Jstat 95th Q 1.5157 0.2096 2.2107

Table 8: Estimates, based on the micro-data, of ρ, σv from the system of equations 3. Panel (a)
reports estimates based on data for all years-of-sale, from 2001 to 2012. The panel also reports
estimates of σu,t for each year. Panels (b) and (c) only report estimats of ρ and σv, respectively for
the sub-sample containing years-of-sale from 2001 to 2006 and the one covering years-of-sale from
2007 to 2012. Bootstrapped standard errors are in brackets. Each panel also reports J-statistics for
the objective function of the minimum distance estimator, as well as a 95% critical value. The test
always fails to reject the null that the moment conditions do not hold in the data.
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even when I am not conditioning on house and trade characteristics, the estimated term structure
of individual house risk is flat. In other words, individual house risk does not scale with holding
period.

Figure 9: Conditional volatility estimates (based on lmefwd) by holding period against null of iid
shocks. City of Los Angeles, different panels correspond respectively to years 2001, 2004, 2008 and
2012.

Figure 10: Conditional volatility estimates (based on lmefwd) by holding period against null of iid
shocks. City of San Diego, different panels correspond respectively to years 2001, 2004, 2008 and
2012.

26



Figure 11: Conditional volatility estimates (based on lmefwd) by holding period against null of iid
shocks. City of San Francisco, different panels correspond respectively to years 2001, 2004, 2008
and 2012.

As a further robustness check, I show that this evidence also holds within specific subsamples of
trades. Figure 12 shows the same volatility estimates as in 8, but based on the sample of house
resales that did not involve remodeling. Figures 13 and 14 repeat the exercise respectively for
houses bought at a price above and below median. The term structure of volatility appears to be
flat across all the different cities and years, for both cheap and expensive houses.
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Figure 12: Time series of volatility estimates for houses with holding periods of three, five and
eight years in Los Angeles, San Diego and San Francisco: houses that were not remodeled only.
Period from 2001 to 2012.
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Figure 13: Time series of volatility estimates for houses with holding periods of three, five and
eight years in Los Angeles, San Diego and San Francisco: houses that were bought at a price above
the median transaction price of the year. Period (by sale year) from 2001 to 2012.

28



2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
10

15

20

S
td

 (
%

)

Los Angeles

3 Yrs
5 Yrs
8 Yrs

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
8

10

12

14
San Diego

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
10

15

20
San Francisco

Figure 14: Time series of volatility estimates for houses with holding periods of three, five and
eight years in Los Angeles, San Diego and San Francisco: houses that were bought at a price below
the median transaction price of the year. Period (by sale year) from 2001 to 2012.

6 Idiosyncratic Risk for US Public Equity

The results discussed in the previous section stand in sharp contrast with evidence from other asset
classes. In this section, I show that idiosyncratic risk scales with holding period for US stocks. For
this new exercise, I collect data from CRSP and COMPUSTAT North America Security Monthly
files. I focus on public firms which were constituents of the S&P 500 and were listed on either
NYSE, AMEX or NASDAQ during the period between January 1980 and December 2013. Since
stock prices are listed every day, there is no need to run hedonic regressions equivalent to equation
2. Instead, I compute risk exposures for each stock k using the five factor model from Fama and
French (2014):

XRk,t+1 = ak + bmkt,kXRmkt,t+1 + bs,kSMBt+1 + bhHMLt+1 + br,kRMWt+1 + bc,kCMAt+1 + ek,t+1

XRk,t+1 is the capital gain of stock k in excess of the risk free rate (which is measured as the
yield on one month Treasury bill) in between month t and t+ 1. XRmkt,t+1 is the excess return of
the market portfolio with respect to the risk free, SMB is the small minus big factor and HML

is the high minus low book to market factor. The factors RMW and CMA are respectively the
spread in returns between portfolios of stocks with robust and weak profitability and in between
portfolio of stocks from firms with high and low investments (or rather pursuing conservative and
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aggressive investment strategies). The pricing factors as well as the one month risk free rate are
downloaded from Kenneth French’s website16.

Using coefficient estimates from the equation above, I compute the capital gains of a mimicking
portfolio invested in the five factors for each stock. I then calculate idiosyncratic shocks as the
difference between the terminal values of one dollar investments respectively in the stock and in the
mimicking portfolio, along the same lines as in equation 1. Idiosyncratic volatility is estimated as
the cross-sectional standard deviation of idiosyncratic shocks, following the same methodology used
in the previous sections. In particular, I compute the volatility of idiosyncratic shocks attained by
selling stocks and mimicking portfolios on December of each year from 2001 to 2012 and across
different holding periods.

Figure 15 compares, in the same fashion as figures 5, 6 and 7, the estimated “term structure”
of idiosyncratic volatility against a term structure that scales with holding period. This second
term structure is again calibrated to match estimated idiosyncratic volatility at a five years holding
period. In stark contrast with what I find for housing, figure 15 shows that idiosyncratic risk for
stocks scales with time. Estimates from the data are very close to the ones we would obtain under
the i.i.d. null17. This seems to be consistent with theoretical research by Cao et al. (2006), which
argues that idiosyncratic equity risk is driven by idiosyncratic growth opportunities becoming
available to managers over time.

7 Term Structure of Housing Risk

The fact that idiosyncratic volatility does not scale with time has important implications for
the composition of housing risk across different holding periods. In this section, I show that the
idiosyncratic component is the dominant source of risk for short holding periods. However, on
longer holding periods metropolitan-area fluctuations become the most important drivers of risk.
The dynamics of metropolitan-area house price indexes are estimated using a simple time series
model, described below in section 9.7.

7.1 Metropolitan Area Price Dynamics

In order to model the evolution of house price indexes, I use a simple one-lag vector autoregressive
(VAR) model. The model is estimated for each metropolitan area (Los Angeles, San Diego and San

16Available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html .
17The magnitude of idiosyncratic stock risk from figure 15 is consistent with estimates reported by Campbell et al.

(2001).
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Figure 15: Idiosyncratic volatility for holding periods of one, three, five and eight year holding
period for stocks sold in 2001, 2004, 2008 and 2012. Each panel compares volatility estimates based
on the data against volatility computed under the iid null, calibrated in order to match estimated
volatility for the five years horizon.

Francisco), using monthly data over the period from January 1990 to December 2013:

∆Zt+h = Γ0 + Γ1Zt + Ωvt+h (4)

The predictive horizon h is set equal to 3 months, while the elements of the vector Zt are:

Zt = [log(P loc,r
t ), log(RP loc

t ), inf 1y
t , r

30y,M
t ]′

P loc,r
t is the real S&P Case-Shiller house price index for each metropolitan area (the time series

for these indexes are reported in figure 1), while and RP loc
t is the rent-price index for a two bedroom

apartment (see figure 4). The variable inf 1y
t is twelve months inflation on all goods except food and

energy from the Bureau of Labor Statistics. Finally, r30y,M
t is the real rate on a 30 year fixed rate

mortgage. The nominal rate for 30 year US fixed rate mortgages is obtained from the St. Louis
Fed database18, to obtain the real rate I subtract one year expected inflation published by the
Federal Reserve Bank of Cleveland19. Note that the former two time series are city specific, while
the latter two are not. Table 9 shows estimates of the elements of the mean reversion matrix Γ1, for
Los Angeles, San Francisco and San Diego, along with 95 % bootstrapped confidence intervals (in

18The time series can be downloaded at https://research.stlouisfed.org/
19The data can be downloaded at https://www.clevelandfed.org/our-research/indicators-and-data/inflation-

expectations.aspx

31



square brackets). The table also reports 95 % bootstrapped confidence intervals for the R-squares
of the four VAR equations. Conditional moments of log price gains for metropolitan-area indexes
over different predictive horizons can be computed recursively using the VAR:

∆̂pt+k = E [∆pt+k|Zt] = Γ0 + Γ1E [∆pt+k−1|Zt]

σ2
∆p,k = V ar [∆pt+k|Zt] = Γ1V ar [∆pt+k−1|Zt] Γ′1 + ΩΩ′

Where k is the predictive horizon, in this case expressed in quarters (since the VAR has quarterly
lags).

Los Angeles
log(P ) log(RP ) inf1y r30y,M

log(P ) −0.1865
[−0.2654,−0.1384]

−0.1890
[−0.2719,−0.1328]

−0.7313
[−1.3169,−0.1814]

−1.4910
[−2.1108,−0.8636]

log(RP ) 0.1672
[0.1078,0.2217]

0.1578
[0.0843,0.2120]

0.5327
[0.0789,1.1069]

1.5361
[0.9672,2.1087]

inf1y 0.0052
[0.0015,0.0120]

0.0045
[0.0003,0.0120]

−0.1080
[−0.1704,−0.0778]

0.0974
[0.0488,0.1516]

r30y,M −0.0181
[−0.0280,−0.0092]

−0.0176
[−0.0292,−0.0080]

0.1986
[0.1243,0.2937]

−0.3659
[−0.4871,−0.3009]

R2 (11.87%,24.77%) (13.86%,20.10%) (12.28%,29.62%) (10.97%,31.89%)

San Diego
log(P ) log(RP ) inf1y r30y,M

log(P ) −0.0965
[−0.1574,−0.0478]

−0.1108
[−0.1742,−0.0391]

−1.3174
[−1.9018,−0.8180]

−0.4404
[−1.0475,0.1807]

log(RP ) 0.0885
[0.0247,0.1374]

0.0885
[−0.0038,0.1375]

0.6410
[0.1571,1.2586]

0.9887
[0.3662,1.5876]

inf1y 0.0016
[−0.0014,0.0080]

0.0008
[−0.0033,0.0082]

−0.0896
[−0.1549,−0.0608]

0.0688
[0.0220,0.1205]

r30y,M −0.0157
[−0.0257,−0.0095]

−0.0187
[−0.0319,−0.0120]

0.1603
[0.0968,0.2531]

−0.3620
[−0.4750,−0.2987]

R2 (10.72%,21.20%) (10.26%,23.17%) (7.66%,21.74%) (9.77%,19.09%)

San Francisco
log(P ) log(RP ) inf1y r30y,M

log(P ) 0.0535
[0.0095,0.0903]

0.1089
[0.0641,0.1658]

−1.0070
[−1.7082,−0.3907]

−0.1530
[−0.7712,0.4375]

log(RP ) −0.0713
[−0.1213,−0.0484]

−0.0975
[−0.1673,−0.0711]

0.1859
[−0.4462,0.7647]

0.4529
[−0.0840,1.0062]

inf1y 0.0014
[−0.0014,0.0046]

0.0006
[−0.0031,0.0044]

−0.0854
[−0.1499,−0.0540]

0.0593
[0.0211,0.1079]

r30y,M −0.0016
[−0.0084,0.0030]

−0.0004
[−0.0085,0.0059]

0.1301
[0.0461,0.2294]

−0.2312
[−0.3446,−0.1819]

R2 (12.41%,16.40%) (12.27%,15.24%) (8.88%,10.70%) (11.02%,16.25%)

Table 9: Estimates for the elements of Γ1 from equation 4, sample from January 1989 to December
2014. Bootstrapped 95 % confidence intervals are reported in square brackets. I report 95 %
bootstrapped confidence intervals for the R2 of each one of the four equations in the model.

32



7.2 Metropolitan-Area and Idiosyncratic Risk by Holding Period

I now consider an individual housing unit i, whose price volatility is determined by the volatility of
the house price index plus the volatility of idiosyncratic shock. This is a house with a “beta of
one” with respect to the house price index. Since the idiosyncratic shock is orthogonal to index
fluctuations, I can write the total house price volatility over horizon k as:

σk,i =
√
σ2

∆p,k + σ2
ε

Where σ2
ε is the variance of idiosyncratic shocks. Figures 16 and 17 decompose house price volatility

into “aggregate” and idiosyncratic component, for investment horizons from one to ten years20 and
across different metropolitan areas.

In figure 16 the volatility of idiosyncratic shocks matches estimates for each city in year 2001.
We can see that idiosyncratic risk has the highest impact for short holding periods. After one year,
aggregate fluctuations account for only approximately 50 % of total volatility in Los Angeles and
San Francisco, and approximately 60 % in San Diego. As the horizon increases the importance
of the idiosyncratic shock goes down, even though at the 10 years horizon it still accounts for
around 10 % of volatility in Los Angeles and San Francisco and 5 % in San Diego. In figure 17
the volatility of idiosyncratic shocks matches the 2010 estimates. Idiosyncratic risk is even more
important after crisis, and accounts for more than 40% of volatility after a 3 years holding period
in both Los Angeles and San Francisco.

20I do not consider horizons shorter than one year since, as explained in section 2, I exclude from the calculations
based on the micro data all house sales with holding period shorter than one year.
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Figure 16: Composition of individual house risk across holding periods from one to ten years.
Results are based on 2001 estimates.
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Figure 17: Composition of individual house risk across holding periods from one to ten years.
Results are based on 2010 estimates.
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8 Quantitative Model

I now introduce the quantitative portfolio model used to asses the cost of idiosyncratic risk from
the perspective of a homeowner. Preferences are defined over a bundle of numeraire good and
housing services. The homeowner may sell her house over a finite horizon T either to optimally
re-balance her consumption bundle and asset portfolio or due to an exogenous mobility shock. The
welfare cost is measured as the insurance premium that the homeowner would be willing to pay
against idiosyncratic risk. In particular, I measure the premium that the household would pay over
horizon T to remove idiosyncratic risk at the time of selling her house.

A key parameter in the model is the probability that a household may face an exogenous mobility
shocks. The first part of the paper shows that the relative importance of idiosyncratic shock for
housing risk decreases with the holding period. Households more exposed to mobility shocks will
also be in relative terms more exposed to idiosyncratic risk.

The model falls in the same category as the ones developed by Campbell and Cocco (2003),
Cocco (2005b) and Chen et al. (2013), where the dynamics of prices, interest rates, rent rates and
income shocks are exogenously determined. The following section focuses on the structure of the
model and on how the cost of idiosyncratic risk is assessed. Then, section 9 explains how the model
is calibrated to data and section 10 discusses the quantitative results.

8.1 Preferences

The household has preferences over two goods: the numeraire consumption good c and housing
services h. These goods are consumed in the bundle:

C = c1−δhδ

The Cobb-Douglas specification of the consumption bundle fits empirical evidence on consumer
behavior, as I explain in detail in section 9. The coefficient δ captures the elasticity of substitution
between numeraire consumption and housing services. Wealth that is not consumed can be invested
in a bank account that pays a fixed real rate per period. The household is a homeowner in the
initial period t0. Time is finite, the planning horizon consists of T periods, which correspond to
T years. In the final period the household receives terminal utility λCt0+T , with λ < 1. The λ
coefficient introduces in reduced form a “bequest” motive. I use this parameter to obtain from the
model a pattern of numeraire consumption and non-housing wealth accumulation that is consistent
with the data. More details on the role of λ are provided in section 9.9. The household has recursive
preferences over the stochastic stream of consumption bundles {Ct0 , Ct0+1, ..., Ct0+T}, as in Epstein
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and Zin (1989):

Vt =
{
Cψ
t + βE

[
V 1−γ
t+1

] ψ
1−γ

} 1
ψ

With ψ = 1− 1/σ. These preferences disentangle the coefficient of relative risk aversion γ from
the coefficient of inter-temporal substitution (IES), given by σ. Power utility is obtained as a
special case when γ = 1

σ
.

8.2 House Sale and Welfare Cost

The household is a homeowner at time t0. She may move once in between t0 and t0 + T , for
following an endogenous or an exogenous shock. If the household sells her house at time τ , with
t0 < τ < t0 + T , she receives the house at price:

P r
i,τ = P r

i,t0R
loc,r
t0,τ e

uidio = P loc,r
i,τ euidio (5)

Where P loc,r
i,t0 is the house price at time t0 in terms of January 2000 dollars, while Rloc,r

t0,τ is the real
return of the corresponding metropolitan-area (either Los Angeles, San Diego or San Francisco)
house price index between t0 and τ . The variable uidio is the idiosyncratic price shock.

Except for the idiosyncratic shock, house capital gains are perfectly correlated with fluctuations
in the house price index. This is a simplification, that omits the modeling of the conditional mean
of local market equivalents as estimated in equation 2. In the calibration, I pick the initial house
price and housing services so that they reflect a “median” house within a metropolitan area at time
t0. This “median home” can to some extent be thought as a representative housing unit whose
price fully co-moves with the metropolitan-area index.
When selling her home, the household buys a new house. After the sale occurs, the household

cannot sell the new house and the probability of exogenous mobility shocks is set to zero. In other
words, the households lives into this house till the final year t0 + T . The new house can be more or
less expensive than the original home (and deliver higher or lower housing services). However, the
price of the new house is perfectly correlate with fluctuations in the metropolitan area index, so
that the value of the new home in the final period t0 + T is:

P new,r
i,t0+T = P new,r

i,τ Rloc,r
τ,t0+T

With P new,r
i,τ equal to the price at which the new house was bought and Rloc,r

τ,t0+T equal to the return
on the metropolitan-area index between τ and t0 + T .
In the first baseline version of model, which is presented in section 8.3, the household has no

access to mortgage financing. Thus, she always owns the entire capital invested in her house. I
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introduce debt and default in section 8.4.
In modeling uidio, I consider two different cases. In the first one, the distribution of idiosyncratic

house price shocks matches the one in the data. In the second one, uidio is set equal to zero, so
that housing risk is only determined by index (or “systemic”) fluctuations. I evaluate the cost of
idiosyncratic risk by comparing the time t0 present value of expected utility in a calibration where
the distribution of uidio matches the data against the same quantity in a calibration where uidio is
set to zero. I then compute the utility cost of idiosyncratic risk as21:

costidio = 1− Vt0
V ∗t0

(6)

The value function with the star superfix is the one obtained when uidio is set to zero. While this
exercise provides a first insight into the impact of idiosyncratic housing risk on household welfare,
the percentage decrease in expected utility is not an immediately interpretable economic quantity.

Thus, I convert the welfare cost into an annual dollar payment. I consider the calibration where
idiosyncratic house risk is set to zero. I introduce an annual payment out of household income,
which I call ∆Y and that will take place in each year from t0 to t0 +T − 1. For ∆Y = 0, the present
value of expected utility at time t0 is equal to V ∗t0 from equation 6. I then look for the annual
payment ∆Y determining a decrease in expected utility that matches the one due to idiosyncratic
risk. In formulas, I find ∆Y such that:

costidio = 1− V ∗,∆Yt0

V ∗t0
(7)

With costidio equal to the percentage cost computed in 6. The payment ∆Y can then interpreted
as the “annual” cost of idiosyncratic risk. More precisely, this is the payment that the household
would be willing to make in order to remove idiosyncratic house risk in case she sells her house
over horizon T . Utility costs and insurance premiums computed from the calibrated model for
different initial years t0, different household ages and for different metropolitan areas are reported
and discussed in section 10.

8.3 Baseline Model

I first introduce a baseline version of the model where there is no mortgage. The basic model is
then extended in the next section. As already mentioned, in the model the homeowner may move
for both endogenous and exogenous reasons. For what concerns the latter, there is a mobility shock

21This is the similar to calculations of utility cost of risk implemented by Epstein et al. (2014), even if in a different
context and model.
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that may occur at the beginning of each period with probability πmob. The value function for the
household that has not yet moved can then be written as a weighted average of the value functions
for households that respectively experience and do not experience the mobility shock. The weights
are determined by πmob; in formulas:

Vown (X, θ, t) = πmobVmob (X, θ, t) + (1− πmob)Vnomob (X, θ, t) (8)

Where X is a vector of exogenous state variables, θ is non-housing wealth and t is the current
period. The value function VH,mob (X, θ, t) corresponds to a owner who is hit by the exogenous
mobility shock. The opposite is true for Vnomob (X, θ, t). The optimization problem for the owner
who is not hit by the mobility shock is:

Vnomob (X, θ, t) = max


max
c

{
(1− β)Cψ + βfx (Vown (X ′, θ′, t′))

} 1
ψ

Vmob (X, θ, t)

subject to

θ′ = y(X) + (1 + rb)θ − c

C = c1−δhδ

h = rent(t0)

t′ = t+ 1

(9)

Where Vown(., ., .) is calculated as shown in equation 8. Note that I use the conditional expectation
function fx(V ) =

{
Ex [V 1−γ|Xt]

ψ
1−γ

}
. Non-housing wealth θ is invested in a risk free bank account

paying the fixed rate rb, while annual household income is y(.), dependent on the exogenous states
in X. Housing services are set equal to rental income earned by the house at time t0, and are kept
constant over the entire holding period of the house.

On the other hand, when the mobility shock hits, the homeowner value function solves:

Vmob (X, θ, t) = max
c

{
(1− β)Cψ + βfx,u (VS (X ′, θ′, u′, t′))

} 1
ψ

subject to

θ′ = y(X) + (1 + rb)θ − c

C = c1−δhδ

h = rent(t0)

t′ = t+ 1

(10)
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Where I use the conditional expectation function fx,u(V ) = Ex,u
{

[V 1−γ|Xt]
ψ

1−γ

}
, where again X

is the vector of exogenous state variables and u is the idiosyncratic house price shock. VS (., ., .) is
the value function at the time of sale: the household hit by a mobility shock has to sell her house
in the next period. At that point, the optimization problem becomes:

VS (X, θ, u, t) = max
c,Sh

{
(1− β)Cψ + βfx (VM (X ′, θ′, S ′h, t′))

} 1
ψ

subject to

θ′ = y(X) + (1 + rb)θ − c+ P (X) eu − P (X,S ′h)

C = c1−δhδ

h = rent(t0)Sh
S ′h = Sh

t′ = t+ 1

(11)

The modeling of the house price at the time of sale is consistent with the framework in equation
5. The variable P (.) represents the component that perfectly co-moves with the local house price
index. The shock u accounts for idiosyncratic risk. The price of the new house is P (X,Sh), which
is equal to:

P (X,Sh) = P (X)Sh

The variable Sh > 0 is optimally chosen by the household and determines how the housing services
of the new house compare to the ones of the house that is sold. After moving, the agent is not
subject to mobility shocks and cannot move again. Her value function then solves:

VM (X, θ, Sh, t) = max
c

{
(1− β)Cψ + βfx (VM (X ′, θ′, S ′h, t′))

} 1
ψ

subject to

θ′ = y(X) + (1 + rb)θ − c

C = c1−δhδ

h = rent(t0)Sh
S ′h = Sh

t′ = t+ 1

(12)

In the final period t0 + T the household is either still holding the original home, or has moved to
a new house with housing services rent(t0)Sh. The terminal utilities for these two alternatives are
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equal to:

Vown (X, θ, t0 + T ) = λ
[
y(X) + (1 + rb)θ + P̂ (X)

]
VM (X, θ, Sh, t0 + T ) = λ

[
y(X) + (1 + rb)θ + P̂ (X,Sh)

]

The parameter λ < 1 creates a bequest motive, that I use to ensure that non-housing wealth
accumulation is consistent with the data. More details on this issue are provided in section 9.9.

8.4 Debt and Default

US households typically buy their home with a mix of their own funds and debt in the form of a
nominal fixed rate mortgage (FRM)22. Thus, Iextend the model by introducing debt financing.

The rest of the framework remain the same as in the baseline model. The homeowner is subject
to exogenous mobility shocks of the form presented in equation 8 and if not hit by mobility shocks
can optimally decide whether to move. After moving, the owner is not allowed to move again and
is not subject to mobility shocks. However, debt changes the nature of the optimization problem
faced by the homeowner at each stage and therefore the value functions. First, debt payments
change the budget constraints. Second, the presence of a debt contract raises the issue of modeling
default. In the model, I do not allow for strategic default. The owner is forced to default when she
is not able to meet her mortgage payments. Similarly to what is done by Campbell and Cocco
(2011), the defaulted household is forced to become a renter and stays in that state till the final
period T . Since the empirical part of this project is based on data from California housing markets,
I build the model so that there is no recourse on unpaid mortgage amounts. When defaulting, the
household loses her house, but gets rid of her remaining debt obligations.

The homeowner in year t0 now has a mortgage amount M . The value function for the homeowner
22Campbell and Cocco (2003) show that 70 % of newly issued mortgages in the US over the period between

1985 and 2001 where fixed rate mortgages. Piazzesi and Schneider (2016) argue that the fixed rate mortgage is the
predominant form of debt financing for US residential housing.
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who is hit by a mobility shock (equation 10 from the baseline model) now solves:

Vmob (X, θ,M, t) =


max
c

{
(1− β)Cψ + βfx,u (VS (X ′, θ′,M ′, u′, t′))

} 1
ψ

if inD = 1

max
c

{
(1− β)Cψ + βfx (VD (X ′, θ′, t′))

} 1
ψ

otherwise

subject to

θ′ = y(X) +
(

1 + rb

)
θ − c− inDrM (X)M − inDIM

C = c1−δhδ

h = rent(t0)

M ′ = M − IM
t′ = t+ 1

(13)

With rM (.) equal to the real mortgage rate payment (bear in mind that the mortgage is a FRM
in nominal terms). IM is the mortgage principal payments. The dummy inD is equal to one when
the household is able to meet her mortgage payments, in formulas:

inD = 1

{(
y(X) +

(
1 + rb

)
θ − c− rM (X)M − IM

)
> 0

}

When inD is equal to zero, the household defaults. She loses her house, but she is also freed of
mortgage payments. In case of default, the value function is VD (., ., ., .), which solves:

VD (X, θ, t) = max
c,Sh

{
(1− β)Cψ + βf (VR (X ′, θ′, t′))

} 1
ψ

subject to

θ′ = y(X) +
(

1 + rb

)
θ − c− hp

h = rent(t0)Sh
hp = P (X,S ′h) erp(X)

C = c1−δhδ

t′ = t+ 1

(14)

Note that the household has to make rent payments hp each year. These payments are determined
by fluctuations in metropolitan-area prices and in the ratio of rents to house prices rp(.).

The value functions 9 (for the homeowner who is not hit by mobility shocks) and 12 (for the
homeowner who has moved) are modified along similar lines as 13. At the time of a home sale, the
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optimization problem becomes:

VS (X, θ,M, u, t) =


max

c,Sh,∆M

{
(1− β)Cψ + βfx (VM (X ′, θ′,M ′, S ′h, t

′))
} 1
ψ

if inD = 1

max
c

{
(1− β)Cψ + βfx (VD (X ′, θ′, t′))

} 1
ψ

otherwise

subject to

θ′ = y(X) +
(

1 + rb

)
θ − c +

+
(
P̂ (X) eu − P (X,Sh)

)
inD −∆MinD

C = c1−δhδ

h = rent(t0)Sh
S ′h = Sh

M ′ = M + ∆M

t′ = t+ 1

η ≥ M ′/P (X,Sh)

(15)

The household is selling her old home and paying off the old mortgage. Moreover, she is buying
the new home and optimally choosing the new mortgage amount, under the constraint that the
new loan to value ratio is below a threshold η. Thus, the household is optimally choosing current
numeraire consumption, the quality or size of the new house and the new amount of debt.

In the final period t0 + T , the household can be in one of three different states. Either she has
defaulted, or she is still holding her original home, or she has sold her original house and is holding
a new one. Terminal utilities for these three different cases are respectively:

VD (X, θ, t0 + T ) = λ [y(X) + (1 + rb(X))θ − sD]

Vown (X, θ,M, t0 + T ) =

λ
[
y(X) + (1 + rb(X))θ + P̂ (X)−M

]
, if inD,t0+T = 1

VD (X, θ, t0 + T ) , otherwise

VM (X, θ,M, Sh, t0 + T ) =

λ
[
y(X) + (1 + rb(X))θ + P̂ (X,Sh)−M

]
, if inD,t0+T = 1

VD (X, θ, t0 + T ) , otherwise

Where inD,T is a dummy set equal to one when time T wealth, net of mortgage obligations, is
greater than 0.
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9 Calibration

9.1 Life-cycle Stages, Starting Period and Planning Horizon

The model is solved for households of different ages. Household age affects the income process,
as I explain in detail in section 9.5. It also affects the propensity of the household to save and
accumulate non-housing wealth, which driven in the model by the bequest coefficient λ. The
calibration of λ is discussed in section 9.9.

Given the nature of the demographic data available, in the calibration I work with “age groups”
rather than specific ages. I take the perspective of homeowners that are in between 25 and 29 years
old, 35 and 39 years old and finally in between 45 and 49 years old.

The model is solved for each age group (or life-cycle stage) in each city (Los Angeles, San Diego
and San Francisco). I set the initial year t0 equal to 2001 and 2010. The decision to calibrate
the model to the data before and after the crisis is determined by evidence that idiosyncratic risk
increased during and after the 2007-2009 housing bust.

I set the planning horizon T equal to five years. Thus, the insurance premiums generated from
the model are for a five years insurance against idiosyncratic price shocks at the time of sale.

9.2 Household Preferences

Household preferences are determined by multiple coefficients in the model. Starting from the
consumption bundle over which preferences are computed, a first important parameter is δ. This is
the elasticity of substitution between consumption of the numeraire good and of housing services. I
set this coefficient equal to 0.2, a value that is consistent with evidence from the national income
and product accounts (NIPA) tables23, as discussed in detail by Piazzesi et al. (2007). The same
0.2 value for the elasticity of substitution is also used by Piazzesi et al. (2015) when modeling the
San Diego housing market.

A second important parameter is the one that drives time preferences, β. I set it equal to 0.98,
as is done by Piazzesi et al. (2007), Piazzesi and Schneider (2009a) and other financial economics
research working with data from the post-second world war period.

Key parameters are the coefficients of relative risk aversion and intertemporal elasticity of
substitution. In their review article, Piazzesi and Schneider (2016) propose a baseline framework
with additive preferences (power utility). In fact, Piazzesi et al. (2007) and Piazzesi et al. (2015)
use power utility with IES equal to 0.2, which matches empirical results in Hall (1988). Chen

23Available from the Bureau of Economic Analysis of the Department of Commerce at
http://www.bea.gov/national/nipaweb/DownSS2.asp
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et al. (2013) estimate relative risk aversion and IES (along with other parameters) for recursive
preferences using a structural model. They find γ to be close to 3 and σ close to 0.3 (however,
the estimated time preference coefficient is pretty large, leading to a β coefficient close to 0.91).
Empirical work by Attanasio and Weber (1995) based on micro data from the CEX panel reports
IES estimates24 close to 0.5. Their empirical evidence is in line with results from Hansen and
Singleton (1996), who point out that estimates in Hall (1988) that might be downward biased.
Mindful of this empirical evidence, Piazzesi and Schneider (2009a) use recursive preferences, with
relative risk aversion equal to 5 (consistent with previous papers) and IES equal to 0.5. In my
model, I use this last specification and then set γ = 5 and σ = 0.5.

The last preference parameter in the model is the “bequest” coefficient λ. The value of this
coefficient is calibrated using the data, once all the other parameters in the model are fixed. This
will be explained in detail in section 9.9.

9.3 Mobility Shocks

The probability of exogenous mobility shocks (πmob) is an important parameter in the quantitative
model, due to the properties of the term structure of housing risk described in section 7. However,
moving motives are hard to disentangle in the data, and exogenously determined mobility is
therefore hard to measure. Nonetheless, Census data can be used to get a sense of the likelihood of
moving for households of different ages.

Figure 18 shows time series for the fraction of US households who moved25 during each year from
2000 to 2013. Panel (a) show time series for homeowners, while panel (b) focuses on renters. The
figures report both the fraction of movers out of all households with household head 25 years old
or older as well as break downs in four age groups. These groups correspond to household heads
ages in between 25 and 29, 30 and 44, 45 and 64 and greater or equal than 65. While figure 18
reports statistics for the entire country, there is evidence that mobility rates for California match
the behavior of national averages. This can be seen for example from results reported by Ferreira
(2004), based on data from the Integrated Public Use Microdata Series (IPUMS).

Several interesting facts emerge from figure 18. First, homeowners are substantially less likely
to move than renters. The average fraction of movers varies between 6 % and 4.5 % for owners26,

24Vissing-Jorgensen and Attanasio (2003) find values of IES above 1 when focusing on stock-holders. However,
households with significant stock-holdings are a small fraction of US households.

25The data are collected from the Migration and Geographic Mobility tables provided by the US Census, which are
based on CPS, American Community Survey, Survey of Income and Program Partecipation and Decennial Census.
The tables can be downloaded at http://www.census.gov/topics/population/migration/data/tables.2014.html.

26Ihrke and Faber (2012) study in detail the 2010 decennial Census survey and focus on five year mover rates.
They find that 22.20% of households living in owner occupied housing moved between 2005 and 2010, which is in
line with a 5% annual moving rate.
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while it is approximately 25 % for renters. Moreover, the likelihood of moving is very different
across age groups, and steeply decreasing in household age. In 2001, 16% of the homeowners in the
youngest group (25 to 29) moved. This fraction decreases after the bust, but is still as high as 12 %
in 2013. On the other hand, only 2% of the households from the eldest group (age greater or equal
than 65) moved in each year. Similarly, more than 30 % of renters in the youngest group move
each year, while the same statistic is in between 10 % and 14 % for the oldest households.

Differences across household groups can be explained by several factors. Younger households are
more likely to reorganize their portfolio to increase their consumption of housing services (see for
example the discussion and results in Campbell and Cocco (2007)). However, young households are
also more subject to several sources of exogenous shocks: relocation due to work or family reasons
as well as changes in household composition27.

Due to the differences in mobility across age groups, I use multiple calibrated values of πmob both
across and within age groups. I first set πmob = 0 for all age groups. In this case, the household is
moving only when she considers it ex-ante optimal. I then consider an “intermediate” value of the
probability of mobility of shocks, consistent with observed mobility for homeowners and a “high”
value of the probability of mobility shocks, closer to the fraction of movers for renters. Thus, for
households with age in between 25 and 29, I consider values of πmob equal to 12% and 30%. I then
set πmob equal to 10% and 25% for households with age in between 35 and 39, and equal to 5% and
20 % for households with age in between 45 and 49.
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Figure 18: Fraction of households belonging to different age groups who moved over the following
year. Annual data from 2000 to 2013. Based on the Migration and Geographic Mobility tables
from the US Census.

27According to data from the National Center for Health Statistics (NCHS)28, 20% of first time marriages in the
US results in divorce or separation within 5 years. The legal procedures might lead to the sale of commonly owned
assets, such as the family house.
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9.4 Household Income: Dynamics

Empirical studies in labor and macro economics decompose US households labor income in three
components (see Meghir and Pistaferri (2011) for a review of the related literature). The first
component is correlated with observable household characteristics. The second one is an idiosyncratic
transitory shock, capturing short lived individual income fluctuations. Finally, the last component
is a persistent idiosyncratic shock. In formulas, labor income for household i in year t can be
written as:

Yi,t = Ỹi,tSy (i, t) (16)

The variable Ỹt is stochastic, while Sy (i, t) is a scaling factor that adjusts income level according
to observable household characteristics at time t. I discuss the calibration of this scaling factor in
detail in the next section. For now, I want to focus on the idiosyncratic component of income. The
log of Ỹt is ỹi,t+1 and follows the process:

ỹi,t+1 = ρyi,t+1 + σuui,t+1 (17)

ρyi,t+1 = φyρ
y
i,t + σηηi,t+1

The shock ρyi,t+1 is persistent, with autoregressive coefficient φy, while ui,t+1 is transitory. Both
ui,t+1 and ηi,t+1 are i.i.d. error terms. Empirical researchers working on panels of US households
find that the persistent shock is either a unit root process (as in Meghir and Pistaferri (2004)), or a
very slowly mean reverting shock (in Storesletten et al. (2004)). Under the unit root specification,
Saporta-Eksten (2014) finds σ2

η to be equal to 0.0225, close to the results in Meghir and Pistaferri
(2004). Storesletten et al. (2004) and Cocco (2005b) estimate similar values using a mean reverting
persistent process. I therefore set σ2

η at 0.02 on annual basis, consistently with the literature. I
then set φy equal to 0.98 on an annual basis, which is close to the estimates in Storesletten et al.
(2004). Since in my exercise I mostly care about changes in household welfare over an horizon of
multiple years, I omit from the model the transitory shock and set σu equal to zero.

9.5 Household Income: Life-cycle Component

In addition to the dynamics of idiosyncratic income shocks, the other ingredient of the household
labor income process is the scaling factor Sy (i, t). Evidence from the labor economics literature
suggests that the scaling factor is highly dependent on household age, or life-cycle stage, and
household education.

I estimate the scaling factor using data from the Current Population Survey (CPS) for California.
The survey provides age and education of the household head along with household income. Ideally,
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I would like to use in my estimation data on household labor income net of taxes. As a first step,
I compute labor income gross of taxes for each household in the survey by subtracting interest
income and other non labor income from total earnings. I then get total taxes by adding up state
and federal tax payments minus household tax credit. I then split households in 11 groups based
on age of the household head. These groups respectively correspond to ages from 25 to 29, 30 to
34, 35 to 39, 40 to 44, 45 to 49, 50 to 54, 55 to 59, 60 to 64, 65 to 69, 70 to 74 and greater or
equal than 75 years. I can further split each one of these groups based on the education attainment
of the household head: high school, some college education and bachelor or higher. To estimate
life-cycle component of labor income, I run the following panel regressions29:

log(Yi) = αt + BageI(agei) + vi (18)

log(Yi) = αt + Bedu,ageI(edui, agei) + ei

The dependent variable is annual log real labor income, the coefficient αt is an year fixed effect,
I(agei) is a vector of dummy variables selecting the different age groups outlined above, while the
vector I(edui, agei) selects educational attainment groups within each age group.

Using parameter estimates from the regressions in 18, I build estimates of the life-cycle component
of income for the entire population and for subgroups based on educational attainment. These
are reported respectively in the left and right hand side panels of figure 19. In particular, the left

29For each year, the survey provides sampling weights for the households in the cross-section. I call these weights
w̃i,t. I re-normalize the weights for each year t as follows:

wi,t = w̃i,t∑
i w̃i,t

I then collect the wi,t in the matrix W and estimate the model above by weighted least squares with weights W :

Γ̂ = (X ′WX)−1 (X ′WY )

Where Γ̂ includes the estimates of year fixed effects α̂1, ..., α̂T and the vector of coefficients for the X variables,
B̂edu,age, while Z includes both the covariates X and dummies for the year fixed effects. Standard errors are obtained
using a subsampling algorithm. For each draw, I normalize the weights within the draw for each year so that they
sum up to one. I then estimate Γ̂k for the kth draw. I can then compute the standard errors of estimates as:

SE (αt) =

√√√√ 1
K

K∑
k=1

(
α̂k

t − α̂t

)2

SE (βl) =

√√√√ 1
K

K∑
k=1

(
β̂l

t − β̂t

)2

For each year fixed effects and each element l of β. I set K = 1000 draws.
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hand side panel shows average log difference between the income of the group with age between 25
and 29 years old all the other “older” groups. On the right hand side, the baseline is the group
with age between 25 and 29 years old and high school education. The curves reported in figure
19 are also called “Mincer curves” in the literature. The figure clearly shows how average income
fluctuates over household life, increasing with seniority and then falling sharply once retirement
age is reached. The pattern is similar across all education subgroups.
The Mincer curve used in the model is calibrated using estimates based on all households (the

left hand side panel of 19). For each age group a, I calculate average log income growth, as the
difference in log income between contiguous groups, a and a+ 1. Then, I calculate annual average
income growth gay by dividing average income growth by five. This is due to the fact that age
groups span five years. The scaling factor in the the model calibrated to age group a is:

Sy (t) = Yt0 exp
(
gay (t− t0)

)

Where t ∈ {t0, t0 + 1, ..., T − 1} is the time index keeping track of the period in the model. T is
the planning horizon, which is equal to five years.
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Figure 19: Mincer curves for different education groups in California. The curves are reported in
terms of log differences with respect to the income of a household whose head has only attained
high school education and age between 22 and 24. Estimation is based on net of taxes labor income
from the Current Population Survey over the period between 1995 and 2013. The dotted lines
correspond to 95% confidence intervals.

9.6 Interest Rates

The model includes two exogenously set interest rates: the rate earned on the bank account and the
mortgage rate. I fix the real bank account rate to be constant and equal to 2% on an annual basis.
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This first asset is risk free in real terms. The rate is chosen to roughly match the time preference
coefficient β, which is equal to 0.98. Also, with average inflation over the period between January
1990 and December 2013 equal to approximately 2.5%, the bank account offers an average nominal
rate equal to 4.5%. This is in line with the average yield on one year Treasuries over the same
sample period.

The nominal mortgage rate is set to match the rate on 30 year US fixed rate mortgages at the
time the mortgage is issued. This time either t0 for the initial house or the period τ when the
new house is bought. In the model, I obtain the nominal rate by summing the real mortgage rate
r30y,M and annual inflation inf 1y. Since the mortgage contract is a standard nominal FRM, the
real mortgage rate will fluctuate with changes in inflation. For example, in year t > t0, the real
mortgage rate paid by a homeowner who has not yet sold her house is computed as the real rate set
at time t0 minus the change in inflation: r30y,M

t0 −
(
inf 1y

t − inf 1y
t0

)
. After the homeowner sells her

house, the real rate will be computed in the same way, but by taking as base year the sale period τ .

9.7 Dynamics of Exogenous States and Idiosyncratic Housing Shocks

The dynamics of the state vector X are modeled using a vector autoregression (VAR):

Xt+h = Φ0 + Φ1Xt + ΣeXt+h (19)

The horizon h is equal to 3 months. The state vector contains five variables:

Xt = [log(P loc,r
t ), log(RP loc

t ), inf 1y
t , r

30y,M
t , ρyt ]′

The first four are the elements of Zt from equation 4. These are respectively, log real price index
and log rent price index for the metropolitan area under analysis (either Los Angeles, San Diego
or San Francisco), year on year inflation and real rate on a 30 year fixed rate mortgage. The last
element, ρyt , is the persistent shock to household income in equation 17. Parameter estimates for
the dynamics of the first four variables are available from section . The dynamics of ρy are not
estimated, but rather calibrated as explained in section 9.4. I assume that idiosyncratic income
shocks have zero correlation with the other state variables in the model, so that I can write the
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matrices containing VAR coefficients:

Φ0 =
 Γ0

γy


Φ1 =

 I4 + Γ1 03×1

01×3 φy


ΣΣ′ =

 ΩΩ′ 03×1

01×3 σ2
η


I4 is a four by four identity matrix and 03×1 and 03×1 are respectively a three element column

and row vector of zeros. As already discussed in section 9.4, I set φy = 0.995 (to match the value of
0.98 on annual horizon) and σ2

η = 0.005 (to match the value of 0.02 on an annual horizon). I set
the intercept of the income shock γy = −1

2
σ2
η

1−φ2
y
, so that the unconditional mean of exp(ρy) is equal

to one.

The last remaining stochastic variable in the model is the idiosyncratic house price shock.
Since idiosyncratic shocks are leptokurtotic (see section 3), I fit their distribution in each year
and metropolitan area using a mixture of Gaussians with three components30. In formulas, the
distribution of idiosyncratic housing shocks is modeled as:

εfwd ∼
3∑

k=1
pkN (µk, σk) (20)

Tables 13, 14 and 15 in appendix A show that the mixture of Gaussians approximation closely
matches centered second, third and fourth moments of house-specific shocks from the data.

In the model, the distribution of idiosyncratic shocks does not change over time. It is calibrated
to match empirical estimates of house-specific shocks from the data in year t0. This simplification
relies on the notion that it would be hard for both households and econometricians to foresee
changes in the amount of idiosyncratic risk or to get a sense of its future dynamics. Even from the
perspective of the researcher, there is not enough history in the data to build a stochastic model
for the moments of the shocks distribution.

9.8 Values of State Variables in 2001 and 2010

The model is solved both for the initial year t0 equal to 2001 and for t0 equal to 2010. The house
price is calibrated to match the median house price out of all sales taking place at time t0 in each

30Mixture weights, as well as the mean and standard deviation of each component are estimated using an
expectation maximization algorithm. For a detailed description of the methodology see Dempster et al. (1977).
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metropolitan area. Household income is computed in two steps. First I estimate average income for
25 to 29 years old households in year t0 from the California CPS. I then apply the Mincer curves
based on estimates from equation 18 to obtain income for households between 35 and 39 years old
and between 45 and 49 years old. I further scale the income level for the city of San Francisco,
to match data from the American Community Survey (ACS). The survey shows that the average
income level in the San Francisco bay area is substantially higher than in the rest of California.

Table 10, shows initial real house prices (in terms of December 2000 dollars) and income level
for household heads with age between 25 and 29 years, respectively for the 2001 and the 2010
calibration. Estimates are reported for each one of the three metropolitan areas analyzed in the my
empirical study. The table also includes the year t0 average values of the other exogenous state
variables included in vector X. These are the annual rent-price ratio, inflation, and the real rate on
30 year fixed rate mortgages in the US. I use the rent-price ratio and the price level in each city to
compute monthly rent expense. As already explained, I will take this rent value as the value of
monthly housing services extracted from the house. Housing services are then kept fixed over the
entire planning horizon T .

Los Angeles
Price Level Income Level (25-29) RP (% annual) Rent (monthly) inf 1y r30y,M ρy

2001 $ 230,896 $ 43,378 5.11 % $ 983 2.67 % 4.39 % 0
2010 $ 295,706 $ 49,183 5.39 % $ 1,382 0.91 % 3.24 % 0

San Diego
Price Level Income Level (25-29) RP (% annual) Rent (monthly) inf 1y r30y,M ρy

2001 $ 264,279 $ 43,378 5.48 % $ 1,207 2.67 % 4.39 % 0
2010 $ 292,657 $ 49,183 5.87 % $ 1,432 0.91 % 3.24 % 0

San Francisco
Price Level Income Level (25-29) RP (% annual) Rent (monthly) inf 1y r30y,M ρy

2001 $ 470,502 $ 78,080 4.70 % $ 1,843 2.67 % 4.39 % 0
2010 $ 459,903 $ 88,529 4.42 % $ 1,694 0.91 % 3.24 % 0

Table 10: For each metropolitan area, calibration of price level, income level (both in terms of
January 2000 dollars) and initial values of other exogenous states.

9.9 Bequest Coefficient and Non-Housing Wealth

I use the bequest coefficient λ to obtain a realistic of growth path for non-housing wealth over
time. In order to have a comparison to the US data, I collect information from the Survey of
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Consumer Finances31 (SCF) for years 1998, 2001, 2004, 2007, 2010 and 2013. Using the survey, I
am able to estimate average financial (non-housing) wealth in each year and for households who
are homeowners and whose household head has age from 25 to 29, 30 to 34, 35 to 39, 40 to 44, 45
to 49, 50 to 54, 55 to 59, 60 to 64, 65 to 69, 70 to 74 and greater or equal than 75. Estimates are
reported in figure 20. While wealth differences across different age groups change slightly across
years, there is a common pattern. US household accumulated non-housing wealth in the earlier
stages of their life-cycle.
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Figure 20: Average financial wealth for home-owning households by age group, based on
the annual Survey of Consumer Finances for 1998, 2001, 2004, 2007, 2010 and 2013. All
figures are in terms of January 2000 dollars. Standard errors take into account both im-
putation and sampling uncertainty and calculated following the methodology described in
https://www.federalreserve.gov/Standard_Error_Documentation.pdf.

The first column of table 11 shows the increase in average non-housing wealth in between
contiguous age groups. The difference between age groups is 5 years and matches the planning
horizon in the model. Thus, non-housing wealth growth from the model calibrated to different age
groups should match the corresponding figures from column one of table 11. I calibrate the model
by setting the starting year equal to 2001 and the probability of exogenous mobility shocks πmob
equal to zero.

I measure wealth growth along a specific path of realizations of the exogenous state vector X.
In particular, I assume that the elements of X take in each year values equal to their conditional
expectation in 2001 based on the VAR in equation 19. In formulas, for each τ ∈ {t0 + 1, ..., t0 + T},
Xτ = E [Xτ |Xt0 ], where expectations are based on the model in equation 19.

31Available for download at https://www.federalreserve.gov/econresdata/scf/scfindex.htm
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In the model, I set initial non-housing wealth equal to $ 25,000 for 25-29 years old, $ 65,000 for
35-39 years old and $ 125,000 for 45-49 years old, matching average wealth for these groups across
the eight SCF surveys that I use in my empirical calculations32. The second, third and fourth
column of table 11 report non-housing wealth increases from the calibrated model respectively for
Los Angeles, San Diego and San Francisco. Wealth accumulation from the model matches the data
closely.

∆θ% SCF ∆θ% Model 2001 LA (λ) ∆θ% Model 2001 SD (λ) ∆θ% Model 2001 SF (λ)
25− 29 93.72% 93.68% (0.70) 78.66% (0.64) 78.66% (0.64)
30− 34 53.28% - - -
35− 39 56.80% 55.30% (0.33) 58.87% (0.37) 58.87% (0.37)
40− 44 23.15% - - -
45− 49 27.53% 24.38 % (0.20) 22.55% (0.32) 22.55% (0.32)
50− 54 14.15% - - -
55− 59 11.77% - - -
60− 64 -2.90% - - -
65− 69 -7.08% - - -
70− 74 -22.50% - - -

Table 11: Increase in average non-housing wealth with respect to previous age group: Survey of
Consumer Finances and model calibrated to data from Los Angeles, San Diego and San Francisco
and starting year 2001. The last column shows the calibrated values of λ for households with initial
age respectively between 25-29, 35-39 and 45-49. In the model, initial wealth is set respectively to
$ 25,000 for 25-29, $ 65,000 for 35-39, and $ 125,000 for 45-49.

10 Quantitative Exercise

The optimization problem is solved numerically by backward induction, starting from the final
period t0 + T . Dynamics of the exogenous state vector X are modeled using the method developed
by Gospodinov and Lkhagvasuren (2013). This methodology approximates the VAR dynamics
using a Markov chain with a discrete number of states. Each grid of nodes corresponds to different
realizations of the random vector, and the methodology provides values of Markov transition
probabilities across nodes (for a detailed discussion, see appendix E). The results reported in this
section are based on a calibration where the number of discrete Markov states is equal to 1,024. In
each node, I compute continuation utilities by using conditional transition probabilities over the
future dynamics of the random state vector X and (when needed) over the distribution idiosyncratic

32An issue with SCF data is that the survey overweights wealthy households in its sample, as is for instance argued
at https://www.federalreserve.gov/econresdata/scf/files/isi2007.pdf. Thus, the non-housing wealth/age relationship
presented in figure 20 might overestimate the increase in wealth over the lifecycle, especially for the later stages of
life (households with head older than 55 years). In this sense, households propensity to save in my calibration might
be overstated. Nonetheless, while a value of λ smaller than one is needed to prevent the household from consuming
all of her wealth over the planning horizon, the nature of the results in the following sections does not crucially
depend on the choice of λ.
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housing shocks. As already explained in section 9.7, the distribution of the idiosyncratic housing
shock follows a mixture of Gaussians. Stochastic integration over each component is done with
quadrature, using methodology and code from Judd et al. (2011).

The model is solved separately for each metropolitan area (Los Angeles, San Diego and San
Francisco) and for households belonging to different age groups (25 to 29 years old, 35 to 39 years
old and 45 to 49 years old). To account for the increase in idiosyncratic risk taking place during and
after the crisis, I run two different versions of the model, one calibrated so that the initial period t0
corresponds to year 2001, and one in which t0 is 2010. As explained in section 9.3, I run the model
multiple times with different calibrated values of the annual probability of the exogenous mobility
shocks. Section 9 already covered in detail the calibration of parameters, stochastic variables and
other features of the model. Nonetheless, the values of all the main parameters are once again
summarized below in table 12.

25-29 yrs 35-39 yrs 45-49 yrs

Preferences

γ 5.00 5.00 5.00
σ 0.50 0.50 0.50
β 0.98 0.98 0.98
δ 0.20 0.20 0.20
λ 0.64 0.33 0.20

Horizon T 5 yrs 5 yrs 5 yrs

Bank Rate rb 2% 2% 2%

Mobility πmob 0%,12%,30% 0%,10%,25% 0%,5%,20%

Table 12: Summary of calibrated values for the main parameters in the model.

I use the model to assess the welfare cost of idiosyncratic risk. The calculation is done in two
steps. First I evaluate the percentage decrease in the present value of expected utility in period t0,
due to idiosyncratic shocks. The percentage cost is then converted into the annual payment that
the household would be willing to make in order to insure against house-specific risk. Welfare costs
and insurance premiums are computed for households with different levels of initial non-housing
wealth θ. Intuitively, homeowners who have greater financial wealth can use it to absorb the wealth
shocks generated by idiosyncratic housing risk. This effect is particularly important when the
household is facing exogenous mobility shocks, and is therefore forced to sell.
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10.1 Welfare Cost: Baseline Model

Results from the quantitative model show that household are willing to pay high premiums to
insure against idiosyncratic risk are high. In the presence of exogenous mobility shocks, premiums
are larger for households with lower initial non-housing wealth. In this section I focus on the
baseline framework, where there is no mortgage and the household owns the entire capital invested
in the house. I first discuss results for the city of Los Angeles, for households in the three different
age groups (25 to 29, 35 to 39 and the 45 to 49 years old). Results for San Diego and San Francisco
are qualitatively similar and are reviewed at the end of the section.

Figure 21 reports the costs of idiosyncratic risk for the youngest age group (25 to 29 years old)
in Los Angeles, when the initial time period set to 2001. Welfare costs are represented both in
terms of the percentage decrease in the present value of expected utility and in terms of the annual
insurance premium paid to remove idiosyncratic risk at the time of a house sale. The model is
solved for households with different initial amounts of non-housing wealth θ. The figures show
results for the range of values of θ in between 0 and $ 300,000. For households not exposed to
exogenous mobility shocks (πmob = 0%), the percentage welfare cost is flat across different values of
non-housing wealth. Since value functions are increasing in initial wealth, this leads to insurance
premiums that are increasing with θ. Households with zero financial wealth would pay slightly
more than $ 400 a year to insure, while households with $ 300,000 in the bank account would pay
$ 700. This result is driven by the fact that young households in this calibration are highly unlikely
to endogenously sell their house. When exogenous mobility shocks are included, the percentage
welfare cost of idiosyncratic risk becomes decreasing in non-housing wealth. For πmob = 12%, which
is close to annual mobility of young homeowners in Census data, the insurance premium is close to
$ 800 dollars across all levels of non-housing wealth. I have shown in table 10 that monthly rent
in this calibration is slightly smaller than $ 1,000, so this payments in substantial. When I set
πmob = 30%, consistent with annual mobility for young renters in the data, the annual premium is
$ 1,100 dollars for household with no financial wealth. The premium then decreases to $ 850 for
the richest households. Nonetheless, households with $ 50,000 in their bank account (which in the
data is a relative high amount of non-financial wealth for the youngest group) would still pay $
1,000 to insure against idiosyncratic risk.

Results for the youngest group in Los Angeles and initial year 2010 are reported in figure 22.
Patterns are similar to the ones in figure 21. However, we can see that the poor households are now
willing to pay higher insurance premiums even when there are no exogenous mobility shocks. This
is driven by two factors. The first one is that in 2010 the median house price is substantially larger
than in 2001, and so are housing services. The increase in the real value of housing is actually
larger than the increase in real income. Thus, the poor households are more willing to sell their
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Figure 21: Cost of idiosyncratic risk for 25 to 29 years old households in Los Angeles in 2001.
The left panel reports the value of costidio as a function of initial non housing wealth θ. Each line
corresponds to a different level of the probability of exogneous mobility shocks πmob. The right
panel plots the value of the equivalent annual payment ∆Y .

house in order to downgrade housing services. However, in doing so they face idiosyncratic risk.
This is where the second factor comes into play. Idiosyncratic risk has increased during the housing
crisis. Increasing the likelihood of exogenous mobility shocks leads to higher insurance premiums,
as already reported for the 2001 calibration. For πmob = 30%, all households with non-housing
wealth smaller than $ 45,000 pay premiums larger than one month of rent.
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Figure 22: Cost of idiosyncratic risk for 25 to 29 years old households in Los Angeles in 2001.
The left panel reports the value of costidio as a function of initial non housing wealth θ. Each line
corresponds to a different level of the probability of exogneous mobility shocks πmob. The right
panel plots the value of the equivalent annual payment ∆Y .

Figures and show welfare costs respectively for households of age in between 35 and 39 years
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old and in between 45 and 49 years old. The initial year is set to 2001. These households have
lower expected income growth than the youngest group, but also much higher starting income:
respectively $ 58,750 and $ 62,100 with respect to the $ 43,400 of households with age in between
25 and 29. The older households also have a high propensity to accumulate wealth, according to the
data used in the calibration of λ from section 9.9. These households strive for higher consumption
and can save enough to buy a larger house. Thus, these households are likely to upgrade their
housing services.

Households with low initial non-housing wealth are now always the most affected by idiosyncratic
risk. Figures and show that even when πmob = 0, the percentage welfare cost of idiosyncratic risk
is decreasing in θ. For πmob = 0, poor households are therefore willing to pay larger insurance
premiums than households with same non-housing wealth, but age in between 25 and 29 years old.

Introducing mobility shocks leads to effects similar to the ones already discussed for the youngest
households. For homeowner of age in between 35 and 39 years I consider values of πmob of 10%
and 25%, close respectively to annual mobility for homeowners and renters in the same age group.
Exogenous mobility shocks lead to higher welfare decreases and insurance premiums, especially for
households with non-housing wealth below $ 100,000. For households with age between 45 and
49, and I set πmob equal respectively to 5% and 20%. For this last age group, once θ is fixed, the
increase in insurance premiums determined by exogenous mobility shocks is smaller than for the
younger groups, even when considering the poorer households. This is largely due to the higher
income of 45 to 49 years old households.
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Figure 23: Cost of idiosyncratic risk for 35 to 39 years old households in Los Angeles in 2010.
The left panel reports the value of costidio as a function of initial non housing wealth θ. Each line
corresponds to a different level of the probability of exogneous mobility shocks πmob. The right
panel plots the value of the equivalent annual payment ∆Y .
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Figure 24: Cost of idiosyncratic risk for 45 to 49 years old households in Los Angeles in 2001.
The left panel reports the value of costidio as a function of initial non housing wealth θ. Each line
corresponds to a different level of the probability of exogneous mobility shocks πmob. The right
panel plots the value of the equivalent annual payment ∆Y .

11 Concluding Remarks and Future Work

The analysis in this paper provides three main contributions. The first one consists of the data
and methodology used to measure idiosyncratic housing risk. I rely on a novel dataset, which
includes remodeling expenses, as well as methodology from the private equity literature to estimate
house-specific risk in the metropolitan areas of Los Angeles, San Diego and San Francisco. The
second contribution, and key empirical result, is the finding that idiosyncratic risk does not increase
with holding period. An implication of this result is that the relative importance of the house-
specific component of house price risk decreases as a home holding period becomes longer. The last
contribution is the quantitative assessment of the welfare cost of idiosyncratic house risk. I build a
quantitative portfolio model where I take the perspective of a homeowner who may sell her house
due to an endogenously optimal decision or an exogenously determined mobility shock. I find that
homeowners would be willing to pay sizable premiums in order to insure against idiosyncratic risk.
Premiums are substantially higher for households that are more likely to face exogenous mobility.
Idiosyncratic housing risk also has its greatest impact on homeowners that have little non-housing
wealth. The largest premiums are then paid by young households who have lower income, are less
wealthy and more likely to be affected by exogenous mobility shocks.

Several lines of future work can spawn from this project. First, it is relevant to explore how the
young households choice between owning and renting is affected by idiosyncratic risk. In fact, due
to idiosyncratic risk, young families may find it optimal to postpone ownership to a time when
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they have built up more wealth and are less likely to face mobility shocks.

A second direction of future work is linking the magnitude of idiosyncratic risk and its term
structure properties to the micro-structure of housing markets. The flat term structure of house-
specific risk may be determined by quality shocks with particular properties. However, an alternative
explanation is that idiosyncratic risk is driven by price risk at the time of sale. We know from
previous literature that housing markets are illiquid and segmented. Search behavior, information
asymmetries and bargaining are key determinants of price formation, as shown by Piazzesi and
Schneider (2009b), Genesove and Han (2012), Piazzesi et al. (2014), Kurlat and Stroebel (2015) and
several other studies reviewed by Han and Strange (2014). Thus, a large fraction of idiosyncratic
risk may be driven by heterogeneity in bargaining power and search costs across market participants
at the time of sale. Further empirical and modeling work could be pursued by merging the dataset
used in this paper with information on home price listings. This information should include
changes in listed prices after the first listing, as well as the time spent by a property on the market
before sale. The empirical study would give some insights into the bargaining power of sellers
and buyers. The housing literature has already used listings data to explore market segmentation
within metropolitan areas, as is done for example by Piazzesi et al. (2014), who work with data
from the metropolitan area of San Francisco.

In the absence of listings data, further work could be based on methodology from industrial
organization research. There is a literature that has developed methods to extract information
on heterogeneous frictions faced by buyers using price dispersion in markets for homogeneous
non-durable goods. Hong and Shum (2006) focus on an environment with one sided search and,
given assumptions on the form of search and market characteristics, can infer the distribution of
search costs. Similar frameworks can be found in Moraga-Gonzalez and Wildenbeest (2008) and
Moraga-Gonzalez et al. (2012). Note that since this literature is concerned with non-durable goods
markets, buyers are the only side facing search costs. Sellers only bear the marginal cost of providing
the good, which is assumed to be either homogeneous across sellers or exogenously determined.
Thus, an issue with implementing these frameworks in housing is that there is search both on the
home seller and the home buyer side. Since heterogeneous frictions affect both counter-parties, it is
likely that the distribution of prices would not be enough to infer properties of search costs.

Finally, an interesting topic for future research are the benefits of more efficient and liquid
housing markets. Under the assumption that idiosyncratic risk is mostly driven by housing market
micro-structure, the insurance premiums generated by my model measure the cost of market
inefficiency from the perspective of homeowners. A regulator might be willing to devote resources
to improve market efficiency, for example by supporting centralized trading and dealers acting as
intermediaries in residential real estate markets.
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A Additional Tables

Data Simulation
Los Angeles San Diego San Francisco Los Angeles San Diego San Francisco

2001 0.13 0.10 0.14 0.13 0.10 0.14
2002 0.13 0.10 0.12 0.13 0.10 0.12
2003 0.14 0.10 0.13 0.14 0.10 0.13
2004 0.13 0.11 0.13 0.13 0.11 0.13
2005 0.13 0.10 0.13 0.13 0.10 0.13
2006 0.13 0.11 0.13 0.13 0.11 0.13
2007 0.15 0.11 0.15 0.15 0.11 0.15
2008 0.16 0.12 0.16 0.16 0.12 0.16
2009 0.16 0.11 0.16 0.16 0.11 0.16
2010 0.16 0.12 0.17 0.16 0.12 0.17
2011 0.17 0.12 0.17 0.17 0.12 0.17
2012 0.17 0.12 0.18 0.17 0.12 0.18

Table 13: Standard deviation of residuals by year and city. The first three columns refer to the
estimated residuals from regression equation 2, the columns from the fourth to the sixth refer to
residuals simulated from the mixture of Gaussians in 20.

Data Simulation
Los Angeles San Diego San Francisco Los Angeles San Diego San Francisco

2001 −0.18 0.40 0.06 −0.17 0.35 0.03
2002 1.02 0.35 0.44 0.78 0.32 −0.03
2003 1.34 0.55 0.45 1.38 0.55 0.25
2004 2.15 0.52 0.94 2.23 0.46 0.81
2005 2.60 0.88 0.67 2.69 0.78 0.59
2006 3.48 0.41 1.02 3.33 0.41 0.95
2007 0.88 0.21 0.26 0.91 0.21 0.33
2008 −0.05 −0.20 −0.29 −0.05 −0.20 −0.26
2009 −0.23 −0.20 −0.43 −0.27 −0.20 −0.41
2010 0.13 −0.10 −0.09 0.04 −0.11 −0.08
2011 0.33 −0.01 −0.00 0.27 −0.01 −0.03
2012 0.09 −0.04 −0.18 0.08 −0.05 −0.15

Table 14: Skewness of residuals by year and city. The first three columns refer to the estimated
residuals from regression equation 2, the columns from the fourth to the sixth refer to residuals
simulated from the mixture of Gaussians in 20.
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Data Simulation
Los Angeles San Diego San Francisco Los Angeles San Diego San Francisco

2001 5.24 3.94 6.95 5.24 3.79 6.61
2002 32.31 4.30 12.65 28.00 4.32 11.19
2003 26.09 7.53 10.33 24.83 7.26 10.16
2004 63.62 8.41 13.51 60.76 8.20 12.94
2005 78.81 10.53 8.82 74.58 10.38 8.46
2006 90.80 3.62 10.05 85.93 3.70 9.73
2007 9.71 3.44 4.96 9.30 3.50 5.02
2008 3.66 3.27 4.28 3.62 3.22 4.24
2009 4.69 3.13 5.10 4.63 3.16 5.27
2010 5.06 3.63 4.76 4.31 3.62 4.80
2011 5.35 2.97 4.38 5.25 2.96 4.26
2012 4.30 2.98 4.04 4.30 3.00 3.97

Table 15: Kurtosis of residuals by year and city. The first three columns refer to the estimated
residuals from regression equation 2, the columns from the fourth to the sixth refer to residuals
simulated from the mixture of Gaussians in 20.

B Additional Figures
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Figure B.25: Fraction of land value out of total house value. I report time series for the metropolitan
areas of Los Angeles, San Diego, San Francisco (which is computed as the average between the
fraction for the metropolitan area of San Francisco and San Jose), as well as for the average fraction
across all US metropolitan areas. The sample is quarterly, from 1990 Q1 to 2012 Q4.
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Figure B.26: Fraction of resales carried out by agents likely to be professional investors in each
year between 2001 and 2012. Panel (a) shows the fraction of sales by agents that were involved in
at least two other house transactions in the two previous years. Panel (b) shows the fraction of
sales by agent who are legal entities.
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Figure B.27: Distribution of residuals from equation 2, years from 2001 to 2012, San Diego.
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Figure B.28: Distribution of residuals from equation 2, years from 2001 to 2012, San Francisco.
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Figure B.29: Standard deviation of residuals from equation 2, respectively for short sales and
normal sales, city by city; years from 2001 to 2012.
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Figure B.30: Standard deviation of residuals from equation 2, respectively for houses that were and
were not remodeled, city by city; years from 2001 to 2012.
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Figure B.31: Standard deviation of residuals from equation 2, respectively for houses that were
bought at a price above and below the median house price in their city in the year they were
bought, city by city; years from 2001 to 2012.
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C Data Methodology

C.1 CoreLogic Deed Data

In this subsection, I detail the steps taken to organize the raw transaction data obtained from
CoreLogic deed files from California, which are used to analyze the transactions returns in our
results.

The first important thing to consider is the fact that multi-APN (Assessor Parcel Number) group
sales hold an observation per APN. Since CoreLogic did not provide a multi-APN identifier, I
classify as group sales whenever two or more data entries display the same record date, sale date,
owner and seller names, document type, sale amount, mortgage amount and transaction type
(whether it is resale or construction, excluding refinances) and more than one APN 33. Moreover, I
also classify as group sales if the data entries display a small time window of at least 5 days (and
all the other information identical). Any identified group sale is removed from the exercise.

Secondly, I treat (and remove) duplicated observations. We developed a variable that flags
potential duplicated observations in sample. Below I describe its groups:

• “Dup_flag” = -3 for true duplicates, which have all fields except for the same

• “Dup_flag” = -2 for almost true duplicates, which have same property id, date, legal
description, buyer, seller, price, tax, document type, deed type, transfer type

• “Dup_flag” = -1 for properties with no APN

• “Dup_flag” = 0 for non-duplicates

• “Dup_flag” = 1: A transaction (possibly with a loan) and then one or multiple refinances

• “Dup_flag” = 2: A multiple refinance

• “Dup_flag” = 3: Simultaneous transfers, all transactions (before multiple buyers and sellers)

• “Dup_flag” = 4: Simultaneous transfers, not all transactions (before multiple buyers and
sellers)

• “Dup_flag” = 5: Multiple buyers, same seller (some can be refinances, subdivision or
construction))

33If the APN remains the same, I classify the observations as duplicated, and therefore I keep only one observation
as a transaction record.
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• “Dup_flag” = 6: Multiple sellers, same buyer (some can be refinances, subdivision or
construction))

• “Dup_flag” = 7: Chain of sales, transfers, and refinances, all sales same price

• “Dup_flag” = 8: Chain of sales, transfers, and refinances, 1 true sale

• “Dup_flag” = 9: Set of Sales With Same Buyer and Seller

• “Dup_flag” = 10: Pure Middle Man (Pair)

• “Dup_flag” = 11: Other (includes chain of sales, transfers, and refinances with multiple true
sales at different prices)

Whenever the flag indicates true or almost true duplicates, I keep only one observation per
record. For all the other cases, I exclude potential duplicates (and cases when the APN is not
available). We also remove refinances and equity transactions, and whether the transaction is part
of a foreclosure process (notice of default for example).

For transfers (including non-arms length transactions, nominal transfers), I keep such observations
in order to properly identify whether a return was generated over arms-length transactions or not.
After comparing repeated sales, I remove any returns involving transfers.

Lastly, I opted to remove condos as they are not properly identified within a specific APN in a
considerable part of the sample. Our sample concentrates specifically on single-family residences.

C.2 Merging Deed and Tax Assessment Data

We capture house specific information from tax assessment files provided by CoreLogic. We match
tax files between housing units using the unformatted version of the APN (as provided by the
county/city clerk) and the FIPS county/state code. Tax assessment files are available as of 2014
for the majority of the data.

C.3 Merging Corelogic and Buildzoom

At this stage, I match the data between CoreLogic and Buildzoom by comparing address location
under the same city. Due to potential misreporting/misspelling of city names, I first geocode the
lat/lon coordinates using a GIS software (ArcGIS, provided by Stanford University) and collect the
city names (and 5-digit zipcodes) as reported in the Census of 201034. When comparing properties

34Shapefile source: nhgis.
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that were remodeled against those that were not, I keep only cities in which I observe at least
one remodeling observation in sample (other cities are excluded for potential coverage issues with
Buildzoom).

In order to match Buildzoom information with CoreLogic, I compare addresses (street number
and name only). We consider a match if:

• Street numbers are identical.

• Street names are no further than a normalized Levenshtein distance of 0.235.

Secondly, I repeat the same steps before for unmatched observations using the city names
provided by Buildzoom. We assume that all matched information from the first stage should not
be readjusted (since addresses are matching), therefore focusing only on the remaining unmatched
fraction.

D Sales Density Heat Maps

Figures D.32, D.33 and D.34 show heat maps based on sales density around each house transaction,
respectively in Los Angeles, San Diego and San Francisco and for years 2001, 2004, 2008 and 2012.

Density is evaluated using a two-dimensional kernel estimator estimated over the latitude and
longitude of trades. First, I normalize longitude and latitude in each metropolitan area and year so
that they have variance equal to one. Then, I collect longitude and latitude of sale i taking place
in year ti into the row vector Xi and evaluate density as:

f̂h(Xi) = 1
Ntih

d

NTi∑
j=1

Kh (Xj −Xi)

Where d = 2 and NTi is the total number of sales that took place in year Ti in the metropolitan if
i. I set Kh(Z) = (2π)−d/2 exp

(
−1

2Z
′HZ

)
, where H is a 2× 2 matrix with h2 on the main diagonal

and zeros in the off diagonal elements. The bandwidth is chosen to match the optimality criterion
for normal kernels in Silverman (1984) and is then equal to

(
4
5

)1/6
N
−1/6
Ti

.

In density estimation I use all sales, including REOs, since Anenberg and Kung (2014) document
that while these houses sell at a discount due to worst maintenance and quality, their “competitive”
effect on nearby houses on sale is similar to the one of equivalent non-REO sales. I then overlay on
the heat maps dots corresponding to the locations of resales for each year.

35The normalized Levenshtein distance is equal to the number of character changes needed to adjust in order to
obtain a match divided by the joint length of the strings in analysis.
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We can clearly see in the figures below that resales are widely spread across metropolitan areas
and are present in both high and low sale density neighborhoods.

Similar findings hold for years 2002, 2003, 2005, 2006, 2007, 2009, 2010 and 2011. Maps for these
years are available upon request.

Figure D.32: Heat maps of sales frequency in Los Angeles respectively for years 2001, 2004, 2008
and 2012. Heat maps are based on all sales, while the dots represent the locations of resales used
in my study.
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Figure D.33: Heat maps of sales frequency in San Diego respectively for years 2001, 2004, 2008 and
2012. Heat maps are based on all sales, while the dots represent the locations of resales used in my
study.

Figure D.34: Heat maps of sales frequency in San Francisco respectively for years 2001, 2004, 2008
and 2012. Heat maps are based on all sales, while the dots represent the locations of resales used
in my study.
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E Moment-Matching Method for Approximating VARs

The state vector follows the dynamics:

Xt+1 = Φ0 + Φ1Xt + Σet+1

I also assume that et+1 ∼ N (0, I). I rotate Xt+1 into Yt+1 such that:

Yt+1 = AYt + et+1

Where A = Σ−1Φ1Σ and Yt = Σ−1
(
Xt − (I − Φ1)−1 Φ0

)
. Rouwenhorst (1995) develops a method

to generate a discrete state space approximation of an an AR(1) process like:

zt+1 = ρzzt + σε,zεz,t+1

In particular, given a desired number of states N the methodology allows to calculate the desired
discrete states z(n) (N, σz) (where σz is the unconditional volatility of z) with n ∈ {1, ..., N} and
transition probabilities vectors πn (N, ρz) for a discrete process z̃ that has the mean and the same
variance as z.

Gospodinov and Lkhagvasuren (2013) generates multiple discrete distributions for each element
in the stochastic vector Yt+1 using the methodology in Rouwenhorst (1995) and mixes them to
match moments of the more general VAR process.

For yk,t+1, kth element of Yt+1, I set the number of states Nk and set ρk =
√

1− 1/σ2
y,k,

with σ2
y,k = V ar(yk,t+1). The discrete states are obtained as y(n)

k (Nk, σy,k) for n ∈ {1, ..., Nk}
as in Rouwenhorst (1995). This is gives us a state space with total number of states equal to
N∗ = N1 ×N2 × ...×NK , where K is the number of elements in Yt+1. In state j ∈ {1, ..., N∗}, I
have a vector of discrete realizations of the elements of Y , Y j =

[
y

(n(j,1))
1 , ..., y

(n(j,k))
K

]
. The unknown

transition probabilities from state j to state n(l, k) for each element k are:

hk (n(l, k), j) = Pr
(
yk,t = y

(n(l,k))
k |Yt−1 = Y (l)

)

Where l ∈ {1, ..., N∗} and n(l, k) ∈ {1, ..., Nk}. We can collect the probabilities in the vector

75



hk (j) = [hk (1, j) , ..., hk (Nk, j)]. The probability of the entire state vector moving from j to l is:

h (l, j) =
K∏
k=1

hk (n(l, k), j)

We now want to construct the unknown transition matrix using the moment matching method.
As a first step, I know that the expected value of yk conditional on being in state j is:

µk (j) = ak,1y
(n(j,1))
1 + ...+ ak,Ky

(n(j,K))
K

Two different cases need to be considered:

1. If µk (j) ∈
[
ρky

(1)
k , ρky

(Nk)
k

]
, I start by defining ri,j = ρi. Following Gospodinov and Lkhagva-

suren (2013), I consider the mixture distribution:

π̃ (Ni, ri,j) = λ(ri,j)πn(Ni, ri,j) + (1− λ(ri,j))πn+1(Ni, ri,j)

Where πn(Ni, ri,j) are transition probabilities calculated according to Rouwenhorst (1995)
and n is such that ri,jy(n)

k ≤ µk (j) ≤ ri,jy
(n+1)
k . I set:

λ(ri,j) = ri,jy
(n+1)
k − µk (j)

ri,jy
(n+1)
k − ri,jy(n)

k

The mixture distribution has mean µk (j) and variance:

ω2(ri,j) = σ2
y,k

(
1− r2

i,j

)
+ σ2

y,kr
2
i,j

4λ(ri,j) (1− λ(ri,j))
Ni − 1

If I find 0 < λ(ri,j) < 1 I solve:

r∗i,j = arg min
ri,j
|ω2(ri,j)− 1|

s.t.

ri,j ∈ (ρk, 1)

Where I pick r∗i,j that satisfies the constraint and minimizes the distance between ω2(ri,j) and
1, which is the conditional variance of yk,t+1 given Yt. I then set transition probability equal
to hk (j) = π̃n(Nk, r

∗
i,j).
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In the simpler cases when µi(j) = ri,jy
(n)
k or µi(j) = ri,jy

(n+1)
k I set either hk (j) = πn(Nk, ri,j)

or hk (j) = πn+1(Nk, ri,j).

2. If µk (j) /∈
[
ρky

(1)
k , ρky

(Nk)
k

]
I set hk (j) = π1(Nk, ρk) when µi(j) < ρky

(1)
k and hk (j) =

πNk(Nk, ρk) when µi(j) > ρky
(Nk)
k . In both cases variance is matched exactly, while the

conditional mean is as close as possible given the grid points.
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