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Abstract

We provide a theoretical model linking firm characteristics and expected returns.

The key ingredient of our model is technological shocks embodied in new capital (IST

shocks), which affect the profitability of new investments. Firms’ exposure to IST shocks

is endogenously determined by the fraction of firm value due to growth opportunities.

In our structural model, several firm characteristics – Tobin’s Q, past investment,

earnings-price ratios, market betas, and idiosyncratic volatility of stock returns – help

predict the share of growth opportunities in the firm’s market value, and are therefore

correlated with the firm’s exposure to IST shocks and risk premia. Our calibrated model

replicates: i) the predictability of returns by firm characteristics; ii) the comovement of

stock returns on firms with similar characteristics; iii) the failure of the CAPM to price

portfolio returns of firms sorted on characteristics; iv) the time-series predictability

of market portfolio returns by aggregate investment and valuation ratios; and v) a

downward sloping term structure of risk premia for dividend strips. Our model delivers

testable predictions about the behavior of firm-level real variables – investment and

output growth – that are supported by the data.
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1 Introduction

Recent empirical research identifies a number of firm characteristics that forecast stock

returns. There is also strong evidence of comovement in stock returns of firms with similar

characteristics. Returns on portfolios formed by sorting firms on such characteristics exhibit a

strong low-dimensional factor structure, with the common factors accounting for a significant

share of their time-series variation. Furthermore, cross-sectional differences in portfolio

exposures to the common factors typically account for a substantial fraction of the cross-

sectional differences in their average returns.1 A common interpretation of such patterns is

that the relevant firm characteristics are correlated with the firms’ exposures to common

systematic risk factors. Despite the pervasiveness of such results in the empirical literature

and their importance for understanding the risk-return tradeoff in the cross-section of stock

returns, the economic origins of thus constructed empirical return factors are often poorly

understood. This paper provides a theoretical explanation for the success of empirical

multi-factor models.2

We focus on five firm characteristics that have received considerable attention in the

literature. Prior studies have documented that firms with lower Tobin’s Q (or equity book-

to-market ratios), lower investment rates (IK), higher earnings-to-price (EP), lower market

beta (BMKT) and lower idiosyncratic volatility (IVOL) earn abnormally high risk-adjusted

returns relative to the standard CAPM model. First, we show that these patterns are closely

related. Specifically, the five sets of portfolios formed on these characteristics largely share a

1Specifically, the cross-section of returns on well-diversified portfolios formed by sorting firms on a certain
characteristic c, Rc

it, i = 1, ..., N , exhibits a strong factor structure. The returns on the long-short positions in
the extreme portfolios, Rc

Nt −Rc
1t, a standard empirical approximation for the common return factor, tend to

capture a substantial share of the time-series variation in realized portfolio returns. Furthermore, differences
in exposures of the characteristic-sorted portfolios to such factors typically account for a significant fraction
of the differences in their average returns.

2The ICAPM (Merton, 1973) or APT (Ross, 1976) are typically cited as theoretical motivations behind
empirical multifactor models. However, a complete explanation of the empirical return patterns should
address: a) why these returns factors are priced, and b) why firm characteristics are correlated with return
exposures to these risk factors.
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common factor structure. After removing their exposure to the market portfolio, not only do

high-IK firms comove with other high-IK firms, but they also comove with firms that have

high Q, low-EP, high IVOL, and high BMKT. The first principal component extracted from

the pooled cross-section of portfolio returns – after removing the market component from

each portfolio return – largely captures average return differences among portfolios sorted

on each of the characteristics.3 These results suggest that the firm characteristics above are

correlated with firms’ exposures to the same common risk factor, which generates a significant

share of variation in realized portfolio returns and captures cross-sectional differences in their

risk premia.

We connect this common return factor to investment-specific technology (IST) shocks

using a structural model, based on Kogan and Papanikolaou (2011). Our model features two

aggregate sources for risk, disembodied technology shocks and technological improvements

that are embodied in new capital goods (investment-specific shocks). Firms are endowed

with a stochastic sequence of investment opportunities, which they implement by purchasing

and installing new capital. In our model, a positive IST shock – a reduction in the relative

price of capital goods – benefits firms with more growth opportunities relative to firms with

limited opportunities to invest. Hence, differences in the ratio of growth opportunities to

firm value PVGO/V lead to return comovement, and if IST shocks are priced by the market,

to differences in average stock returns.

We formally illustrate the endogenous connection between the above firm characteristics,

their growth opportunities, and their risk exposure to IST shocks.4 To do so, we extend the

3This result is not driven by the same stocks being ranked similarly using each of the above characteristics
– correlations among portfolio assignments using various characteristics are low.

4Prior research already alludes to such connections. Firms with more growth opportunities are likely to
invest more. Furthermore, such firms are likely to have higher valuation ratios (Tobin’s Q, price-earnings
ratios) since their market value reflects the NPV of future investment projects. In addition, by the logic of the
real options theory, growth opportunities are likely to have higher exposure to market conditions, and hence
higher market betas. Finally, the literature also connects growth opportunities to the firms’ idiosyncratic
risk, appealing to the common assumption that there is more uncertainty about firms’ growth opportunities
than their assets in place (see, e.g., Myers and Majluf, 1984; Bartram, Brown, and Stulz, 2011). In addition,
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model of Kogan and Papanikolaou (2011) by allowing the arrival rate of firms’ investment

opportunities to be unobservable. Market participants learn about firms’ future growth

opportunities from public signals and firms’ investment decisions. This learning channel has

two important effects. First, it formalizes the idea that revelation of information about firms’

future growth opportunities contributes to their return variation. Second, due to learning,

firms’ past investment rates are informative about their future investment opportunities and

their future expected stock returns.

Our calibrated model replicates key features of asset prices. First, our model generates

empirically plausible average return spreads between firms with high and low Tobin’s Q,

investment rates, earnings-to-price ratios, market betas, and idiosyncratic volatility. Second,

it replicates the existence of the common return factor among the portfolios sorted on these

characteristics and the resulting failure of the CAPM to price the portfolio returns. Third,

the same mechanism based on asset composition that leads to cross-sectional dispersion

in risk premia also leads to time-variation in the aggregate equity premium. As a result,

variables that are correlated with the aggregate fraction of growth opportunities to firm

value – aggregate investment rate and valuation ratios – forecast excess returns on the market

portfolio.5 A key parameter in our calibration is the price of IST shocks, which we assume to

be negative. We show that a negative price of risk for IST shocks implies that risk premia on

stock market dividend strips are declining with maturity. In particular, a positive IST shock

leads to a decline in short-term dividends as investment outlays rise, and to an increase in

long-term dividends due to a higher rate of capital accumulation. This differential IST-shock

exposure among different tenors of aggregate dividends implies that the term structure of

equity risk premia is downward sloping.

Comin and Philippon (2006) relate the rise in idiosyncratic volatility to the increasing importance of research
and development, which has a natural relation to the firms’ growth opportunities. Hence, ceteris paribus,
firms with more growth opportunities are likely to have higher idiosyncratic volatility.

5See Cochrane (2011) for a summary of recent evidence for return predictability.
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Our model’s implications for asset prices are supported by the data. Using proxies for the

IST shock, we find that differences in IST exposures among the test portfolios account for a

significant portion of their average return spreads. In addition, we explore to what extent

IST shock exposures can reduce the predictive power of firm characteristics in cross-sectional

regressions. In our model, return covariances and firm characteristics are jointly determined

by firms’ growth opportunities and assets in place. Hence, firm characteristics forecast

returns because they forecast future return exposure to IST shocks. In empirical tests, firm

characteristics often dominate conventional empirical risk measures, or at least add nontrivial

explanatory power. We argue that this finding is partly driven by the difficulty of accurately

estimating risk exposures using stock return data alone. In particular, both in the data and

in the model, estimated risk exposures using stock return data alone are too noisy to drive

out characteristics in Fama-McBeth regressions. However, using predicted risk exposures,

constructed as linear functions of characteristics and stock return betas, significantly reduces

the incremental power of characteristics to forecast average returns.

We explore the testable implications of our core mechanism for real economic variables

– firm investment decisions and output growth. In particular, firms with more growth

opportunities increase their investment by a greater amount following a positive IST shock.

Such firms also experience higher subsequent output growth relative to firms with few growth

opportunities as a result of their faster capital accumulation. We find support for both of

these predictions in the data. Following a positive IST shock, firms with high Tobin’s Q, high

investment rates, low earnings-to-price, high market beta, and high idiosyncratic volatility

increase their investment by more and experience higher future output growth relative to their

peers. The magnitude of these effects in the data is comparable to the patterns produced by

our calibrated model.

The rest of the paper is organized as follows. Section 2 reviews the related literature.

Section 3 presents the theoretical model. Section 4 describes the empirical procedures and
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calibration. Section 5 compares the patterns in historical data to simulated model output. In

Section 6, we test the model’s implications for investment and output. In Section 7 we derive

additional predictions of our model for return predictability and the term structure of risk

premia. We briefly describe robustness tests in Section 8. Section 9 concludes.

2 Related Research

The empirical literature linking average returns and firm characteristics is extensive. Related

to our study, Basu (1977) and Haugen and Baker (1996) document the relation between

profitability and average returns; Fama and French (1992) and Lakonishok, Shleifer, and

Vishny (1994) study market-to-book and earnings-to-price ratios; Titman, Wei, and Xie

(2004) and Anderson and Garcia-Feijo (2006) relate investment to average returns; Ang,

Hodrick, Xing, and Zhang (2006, 2009) document the negative relation between idiosyncratic

volatility and average returns; and Black, Jensen, and Scholes (1972), Frazzini and Pedersen

(2010) and Baker, Bradley, and Wurgler (2011), among others, document that the security

market line is downward sloping. In this paper we show that all of the above empirical

patterns are related to each other, and propose differences in the firms’ exposures to IST

shocks as a common source of return comovement and cross-sectional differences in expected

returns.

A number of models with production relate average returns to investment rates or valuation

ratios.6 Our model shares some of the features of these models, namely that variation in

the firms’ mix of assets in place and growth opportunities leads to heterogeneous and time-

varying risk exposures. However, most of the existing models feature a single aggregate

shock, implying that firms’ risk premia are highly correlated with their conditional market

6Examples include Berk, Green, and Naik (1999); Gomes, Kogan, and Zhang (2003); Carlson, Fisher,
and Giammarino (2004); Zhang (2005); Bazdrech, Belo, and Lin (2009); Ai, Croce, and Li (2011); Ai and
Kiku (2011); Kogan and Papanikolaou (2011). See Kogan and Papanikolaou (2012) for a recent survey of the
related literature.
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betas.7 As a result, return factors constructed by sorting firms on various characteristics

are conditionally perfectly correlated with the market portfolio. Hence, these models fail to

capture the patterns of return comovement in the cross-section, and the resulting failure of

the conditional CAPM (e.g., Lewellen and Nagel, 2006).

The difficulty of standard models in reproducing the negative relation between market

betas and future returns has led to several recent explanations based on market frictions (e.g.,

Frazzini and Pedersen, 2010; Baker et al., 2011; Hong and Sraer, 2012). However, explanations

based on deviations of market values from fundamentals need additional assumptions to

generate comovement of firms with similar characteristics. Furthermore, we provide evidence

that this comovement in stock returns is related to comovement in real economic variables –

firm investment rates and output growth – consistent with the mechanism operating through

the real channel.

Our paper adds to the growing literature in macroeconomics and finance on the role

of investment-specific technology shocks. Investment-specific shocks capture the idea that

technical change is embodied in new equipment.8 Starting with Solow (1960), a number of

economists have proposed embodied technical change as an alternative to the disembodied

7There are a number of exceptions: Berk et al. (1999) assume that firms’ value is affected by productivity
and discount rate shocks; Ai et al. (2011) and Ai and Kiku (2011) study models with both short-run and
long-run productivity shocks. However, these papers do not focus on return comovement as their primary
object of interest. Our model shares some of the key conceptual elements with the framework of Berk et al.
(1999), but emphasizes a different source of aggregate risk, embodied technical change. The closest paper to
our work is Kogan and Papanikolaou (2011). We extend the analysis in Kogan and Papanikolaou (2011) to
allow for learning about firms’ growth opportunities, and provide evidence that differential exposure to IST
shocks accounts for a number of other stylized empirical patterns in addition to the value premium.

8The magnitude of investment-specific technical progress can be inferred from the decline in the quality-
adjusted price of investment goods. A classic example is computers. In 2011, a typical computer server costs
$5,000. In 1960, a state of the art computer server (e.g., the Burroughs 205), cost $5.1 million in 2011 dollars.
Furthermore, adjusting for quality is important: a modern computer server would cost $160.8 million in 1960,
using the quality-adjusted NIPA deflator for computers and software. Greenwood (1999) offers numerous
additional examples of investment-specific technological change since the industrial revolution: Watt’s steam
engine, Crompton’s spinning mule, and the dynamo. These innovations were embodied in new vintages of
capital goods, hence they required substantial new investments before they could affect the production of
consumption goods.
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technology shocks assumed by most macroeconomic models.9 Cummins and Violante (2002)

document significant instances of investment-specific technical change in numerous industries.

In macroeconomics, a number of studies have shown that IST shocks can account for a large

fraction of output and employment variability, especially in the long run (e.g., Greenwood,

Hercowitz, and Krusell, 1997, 2000; Christiano and Fisher, 2003; Fisher, 2006; Justiniano,

Primiceri, and Tambalotti, 2010). Given that stock prices are particularly sensitive to low-

frequency movements in fundamental variables (see, e.g. Bansal and Yaron, 2004), IST shocks

are likely to be an important driver of asset prices. Furthermore, since IST advances improve

real investment opportunities in the economy, they naturally have a differential impact on

growth opportunities of firms and their assets in place. Papanikolaou (2011) demonstrates

that in a general equilibrium model, IST shocks are positively correlated with the stochastic

discount factor under plausible preference specifications, implying a negative price of risk for

IST shocks.

3 Model

We relate observable firm characteristics, such as a firm’s beta with the market portfolio,

idiosyncratic volatility, investment rate and profitability, to stock return exposures to a

systematic sources of risk – investment-specific technical change – using a structural model.

Our model has two aggregate shocks: a disembodied productivity shock and an investment-

specific shock (IST). Assets in place and growth opportunities have the same loading on the

disembodied shock, but different loadings on the IST shock. This differential sensitivity to IST

shocks leads to return comovement among firms with similar ratios of growth opportunities

to firm value. Furthermore, given that investment shocks are priced, this heterogeneity in

9Solow (1960, p.91) expresses scepticism about disembodied technology shocks: “...This conflicts with
the casual observation that many, if not most, innovations need to be embodied in new kinds of durable
equipment before they can be made effective. Improvements in technology affect output only to the extent
that they are carried into practice either by net capital formation or by the replacement of old-fashioned
equipment by the latest models...”

7



risk translates into cross-sectional differences in risk premia across firms based on the fraction

of firm value derived from growth opportunities.

Thus, our model links firm characteristics to the share of growth opportunities in firm

value. A key part of the mechanism is that firms’ growth opportunities are difficult to observe.

Hence, we extend the structural model of Kogan and Papanikolaou (2011) to incorporate

learning about firms’ growth opportunities. To make the exposition largely self-contained,

we describe all the elements of the model below, but we refer the readers to Kogan and

Papanikolaou (2011) for proofs of some of the technical results.

3.1 Setup

There are two sectors of production, a sector producing consumption goods and a sector

producing investment goods. Each sector features a continuum of measure one of infinitely

lived competitive firms financed only by equity. During most of our analysis we focus on the

sector producing consumption goods. We use the investment-goods sector to construct a

factor mimicking portfolio for IST shocks.

Assets in Place

Each consumption firm owns a finite number of individual projects. Firms create projects

over time through investment, and projects expire randomly.10 Let F denote the set of firms

and Jft the set of projects owned by firm f at time t.

Project j produces a flow of output equal to

yfjt = ujt xtK
α
j , (1)

where Kj is physical capital chosen irreversibly at the project j’s inception date, ujt is the

10Firms with no current projects may be seen as firms that temporarily left the sector. Likewise, idle firms
that begin operating a new project can be viewed as new entrants. Thus, our model implicitly captures entry
and exit by firms.
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project-specific component of productivity, and xt is the disembodied productivity shock

affecting output of all existing projects. There are decreasing returns to scale at the project

level, α ∈ (0, 1). Firm’s projects expire independently at rate δ.

The project-specific component of productivity u follows a mean-reverting, stationary

process, while the process for the disembodied shock x follows a Geometric Brownian motion,

dujt = θu(1− ujt) dt+ σu
√
ujt dBjt, (2)

dxt = µx xt dt+ σxxt dBxt, (3)

where dBjt and dBxt are independent standard Brownian motions.

Investment

Consumption firms acquire new projects exogenously according to a Poisson process with a

firm-specific arrival rate λft. At the time of investment, the project-specific component of

productivity is at its long-run average value, ujt = 1.

The firm-specific arrival rate of new projects has two components:

λft = λf · λ̃f,t. (4)

The first component of firm arrival rate λf is constant over time. In the long run, λf

determines the size of the firm. The second component of firm arrival rate λ̃ft captures the

current growth state of the firm. We assume that λ̃ft follows a two-state, continuous-time

Markov process with transition probability matrix between time t and t+ dt given by

P =

(
1− µL dt µL dt

µH dt 1− µH dt

)
. (5)

Thus, at any point in time, a firm can be either in the high-growth (λf · λH) or in the

low-growth state (λf · λL), and µH and µL denote the transition rates between the two states.
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Without loss of generality, we impose the normalization E[λ̃f,t] = 1.11 Hence, λf denotes the

average project arrival rate of firm f .

When presented with a new project at time t, a firm must make a take-it-or-leave-it

decision. If the firm decides to invest in a project, it chooses the associated amount of capital

Kj and pays the unit investment cost pIt = z−1
t xt. The price of investment goods relative

to the average productivity of capital depends on the stochastic process zt, which follows a

Geometric Brownian motion

dzt = µzzt dt+ σzzt dBzt, (7)

where dBzt · dBxt = 0. The z shock is the embodied, investment-specific shock in our model,

representing the component of the price of capital that is unrelated to its current level of

average productivity x. A positive change in z reduces the cost of new capital goods and

thus leads to an improvement in investment opportunities.

3.2 Learning

In contrast to Kogan and Papanikolaou (2011), we assume that the firm-level arrival rate λft

is not perfectly observable. Market participants observe a long history of the economy, hence

they know its long-run mean λf . However, they do not observe whether the firm is currently

in the high-growth or low-growth phase. Thus, λ̃ft is an unobservable, latent process.

The market learns about the firm’s growth opportunities through two channels. First,

market participants observe a noisy public signal eft of λft,

deft = λft dt+ σe dZ
e
ft.

Second, the market updates its beliefs about λft by observing the arrivals of new projects.

11This normalization leads to the parameter restriction

1 = λL +
µH

µH + µL
(λH − λL). (6)
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We derive the evolution of the probability pft that the firm is in the high growth state

λft = λf λH using standard results on filtering for point processes (see, e.g. Lipster and

Shiryaev, 2001),

dpft =
(

(1− pft)µH − pftµL
)
dt+ pft

(
λf λH − λ̄ft

) (
dMft + he dZ̃

e
ft

)
, (8)

where he = σ−1
e is the precision of the public signal and λ̄ft = pftλf λH + (1− pft)λf λL is

the market’s unbiased estimate of the arrival rate of the firm’s investment opportunities. The

stochastic processes Z̃e and M are martingales, given by

dZ̃e
ft =he

(
deft − λ̄ft dt

)
, (9)

dMft =λ̄−1
ft

(
dNft − λ̄ft dt

)
, (10)

where Nft denotes the cumulative number of projects undertaken by the firm. Hence, the

market learns about λft using the demeaned public signal Z̃e
ft. In addition, the market adjusts

its beliefs about λft upwards whenever the firm invests (dNft = 1).

3.3 Valuation

We denote the stochastic discount factor as πt. For simplicity, we assume that the two

aggregate shocks xt and zt have constant prices of risk, γx and γz respectively. The risk-free

interest rate rf is also constant. Then,

dπt
πt

= −rf dt− γx dBxt − γz dBzt. (11)

The factor structure of the stochastic discount factor is motivated by the general equilib-

rium model with IST shocks in Papanikolaou (2011). IST shocks endogenously affect the

representative household’s consumption stream, and hence they are priced in equilibrium.

Firms’ investment decisions are based on a tradeoff between the market value of a new
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project and the cost of physical capital. Given (11), the time-t market value of an existing

project j is equal to the present value of its cashflows

p(ujt, xt, Kj) = Et

[∫ ∞
t

e−δ(s−t)
πs
πt

(
ujs xsK

α
j

)
ds

]
= A(ujt)xtK

α
j ,

A(u) =
1

rf + γx σx + δ − µX
+

1

rf + γx σx + δ − µX + θu
(u− 1). (12)

The optimal investment decision follows the NPV rule: firm f chooses the amount of

capital Kj to invest in project j to maximize it’s net present value

NPVjt = max
Kj

p(1, xt, Kj)− pItKj. (13)

Because the marginal productivity of capital in (1) is infinite at the zero capital level, it is

always optimal to invest a positive and finite amount. The optimal capital investment in the

new project is given by

K∗(zt) =α
1

1−α

(
p(1, xt, Kj)

pIt

) 1
1−α

= z
1

1−α
t

(
α

rf + γx σx + δ − µX

) 1
1−α

. (14)

Equation (14) illustrates the relation between the optimal level of investment K∗ and the

ratio of the market value of a new project p(1, x,K) to the cost of capital pI . This ratio

bears similarities to the marginal Q in the Q-theory of investment. However, in contrast

to most Q-theory models, optimal investment depends on the market valuation of a new

project, which in general is not directly linked to the market valuation of the entire firm.

Furthermore, the relation in (14) holds conditional on the firm having the opportunity to

invest. That is yet another reason why the firm’s marginal (or average) Q is not a sufficient

statistic for the optimal investment in our model, since investment depends on the firm’s

current investment opportunities λft.

The market value of a firm is the sum of the value of its existing projects and the value

of its future growth opportunities. Following the standard convention, we call the first
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component of firm value the value of assets in place, V APft, and the second component the

present value of growth opportunities, PV GOft. The value of a firm’s assets in place is the

value of its existing projects

V APft =
∑
j∈Jft

p(ujt, xt, Kj) = xt
∑
j∈Jft

A(ujt)K
α
j . (15)

The value of assets in place is independent of the IST shock z and loads only on the

disembodied shock x.

The present value of growth opportunities equals the expected discounted NPV of future

investments

PV GOft = Et

[∫ ∞
t

πs
πt

(λfsNPVt) ds

]
= z

α
1−α
t xt (GL + pft (GH −GL)) , (16)

where

NPVt = xt z
α

1−α
t (α−1 − 1)

(
α

rf + γx σx + δ − µX

) 1
1−α

, (17)

GH = λf
(
α−1 − 1

) ( α

rf + γx σx + δ − µX

) 1
1−α

(
ρ−1 +

µL
µL + µH

(λH − λL) (ρ+ µH + µL)−1

)
,

GL = λf
(
α−1 − 1

) ( α

rf + γx σx + δ − µX

) 1
1−α

(
ρ−1 − µH

µL + µH
(λH − λL) (ρ+ µH + µL)−1

)
,

ρ = r − µx −
α

1− α

(
µz +

1

2
σ2
z

)
− 1

2

α2

(1− α)2
σ2
z . (18)

The present value of growth opportunities depends positively on aggregate productivity x

and the IST shock z, because the latter affects the profitability of new projects.

Adding the two pieces, the total value of the firm is equal to

Vft = xt
∑
j∈Jft

A(ujt)K
α
j + z

α
1−α
t xt (GL + pft (GH −GL)) . (19)

Examining equation (19), we can see that the firm’s stock return beta with the disembodied
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productivity shock x and the IST shock z is equal to

βxft = 1, (20)

βzft =
α

1− α
PV GOft

Vft
. (21)

This differential sensitivity to IST shocks has implications for stock return comovement and

risk premia. In particular, equations (20-21) imply that stock returns have a conditional

two-factor structure. The disembodied shock x affects all firms symmetrically, whereas firms’

sensitivity to the IST shock is a function of the ratio of growth opportunities to firm value.

Moreover, the firm’s asset mix between growth opportunities and assets in place determines

its risk premium

1

dt
Et[Rft]− rf = γxσx +

α

1− α
γzσz

PV GOft

Vft
. (22)

Whether firm’s expected returns are increasing or decreasing in the share of growth opportu-

nities in firm value depends on the risk premium attached to the IST shock, γz.
12

The ratio of the firm’s growth opportunities to its total market value, PV GO/V , evolves

endogenously as a function of the firm-specific project arrival rate λft, the history of project

arrival and expiration, and the project-specific level of productivity u. In the short run, firms

with a large expected number of new projects λft relative to the number of active projects are

likely to be firms with high growth opportunities. In addition, firms with productive existing

projects (high u) are more likely to be firms where the value of assets in place accounts for a

larger share of firm value.

12Most equilibrium models imply a positive price of risk for disembodied technology shocks, so γx > 0. The
price of risk of the IST shock γz depends on preferences. Papanikolaou (2011) shows that under plausible
preference parameters, states with low cost of new capital (high z) are high marginal valuation states,
which is analogous to a negative value of γz. In Papanikolaou (2011), households attach higher marginal
valuations to states with a positive IST shock because in those states households substitute resources away
from consumption and into investment. We infer the price of risk of IST shocks from the cross-section of
stock returns. In particular, growth firms, which derive a relatively large fraction of their value from growth
opportunities, have relatively high exposure to IST shocks and relatively low expected excess returns. This
implies that the market price of IST shocks is negative.
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To the extent that the ratio PV GO/V is correlated with observable firm characteristics,

our model implies that portfolios of firms sorted on these characteristics exhibit dispersion

in risk premia. Furthermore, long-short portfolios formed on various characteristics are

conditionally spanned by the IST shock z. Consequently, each of these long-short portfolios,

together with the market portfolio, spans the two systematic sources of risk in the model, x

and z.

3.4 Investment Sector

There is a continuum of firms producing new capital goods. The investment firms produce

the demanded quantity of capital goods at the current unit price pIt , and have a constant

profit margin φ. Given (11), the price of the investment firm is given by

VI,t = xt z
α

1−α
t

φ

ρ

(∫
F
λf df

) (
α

rf + γx σx + δ − µX

) 1
1−α

. (23)

A positive IST shock z benefits the investment-good producers. Even though the price of

their output declines, the elasticity of investment demand with respect to price is greater than

one, so their profits increase. Hence, we can use the relative stock returns of the investment

and consumption good producers to create a factor-mimicking portfolio for the IST shock.

3.5 Growth Opportunities and Firm Characteristics

Our model maps the ratio of growth opportunities to firm value into observable firm charac-

teristics. Any particular characteristic is an imperfect proxy for growth opportunities, and

the sign of its relation with PV GO/V may be ambiguous. However, our model connects

several distinct firm characteristics to the same economic mechanism, heterogeneous expo-

sure of assets in place and growth opportunities to IST shocks, through a common set of

structural parameters. Thus, by simultaneously reproducing empirical stock return patterns

in relation to various firm characteristics in our model, we confirm that its core mechanism is
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quantitatively plausible.

Tobin’s Q

The firm’s average Tobin’s Q, defined as the market value of the firm Vf over the replacement

cost of its capital stock

Bft = pIt
∑
j∈Jft

Kj, (24)

is positively related to the ratio of growth opportunities to firm value:

Qft =
Vft
Bft

=

(
1− PV GOft

Vft

)−1

× V APft
Bft

. (25)

Average Q is a noisy measure of growth opportunities, since it also depends on the profitability

of existing projects through V AP/B. The relation between Q and PV GO/V is positive if

cross-sectional differences in growth opportunities, and not the differences in profitability of

existing projects, are the dominant source of variation in Tobin’s Q across firms.

Investment rate

The firm’s investment rate, measured as the ratio of capital expenditures to the lagged

replacement cost of its capital stock, Bft, is related to the ratio of growth opportunities to

firm value. Specifically, a firm’s investment over an interval [t, t+∆ is equal to the cumulative

capital expenditures

INVf,t+∆ =

∫ t+∆

t

pIsK
∗(zs) dNfs. (26)

In our model, there is both a cross-sectional and a time-series relation between investment

and average returns. In the cross-section of firms, firms with more growth opportunities

tend to have higher investment rates. Moreover, when a given firm acquires a project, the

market revises upward its estimate of the firm’s growth opportunities (see equation (8)). Both

of these channels imply a positive relation between PV GO/V and firms’ past investment

rates. However, project acquisition also increases the value of assets in place, which has an
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offsetting effect. The net effect of investment on the relative value of growth opportunities

thus depends on the structural parameters and the current state of the firm. In particular, firm

investment tends to be positively correlated with PV GO/V in the cross-section if differences

in PV GO/V among firms are sufficiently large.

This mechanism linking investment rates to risk premia is new, and conceptually different

from the mechanisms proposed in other studies. In particular, in Carlson et al. (2004) and

Carlson, Fisher, and Giammarino (2006) growth opportunities have higher risk premia than

assets in place. Investment converts growth opportunities to assets in place, so following an

increase in investment, the same firm has a higher mix of V AP/V and therefore lower risk

premia. In our model, the opposite is true, that is, growth opportunities have lower risk premia

than assets in place, consistent with the empirical evidence on the value premium. In Zhang

(2005) and Bazdrech et al. (2009), operating leverage leads to a negative relation between

productivity and systematic risk, as captured by market beta. Consequently, investment –

which is increasing in firm productivity – is negatively related to market beta and therefore

risk premia.

Earnings-to-Price

A number of studies in the empirical literature have documented that firm earnings scaled

by the market value of equity are related to average returns (e.g., Basu (1977), Fama and

French (1992)). To explore this relation in light of our model, note that the value of assets in

place increases in the output of current projects

V APft = xt
∑
j∈Jft

a0K
α
j + a1 Yft ≈ a1 Yft if θu � 1, (27)

where Yft = xt
∑
j∈Jft

ujtK
α
j , (28)

where a0 and a1 are two positive constants, and a0 tends to zero as the persistence of the

project-specific shocks increases.
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In our model firms have no production costs, hence Y also represents their earnings. Thus,

sorting firms on Y/V is analogous to sorting them on their earnings-to-price ratios in the

data. Equation (27) implies that such a sort approximately ranks firms by the ratio of the

value of their assets in place to the total firm value, V AP/V , which is inversely related to

PV GO/V .

Furthermore, a number of studies relate accounting-based measures of profitability, such

as return on assets, to future stock returns (see, e.g., Haugen and Baker, 1996). To explore

the ability of the model to replicate these relations, we form the equivalent of ROA by scaling

Y by the book value of capital B above. Intuitively, firms with more productive projects

(high u) are likely to have high accounting profitability ratios and thus higher share of assets

in place to firm value (V AP/V ).

Market Beta

Our model implies that a firm’s market beta is an increasing function of the share of growth

opportunities in firm value. In particular, the market portfolio, defined as the value-weighted

portfolio of all consumption and investment firms, is exposed to both the disembodied shock

x and the IST shock z

βxMt = 1, βzMt =
α

1− α
PV GOCt + VIt
VCt + VIt

, (29)

where PV GOCt =
∫
F PV GOft df and VCt =

∫
F Vft df are the total present value of growth

opportunities and the total firm value in the consumption sector respectively. A consumption-

sector firm’s market beta is therefore equal to

βMft =B0t +B1t
PV GOft

Vft
, (30)

where B0t > 0, B1t > 0 are functions of the structural parameters and VCt, PV GOCt and

VIt only. As a result, cross-sectional differences in market betas are positively related to
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cross-sectional differences in growth opportunities.

Equation (30) implies that the relation between market beta and risk premia has the

same sign as the price of IST shocks, γz, which we estimate to be negative. This negative

relation illustrates the failure of the CAPM in our model. Absent any other form of risk

heterogeneity in our model, the security market line is downward sloping.

Idiosyncratic volatility

In our model, the idiosyncratic variance of the firm return equals

IV OL2
ft =

σ2
u

∑
j∈Jft

1

ujt

(
xtK

α
j a1 ujt

V APft

)2

+ δ
∑
j∈Jft

(
xtK

α
j A(ujt)

V APft

)2
(V APft

Vft

)2

+

[
λ̄ft

(
C(pft) +B(pft)

)2

+ h2
e B

2(pft)

](
PV GOft

Vft

)2

, (31)

where C(pft) is the ratio of the NPV of a new project to the firm’s PVGO, and B(pft)

captures the uncertainty about the firm’s growth opportunities:

B(pft) =
(GH −GL) pft

(
λf λH − λ̄ft

)
GL + pft (GH −GL)

; C(pft) =
(α−1 − 1)

(
α

rf+γx σx+δ−µX

) 1
1−α

GL + pft (GH −GL)
. (32)

The relation between idiosyncratic volatility and the share of growth opportunities in firm

value is complex. The first term in equation (31) captures fluctuations in the project-specific

level of productivity (first part) and the potential decline in firm value due to expiration of

existing projects (second part). The second term in (31) also has two parts. The first part

captures the effect of project arrival on firm value. The second part reflects changes in firm

value due to the arrival of information about the firm’s growth prospects.

The sign of the relation between PV GO/V and firm’s idiosyncratic return volatility

depends on the relative strength of the various determinants of idiosyncratic return risk. If

firms hold sufficiently diversified portfolios of projects, then the first term is likely to be small.

In this case, firms with more growth opportunities will have higher idiosyncratic volatility, as
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news about future investment opportunities are a dominant source of idiosyncratic risk.

4 Data and Calibration

Here we describe the empirical construction of the main variables and model calibration.

4.1 Measuring Investment-Specific Shocks

We focus on three measures of capital-embodied technical change directly implied by the

model. The construction of these measures closely follows Kogan and Papanikolaou (2011),

and we reproduce the key results here for completeness.

The first measure of IST shocks is based on the quality-adjusted price of new capital

goods, as in Greenwood et al. (1997, 2000). We use the quality-adjusted price series for new

equipment constructed by Gordon (1990) and extended by Cummins and Violante (2002)

and Israelsen (2010). We normalize equipment prices by the NIPA consumption deflator,

denoting the resulting price series by pIt . We de-trend equipment prices by regressing the

logarithm of pIt on a piece-wise linear time trend:

pIt = a0 + b011982 + (a1 + b111982) · t− zIt , (33)

where 11982 is an indicator function that takes the value 1 post 1982. The two-piece linear

trend accommodates the possibility of a structural break (see e.g. Fisher (2006)). When using

the equipment price series to measure investment-specific technology shocks, we approximate

them as ∆zIt .

Our model suggests a factor-mimicking portfolio for IST shocks. In particular, the

instantaneous return on a portfolio long firms producing investment goods and short firms

producing consumption goods (IMC portfolio) is spanned by the IST shock:

RI
t −RC

t = Et[R
I
t −RC

t ] +
α

1− α
β0t dBzt, (34)
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where β0t =
(∫
F Vft df

)
/
(∫
F V AP ft df

)
is a term that depends on the share of growth

opportunities in the aggregate stock market value. To construct the IMC portfolio in the data,

we first classify industries as producing either investment or consumption goods according to

the NIPA Input-Output Tables. We then match firms to industries according to their NAICS

codes. Gomes, Kogan, and Yogo (Gomes et al.) and Papanikolaou (2011) describe the details

of this classification procedure.

4.2 Firm Characteristics

We now briefly describe the construction of the firm characteristics that we use in our

empirical analysis. Specifically, we measure the investment rate (IK) as the ratio of capital

expenditures (capx) to the lagged book value of capital (ppegt). We define Tobin’s Q as the

ratio of the market value of common equity (CRSP December market capitalization) plus the

book value of debt (dltt) plus the book value of preferred stock (pstkrv) minus inventories

(invt) and deferred taxes (txdb) divided by the book value of capital (ppegt). Following

common convention, we define the firm’s return on assets (ROA) as operating income (ib)

divided by lagged book assets (at). Last, we define the firm’s earnings-to-price ratio (EP) as

the ratio of operating income (ib) plus interest expenses (xint) to the market value of the

firm (mkcap + dltt + pstkrv - txdb).

We estimate the firm’s market beta (BMKT ) and IMC beta (IMC − BETA) using

weekly returns

rftw = αft + βFft r
F
tw + εftw, w = 1 . . . 52, (35)

where rftw refers to the log return of firm f in week w of year t, and rFftw ∈ {rmkttw , rimctw }

refers to the log excess return of the market, or IMC portfolio, in week w of year t. Thus,

BMKTft = βmktft is constructed using information only in year t.
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We also use weekly returns to estimate the firm’s idiosyncratic volatility (IV OL)

rftw = αft + βmktft rmkttw + βimcft rimctw + εftw, w = 1 . . . 52, (36)

where rimcftw refers to the log return of the IMC portfolio in week w of year t. Our measure

of idiosyncratic volatility IV OLft =
√
vart(εftw) is also constructed using information only

in year t. We estimate idiosyncratic volatility from the two-factor specification (36) rather

than the market model (35) to ensure that our measure of idiosyncratic variance is not

mechanically reflecting variation in IMC betas across firms.

4.3 Calibration

Our model features a total of 18 parameters. Table 2 summarizes our parameter choices.

Some of these parameters are determined by a priori evidence. In particular, we set the project

expiration rate δ to 10%, to be consistent with commonly used values for the depreciation

rate. We set the interest rate rf to 3%, which is close to the historical average real risk-free

rate. We pick the price of risk of the IST shock γz = 0.57 to match the estimate of the price

of risk of IST shocks estimated using the cross-section of industry portfolios in Kogan and

Papanikolaou (2011). We verify that under this choice, the average return on the value factor

HML in the calibrated model matches the historical returns on the value factor constructed

using consumption-sector firms.

We select the next set of 15 parameters to approximately match 18 aggregate and firm-

specific moments. While all of the model parameters jointly determine its properties, some

groups of parameters have particularly strong effect on certain aspects of the model’s behavior,

as we discuss below.

We pick the price of the disembodied shock γx to match the historical equity premium.

We choose the profit margin of investment firms φ = 0.075 to match the relative size of the

consumption and investment sectors in the data.

22



The parameters governing the projects’ cash flows (θu = 0.03, σu = 1.25) affect the serial

autocorrelation and the cross-sectional distribution of firm-specific profitability and Tobin’s

Q.

The parameters of the distribution of mean project arrival rates affect the average

investment rate and the cross-sectional dispersion of firm characteristics. We model the

distribution of mean project arrival rates λf = E[λft] across firms as a uniform distribution

λf ∼ U [λ, λ]. The parameters of the distribution of λf (λ = 5, λ = 25) affect the average

investment rate and the cross-sectional distribution of the investment rate, Tobin’s Q, and

firm profitability.

The dynamics of the stochastic component of the firm-specific arrival rate (µH = 0.05,

µL = 0.25, and λH = 5.1) affects the time-series autocorrelation and cross-sectional dispersion

of the firm-specific investment rates.

The parameter governing the precision of the public signal σe = 0.15 has a strong effect on

the correlation between firms’ investment and their past stock returns. The returns-to-scale

parameter α = 0.85 affects the sensitivity of investment to log Tobin’s Q.

We simulate the model at a weekly frequency (dt = 1/52) and time-aggregate the data to

form annual observations. We estimate the firms’ idiosyncratic volatility IVOL and BMKT

in simulated data using equations (35-36). We simulate 1,000 samples of 2,000 firms over

a period of 100 years. We omit the first half of each simulated sample to eliminate the

dependence on initial values. Unless noted otherwise, we report median moment estimates

and t-statistics across simulations.

In Table 3, we compare the estimated moments in the data to the median moment

estimates and the 5th and 95th percentiles in simulated data. In most cases, the median

moment estimate of the model is close to the empirical estimate.
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5 Results

In this section, we explore the link between the model and the data. First, we document

that our model can replicate the observed differences in average returns associated with firm

characteristics. Next, we document that portfolios of firms sorted on these characteristics

exhibit a significant degree of return comovement. A single common return factor extracted

from the pooled cross-section of characteristics-sorted portfolios is related to IST shocks and

prices this cross-section. Last, we evaluate the extent to which characteristics forecast returns

because they proxy for IST risk exposures.

5.1 Firm Characteristics and Risk Premia

Here, we compare the properties of portfolios of firms sorted on characteristics in the model

to the data. In order to be consistent with our theoretical model, we restrict our analysis to

firms in the consumption-good sector. We describe the details in Appendix A.

Portfolios sorted on Tobin’s Q

Table 4 compares the stock return moments of portfolios sorted on Tobin’s Q in the data

(top panel) versus the model (bottom panel). Firm’s Tobin’s Q is closely related to the ratio

of the market value to the book value of equity, so the results of the top panel largely mimic

the findings of the literature on the value premium in stock returns. In particular, there is a

declining pattern of average returns across the Q-sorted portfolios. Furthermore, the high-Q

portfolios have higher market betas, implying that the CAPM fails to price this cross-section.

The portfolio long the top Q-decile firms and short the bottom Q-decile firms has an average

return of -8.8% per year and a CAPM alpha of -10.3%. Empirically, high Tobin’s Q portfolios

also have higher IMC-betas, which indicates that these portfolios have higher stock return

exposure to IST shocks.

The bottom panel of Table 4 shows that our model replicates the above patterns. In

24



the model, high-Q firms have higher ratios of growth opportunities to firm value. Hence,

high-Q firms have lower average returns, higher market betas, higher IMC-betas and higher

investment rates than low-Q firms, as we find empirically. These results are in line with

Kogan and Papanikolaou (2011), and we reproduce them here for completeness.

Portfolios sorted on earnings-to-price

We present moments of the decile portfolios sorted on the ratio of earnings to firm value (EP

) in the top panel of Table 5. Consistent with portfolio sorts on the earnings-to-price ratio

(e.g. Basu (1977), Fama and French (1992)), firms in the top EP decile outperform firms in

the bottom EP-decile by 8.9% per year. High-EP firms tend to have lower market betas than

low-EP firms and thus the CAPM fails to price this cross-section of returns. The long-short

position in the extreme EP-deciles generates a CAPM alpha of 10.2% per year. In the bottom

panel of Table 5, we repeat the same analysis on simulated data. Our model produces similar

patterns, with the portfolio long the highest EP decile and short the lowest decile generating

a spread in average returns of 7.2% and the CAPM alpha of 12%. Consistent with our model,

high-EP and low-EP portfolios also have large differences in IMC-betas.

For completeness, we also perform sorts on the accounting measure of profitability (ROA

), both in the data and in the model. As a firm characteristic, ROA is correlated with the

share of growth opportunities in the firm value, just like the EP ratio, but it is a more

noisy proxy for PVGO/V. As we see in Table 6, the pattern of average returns and firm

characteristics is similar in the data and in the model. Sorting on ROA produces dispersion

in average returns and CAPM alphas, but most of this dispersion comes from deciles 1 and

2. Moreover, empirically, the first two deciles also have much higher IMC-betas than the

rest, which lines up with the pattern of CAPM alphas across the ROA portfolios. Our model

replicates this pattern reasonably well. This profile of IMC betas suggests that ROA is most

informative about PVGO/V (ROA and PVGO/V are negatively correlated) when earnings
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are low relative to book value.

Portfolios sorted on investment rate

The top panel of Table 7 presents the main empirical properties of the decile portfolios sorted

on the firms’ investment rate (IK). Consistent with the empirical findings of Titman et al.

(2004) and Anderson and Garcia-Feijo (2006), firms with high investment rates subsequently

earn lower average returns. The extreme decile portfolios (highest- versus lowest-IK firms)

have an average return difference of -4.9% annually. Furthermore, the high-IK portfolios have

higher market betas than the low-IK portfolios (1.56 for the highest IK-decile vs 0.94 for the

lowest decile). As a result, the CAPM misprices the IK portfolios, with a spread in CAPM

alphas of -8% between the extreme decile portfolios. High-IK portfolios also have higher

betas with the IMC portfolio than the low-IK portfolios. This suggests that the difference

in average returns among high- and low-IK firms is partially due to the differences in their

exposures to the IST shock.

The bottom panel of Table 7 shows the results in simulated data. The model replicates

the two key features of the data. The high-IK firms have lower average returns than low-IK

firms, with the 4.8% difference between the extreme deciles. At the same time, high-IK firms

have higher market betas than low-IK firms, thus our model replicates the failure of the

CAPM to price the IK portfolios.

Portfolios sorted on market beta

In the top panel of Table 8 we illustrate that the security market line is downward sloping,

consistent with the findings of Fama and French (1992), Frazzini and Pedersen (2010) and

Baker et al. (2011). Contrary to the predictions of the standard CAPM model, sorting firms

on their CAPM beta (BMKT) does not produce an increasing pattern of average returns

– the highest-BMKT portfolio has 2% lower average return than the low-BMKT portfolio.

Consequently, CAPM alphas of the extreme decile portfolios have a spread of -5.7% per year.
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The difference in returns on the extreme BMKT decile portfolios is poorly spanned by the

market portfolio (R2 = 26%). Similarly to the sorts on ivestment rates and earnings-to-price

ratios, low-CAPM alpha portfolios (high-BMKT firms) have relatively high exposures to the

IST shock, measured by their IMC-betas.

High IMC betas of the high-BMKT firms indicate that these are high-growth firms.

Consistent with that view, we find that high-BMKT firms also have higher average investment

rates and higher Tobin’s Q than the low-BMKT firms. This positive relation between market

beta and either Tobin’s Q or investment rate is consistent with our model, but runs counter

to the prediction of production-based asset pricing models relying on operating leverage as

their main mechanism Zhang (e.g., 2005).

In the bottom panel of Table 8, we show that our model mimics the empirical properties of

BMKT-sorted portfolios. In the model, high-BMKT firms tend to be firms with more growth

opportunities, hence they have higher IST-shock exposures. The negative market price of IST

shocks implies that high-BMKT firms earn lower returns on average than low-BMKT firms.

In particular, the top-minus-bottom decile portfolio has an average return of -5.6% per year

and a CAPM alpha of -9%. The fact that the CAPM-alpha spread is larger in the model

than in the data is likely an artifact of all firms having the same exposure to the disembodied

shock. Relaxing this restriction of the model, for instance by introducing operating leverage,

would likely weaken the strong relation between BMKT and PVGO/V in the model.

Portfolios sorted on idiosyncratic return volatility

In the top panel of Table 9 we replicate the empirical findings of Ang et al. (2006, 2009).

Sorting firms on portfolios based on idiosyncratic volatility results in significant differences

in average returns and CAPM alphas. The top and bottom extreme deceil portfolios have

an average return difference of -5.9% per year. Furthermore, firms with high idiosyncratic

volatility tend to also have higher market betas. Consequently, CAPM alphas are large: the
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difference in alphas between the extreme decile portfolios is -10.8%. In the bottom panel of

Table 9 we show that our model reproduces the negative relation between IVOL and average

returns, as well as the failure of the CAPM. The 10 minus 1 portfolio has an average return

of -5.2% and a CAPM alpha of -7.6%.

The model reproduces these findings because firms with high idiosyncratic volatility

are richer in growth opportunities and therefore have higher exposure to the IST shock.

Consistent with this prediction, in the data, firms with high idiosyncratic volatility have

higher betas with the IMC portfolio, higher investment rates and Tobin’s Q.

5.2 Return Comovement

In this section we show that portfolios constructed by sorting firms on the five characteristics

related to growth opportunities (Q, EP, IK, BMKT, and IVOL) exhibit substantial return

comovement that is not captured by their exposure to the market portfolio. In particular,

we first remove the effect of the market factor by regressing annual excess returns on these

portfolios on excess returns of the market. We normalize the residuals to unit standard

deviation, and extract the first principal component from the normalized residuals in each of

the five cross-sections. In addition, we extract the first principal component from a pooled

cross-section of twenty portfolios that includes portfolios 1, 2, 9, and 10 from each sort.13

As we see in Table 10, there is substantial comovement of firms with similar characteristics.

Within each set of ten portfolios, the eigenvalue associated with the first principal component

normalized by the sum of all eigenvalues ranges from 31% to 52%. These results show that

there are return factors within the cross-sections associated with each firm characteristic.

The existence of these return factors is often interpreted as an indication that CAPM alphas

associated with various firm characteristics could be generated by the exposure of firms to

13As a robustness check, we have repeated the same analysis using monthly returns and the entire
cross-section of fifty portfolios, with similar results.

28



some source of systematic risk missing from the single-factor market model.

According to our theory, returns of firms with similar characteristics comove because

these characteristics are correlated with the firms’ IST-shock exposures. Empirically, we find

that the common factors extracted from portfolios sorted on each of the five characteristics

are highly correlated with each other (we remove the market component from each portfolio

return, so the return factors we extract are uncorrelated with the market returns). Table 10

shows that there is substantial comovement among these IK-, EP-, Q-, BMKT-, and IVOL-

factors. As we see in Table 11, the first principal component PC1 is essentially the average

of long-short portfolios across the IK, EP, Q, BMKT, and IVOL sorts. The magnitude of

this common source of comovement is substantial: the normalized eigenvalue associated with

the first principal component from the pooled cross-section of twenty portfolios is 33%. The

correlation between each individual factor and the first principal component of the pooled

cross-section ranges from 47% to 92%. These results indicate the presence of a common

source of return variation across the portfolios sorted on various characteristics. For instance,

not only do high-IK firms comove more with other high-IK firms, but these firms also comove

with low-EP, high-Q, high-BMKT, and to some extent high-IVOL firms.

Most importantly, the common factor in characteristic-sorted portfolio returns is closely

related to the IST shocks. We compute correlations between PC1 and the measures of the

IST shock in the bottom panel of Table 10. The common factor extracted from the pooled

cross-section has correlation 69% with the IMC portfolio and 38% with the price of equipment

shock ∆zI .

5.3 Asset Pricing Tests

As a first pass, we check whether the common systematic risk factor extracted from all five

sets of characteristic-sorted portfolios (the first principal component, PC1) prices the returns

on each set of portfolios. In particular, we use a two-factor model including the market
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portfolio and PC1. The PC1 factor earns a negative risk premium, with the annual Sharpe

ratio of -0.51, so that portfolios loading positively on this factor must earn relatively low

average returns. Table 13 shows that the two-factor model effectively captures the spreads in

average returns in the cross-sections sorted by Q, EP, IK, IVOL, and BMKT. In particular,

the factor model generates GRS test p-values (see Gibbons, Ross, and Shanken (1989)) that

are greater than 10% in each of the cross-sections.

One limitation of the tests above is that they use the return factor constructed from the

cross-section of test assets, favoring the pricing models in finite samples. More importantly,

these tests focus on the pricing properties of the constructed return factor rather than on

its economic source. To link the cross-sectional dispersion in average returns directly to

dispersion in IST shock exposure, we form an equivalent of the linearized stochastic discount

factor (SDF) (11) in our model,

m = a− γx ∆x− γz ∆z. (37)

We directly estimate how well the empirical proxies for IST shocks capture the average return

patterns in portfolios formed on firm characteristics by analyzing the pricing errors implied

by this SDF.

We estimate (37) using the generalized method of moments (GMM). We use the model

pricing errors as moment restrictions, namely, we impose that the SDF in equation (37)

should price the cross-section of test asset returns. The resulting moment restrictions are

E[Re
i ] = −cov(m,Re

i ), (38)

where Re
i denotes the excess return of portfolio i over the risk-free rate.14 We report first-stage

14Since we use portfolio returns in excess of the risk free rate, the mean of the stochastic discount factor is
not identified. Without loss of generality, we choose the normalization E(m) = 1, which leads to the moment
restrictions (38). See Cochrane (2005, pages 256-258) for details.
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GMM estimates using the identity matrix to weigh moment restrictions, and adjust the

standard errors using the Newey-West procedure with a maximum of three lags. As a measure

of fit, we report the sum of squared errors from the Euler equations (38). As test assets, we

use decile portfolios 1, 2, 9 and 10 from each of the five cross-sections (Q, EP, IK, BMKT

and IVOL).

We proxy for IST shocks with the relative price of new equipment, ∆zI . For the neutral

technology shock x, we use the change in the (log) total factor productivity in the consumption

sector from Basu, Fernald, and Kimball (2006). We also consider specifications of the SDF

based on portfolio returns. In particular, we use a linear combination of the market portfolio

with either the IMC portfolio, or the HML portfolio, both of which span the same linear

subspace as the two technology shocks x and z in the model. We normalize all shocks to unit

standard deviation.

We show the results in Table 14. Cross-sectional differences in the IST risk among the test

portfolios account for a sizable portion of the differences in their average returns. Columns

(1) shows that the specification with only the disembodied shock x produces large pricing

errors (4.23%), similar to the CAPM (3.61%). In contrast, adding the equipment-price shock

as a proxy for the IST shock in column (2) reduces the pricing errors to 0.92%. Furthermore,

adding IMC or HML portfolio returns to the market return in columns (4) and (5) reduces

the pricing errors to 0.75% and 1.40% respectively. Figure 1 illustrates the performance of

the factor pricing models considered in Table 14, comparing the model-predicted expected

returns on the test portfolios to their realized average returns in the data.

The market price of the IST shock in column (2) is negative, −1.35, and statistically

significant, which implies a negative relation between average returns on the characteristic-

sorted portfolios and their IST shock exposures. These point estimates are somewhat higher

than the numbers implied by our calibration, based on Kogan and Papanikolaou (2011),

but the calibrated parameter value for the price of IST shocks is still within the empirical
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confidence interval.

5.4 Covariances, Characteristics and Risk Premia

In this paper we argue that firm characteristics (Q, IK, EP, BMKT, and IVOL) are correlated

with the firms’ exposure to IST shocks, and therefore related to risk premia. However,

IST shock exposures may be difficult to estimate using stock market data alone. Here, we

explore whether these firm characteristics help forecast IST risk exposures in addition to

direct measures of IST betas constructed using only stock returns. In the process, we try to

disentangle the direct effect of characteristics on average stock returns from their ability to

predict IST risk exposures.

IMC-beta and firm characteristics

IST risk exposures depend on growth opportunities, which are time-varying. We exploit

the fact that the IMC portfolio is a factor-mimicking portfolio for IST shocks and use IMC

betas as a measure of IST risk exposures. However, these betas are measured with error. To

evaluate whether firm characteristics are related to the true IST risk exposures, we regress

estimated IMC betas on their own lagged values and on firm characteristics Xft:

βimcft = a+ γt + β Xft−1 + ρ βimcft−1 + eft, (39)

where γt is a year fixed effect and X ∈ {Q, IK,EP,BMKT, IV OL}.

We show the results in the top panel of Table 15. We find that controlling for current

IMC betas, each one of the five characteristics has predictive power for the firms’ future

exposures to IST shocks. The last column of Table 15 shows that in a joint regression almost

all firm characteristics are still significant predictors of future IMC betas, with the exception

of EP.

Firm characteristics are informative about future IST risk exposures for two reasons. The
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first reason is quite general: IMC betas are measured with error. If the measurement error is

i.i.d. over time, firm characteristics that are correlated with the true betas are informative,

even controlling for the statistical beta estimates. Second, IMC betas change over time,

hence past IMC betas, even abstracting from sampling errors, are not sufficient statistics for

the future IST exposures. Certain firm characteristics can help estimate changes in IMC

betas because they are measured as the end-of-period value in year t, whereas covariances

are measured using data over the entire year t. Hence, characteristics may contain more

up-to-date information about growth opportunities (and hence IST exposure) than realized

return covariances.

To illustrate these effects in the model, we replicate the predictive regression (39) in

simulated data. We show the results in the bottom panel of Table 15. In simulations, like

in the empirical data, firm characteristics help predict future IST shock exposures when

controlling for the recent return-based estimates of IMC betas.

Risk exposures versus characteristics

Prior research shows that the firm characteristics we consider in this paper predict future

stock returns. We now evaluate the extent to which this relation is driven by the fact

that characteristics are correlated with IST shock exposures. Furthermore, we compare the

empirical results to the output of the model, in which, controlling for the IST risk exposures,

firm characteristics contain no additional information about expected stock returns.

We frame our analysis as a Fama-MacBeth regression, with the right-hand-side variables

being i) firm characteristics; and ii) either lagged IMC-betas estimated using weekly return

data, or the forecasts of future IMC betas based on (39) using all of the characteristics.

We perform the same analysis on data simulated from the model, and show the results in

Table 16.

In the first column of the left panel, we see that each of the variables in question (Q, EP,
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IK, IVOL, and BMKT) predicts future stock returns at the firm level. In the second column,

we see that the firm’s market beta is negatively related to future returns, even controlling for

each of the other four characteristics. Hence, not only does the CAPM fail, but variation in

market betas unrelated to the included characteristics is negatively correlated with future

returns. Including the firm’s past IMC beta (columns (3) and (4)) helps reduce the point

estimate on the firm characteristic, but the effect is marginal in most cases. In contrast,

firm’s predicted future IMC beta (columns (5) and (6)) substantially reduces the predictive

power of firm characteristics. In particular, controlling for market beta, the fitted IMC-beta

drives out idiosyncratic volatility and Tobin’s Q in predicting returns. Earnings to price

(EP) and investment rate (IK) retain statistically significant predictive ability, but the point

estimates are reduced by 30 to 70%.

We find that controlling for IST risk exposures, variation in market beta is associated

with a positive risk premium. Column (5) in the first panel shows that in the specification

containing the fitted IMC-beta and the market beta, the latter enters with a positive and

statistically significant risk premium of 5.8% annually, consistent with the magnitude of the

equity premium.

We compare the empirical results to simulated data in the right panel of Table 16. Columns

(1) and (2) show that characteristics forecast returns when controlling for market betas. In

addition, estimated IMC betas are noisy, even in simulated data. Hence, firm characteristics

are not driven out by IMC betas estimated using stock returns only, as we see in columns (3)

and (4). In contrast, using the IMC beta projected on firm characteristics largely eliminates

the relation between firm characteristics and average returns in simulated data.

6 Testing the Mechanism

In this section we provide further evidence that Tobin’s Q, IK, EP, BMKT and IVOL are

correlated with differences in growth opportunities among firms. Since growth opportunities
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are not observable directly, we rely on indirect tests of the mechanism. In particular, our

model predicts that firms with more investment opportunities should increase investment

by a larger amount following a positive IST shock. In addition, firms with more growth

opportunities should exhibit an acceleration in output growth following a positive IST shcok,

as they acquire more capital.

6.1 IST Shocks and Comovement in Investment

We compare the investment response to IST shocks as a function of firm characteristics using

the following specification:

ift = a1 +
5∑
d=2

adD(Gf,t−1)d + b1 ∆zt−1 +
5∑
d=2

bdD(Gf,t−1)d∆zt−1 + ut, (40)

where it is the firm’s investment rate; ∆zt ∈ {∆zI , Rimc, Rpc1} is one of the three measures

of the IST shock; D(Gf )d is a dummy variable that takes the value one if the firm’s growth

opportunity measure Gf ∈ {Qf , IKf , EPf , BMKTf , IV OLf} belongs to the quintile d in

year t − 1. We standardize all right-hand side variables to zero mean and unit standard

deviation. We account for unobservable time and firm effects by clustering standard errors

by firm and year (see Petersen (2009)). To evaluate the ability of the model to quantitatively

replicate the data, we also estimate (40) using simulated data from the model.

As we see in Panel A of Table 17, in the model, following a positive IST shock, firms

with more growth opportunities (high Q, high IK, low EP, high BMKT and high IVOL)

increase investment by more relative to firms with fewer growth opportunities. In panels B

to D we explore this prediction of the model in the data, using different measures of the IST

shock. We find that in almost all cases, the empirical results support the model’s predictions.

Furthermore, the magnitude of this effect in the data is substantial: a one-standard deviation

z-shock leads to firms with more growth opportunities increasing investment by 0.31 to 1.56%

relative to firms with low growth opportunities. For comparison, the median investment
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rate in our sample is 11%. In simulated data, the corresponding magnitudes are a bit larger

(1.3-2.4%), but still comparable.

6.2 IST Shocks and Comovement in Firm Output Growth

A positive IST shock implies that new projects are more productive relative to existing

projects. Therefore, following a positive IST shock, firms with more growth opportunities

should experience higher output growth than low-growth firms. To the extent that firm

characteristics such as Tobin’s Q, IK, EP, BMKT, and IVOL are correlated with PV GO/V ,

we expect these characteristics to capture the differential sensitivity of output growth to IST

shocks.

We estimate the response of output growth to the IST shock using the following specifica-

tion:

ln yf,t+k−ln ȳt+k = a0+
5∑
d=2

adD(Gf,t−1)d+b1∆zt+
5∑
d=2

bdD(Gft)d ∆zt+ρ (ln yft − ln ȳt)+uf,t+k,

(41)

where yf,t is firm output, defined as firm sales (sale) plus change in inventories (invt);

ȳ is average output across firms; G ∈ {Q, IK, EP, IV OL, BMKT} is the set of firm

characteristics; ∆zt ∈ {∆zI , RIMC} is our measure of IST shocks normalized to unit standard

deviation; and D(Gft−1)d is a quintile dummy variable. We control for industry fixed effects

in the regression and cluster standard errors by firm and by year.

The coefficient of interest is b5(k), which captures the differential impact of an IST shock

on k-period output growth between firms in the top (G5) and the bottom (G1) quintile. For

brevity, we present results with the real proxy for IST shocks constructed using the price of

equipment (∆zI), but we obtain similar results using returns to the IMC portfolio or the

common factor PC1.

We estimate equation (41) for horizons of 1 to 6 years. We plot the estimated b5(k)
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coefficients along with the 90% confidence intervals. To evaluate the connection with the

model, we perform the same exercise in simulated data and plot the median coefficient

estimates b5(k), along with the 5th and 90th percentiles across simulations.

We present results in the top (data) and bottom (model) panels of Figure 2. Our findings

are consistent with the mechanism. Specifically, we find that a positive IST shock z leads to

a differential increase in output growth of firms with more growth opportunities, as measured

by high Tobin’s Q, IK, BMKT, IVOL and low EP, relative to firms with fewer growth

opportunities. Furthermore, the magnitude of this effect in the model is comparable to the

empirical estimates.

7 Additional Predictions

We now discuss the predictions of our model for the behavior of aggregate discount rates. In

particular, the same mechanism in our model that links firm characteristics to risk premia also

leads to time-varying expected returns to the market portfolio. Furthermore, our assumption

that the price of IST shocks is negative implies that risk premia on dividend strips are

declining with maturity. Both of these predictions are consistent with empirical evidence.

7.1 Return predictability

In our model, expected returns on the market portfolio are time-varying. Even though

the model features constant price of risk for the two aggregate shocks x and z, the asset

composition of the market portfolio varies over time, leading to time-variation in its expected

excess return. In particular, applying equation (22) to the market portfolio,

1

dt
Et[RMt]− rf = γxσx +

α

1− α
γzσz

PV GOCt + VIt
VCt + VIt

. (42)

The equity premium depends on the relative values of growth opportunities in the consumption

sector, PV GOC , the market values of the consumption sector, VC , and the investment sector,
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VI . The fact that discount rates are time-varying implies that, in the model, price-dividend

and price-earning ratios predict returns with a negative sign, consistent with the data (see

e.g. Campbell and Shiller (1988)). Furthermore, the aggregate Tobin’s Q and investment

rate are positively correlated with the ratio of PVGO to V. Hence, a negative price of risk

for the IST shock γz implies that both Q and aggregate investment predict market portfolio

returns with a negative sign, as in the data (see, e.g., Cochrane, 1991).

To quantify the degree of return predictability generated by changes in asset composition,

we replicate return predictability regressions in simulated data. In particular, we estimate

k∑
h=1

rM,t+h =a(k) + b(k)xt + ut+h,

where rM is the log gross market portfolio return and x is the log of a predictor variable. As

predictors, we use variables that have been empirically linked to subsequent stock returns: a)

the aggregate price-dividend ratio; b) the aggregate price-earnings ratio; c) aggregate Tobin’s

Q; and d) aggregate investment rate. We adjust the standard errors using the Newey-West

procedure, with a lag length equal to 1.5 times the number of overlapping observations. We

show the results for horizons of one to five years in Table 18. The estimated slope b(k) is

negative and statistically significant. In addition, the adjusted R2 ranges from 7% at the

horizon of one year, to 28% at five years. The magnitude of return predictability in the model

is in line with the magnitude in the data (see, e.g., Fama and French, 1988).

7.2 Term structure of risk premia

van Binsbergen, Brandt, and Koijen (2012) provide evidence that short-term claims on the

dividend of the S&P 500 index have substantially higher average returns than the S&P 500

index itself. The authors interpret this finding as evidence that the term-structure of risk

premia is downward sloping, and argue that standard asset pricing models have difficulty

matching this fact (see, for instance, Campbell and Cochrane, 1999; Bansal and Yaron, 2004).
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A downward-sloping term structure of risk premia is consistent with the models of Lettau

and Wachter (2007) and Nakamura, Steinsson, Barro, and Ursa (2010). A key feature of

both of these models is that negative shocks to dividends are associated with subsequent

increases in expected dividend growth. In our model, this pattern of mean reversion arises

endogenously. In particular, a positive IST shock leads to firms reducing dividends to pay

for increased investment. In future periods, this increased investment bears fruit, leading to

higher future dividend growth.

To illustrate how this mechanism leads to a downward-sloping term structure of risk

premia, consider the price of a dividend strip, defined as a claim on the time-T aggregate

dividend

vt(DT ) = xt e
−a1(T−t)

∫
F

∑
j∈Jft

Kα
j df+λ̄ a2 xt z

α
1−α
t

[
1

ρ+ δ

(
1− e−(ρ+δ)(T−t))− (1− φ) e−ρ(T−t)

]
,

(43)

where

a1 = r + γxσx + δ − µx, a2 =

(
α

rf + γx σx + δ − µX

) 1
1−α

(44)

The first term in equation (43), which captures the contribution of existing assets to the

time-T dividend, is decreasing in maturity T due to discounting and has no exposure to the

IST shock. The second term captures the contribution to the time-T dividend of projects

acquired between time t and T (first term in brackets) and the time-T investment expenditures

(second term in brackets). This term in (43) is increasing in the maturity of the dividend

strip T and has positive exposure to the IST shock z. Therefore, a negative price of IST

shocks γz implies that risk premia are decreasing with maturity T . To illustrate that our

calibration produces a downward-sloping term structure of risk premia for dividend strips,

we plot the risk premium associated with dividend strips of maturities k = 1/12, . . . , 20 years

in Figure 3.
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Furthermore, dividend strips with very short maturities have negative IST exposure,

since investment outlays exceed the cash flows generated from future projects. Consequently,

return volatility of dividend strips has a U-shaped pattern. In addition, since these short-term

maturities have the opposite IST shock exposure from the market portfolio, and the same

exposure to the disembodied technology shocks, their market betas are below one.

8 Robustness Tests

In this section we perform a number of robustness tests. To conserve space, we briefly

summarize the results and refer the reader to the Internet Appendix for details.

First, we explore whether our results are driven primarily by intra- or inter-industry

variation in firm characteristics. To clarify the relative importance of these two dimensions

of firm heterogeneity, we repeat our portfolio sorts within the Fama and French (1997) 17-

industry classifications. In this case, we find that our results on comovement and dispersion

in risk premia are similar or stronger for all the considered characteristics, with the exception

of IVOL. Sorting firms on IVOL within industries produces a significantly smaller spread

in average returns (2.2%) and CAPM alphas (4.7%) relative to the unconditional sort. In

addition, the first principal component extracted from the cross-section of within-industry

sorted firms is very weakly correlated with the other cross-sections. These results suggest

that there is substantial intra-industry variation in idiosyncratic volatility that is not related

to firms’ growth opportunities.

Second, we explore the potential effect of variation in leverage across the characteristic-

sorted portfolios. If firm leverage correlated positively with the fraction of growth opportunities

in firm value, then equity prices of firms with more growth opportunities would likely have

higher exposure to any systematic risk factor, not only to IST shocks. This is an unlikely

situation, since prior literature finds leverage to be negatively related to growth opportunities

(e.g., Barclay and Morellec (2006)). As we measure growth opportunities somewhat differently,
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we directly explore this issue. We compute the median book leverage within each decile

portfolio and confirm using our methodology that leverage is, if anything, negatively related

to growth opportunities. Thus, our results agree with the prior findings in the literature, and

show that differential leverage is not an alternative explanation for our findings on return

comovement.

Third, we evaluate whether our results are driven by small firms. We repeat our analysis

after eliminating the bottom 20% of firms in terms of market capitalization every year. We

find that our results are similar and in some cases stronger on this sub-sample, and thus

unlikely to be driven by the smallest firms.

Fourth, we consider an additional empirical proxy for IST shocks – changes in the aggregate

investment-to-consumption ratio (as in Kogan and Papanikolaou (2011)). This measure

follows from our model, albeit it is a more complex empirical object than the model suggests.

We find that using this proxy for IST shocks leads to similar empirical findings.

Last, we focus on a subsample of firms that are more likely to be capital-intensive and

hence correspond more closely to the firm in our model. In particular, we perform our

empirical analysis excluding the firms that produce services (industries 14-17 according to

the Fama and French (1997) 17-industry classification scheme). We find that our results are

somewhat stronger in this subsample.

9 Conclusion

In this paper we describe the joint dynamics of firm investment decisions, profitability, and

stock returns in a structural model in which firms experience shocks to their productivity and

investment opportunities. We link several commonly used firm characteristics, such as Tobin’s

Q, investment rate, earnings-to-price ratio, market beta, and idiosyncratic volatility to the

firm’s growth opportunities. As a result, these characteristics are correlated with the firm’s

exposures to the aggregate investment-specific technology shocks, which helps explain stock
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return comovement among firms with similar characteristics, and cross-sectional correlations

between the characteristics and average stock returns.

Understanding the economic sources of stock return comovement is important for further

progress in our analysis of stock market behavior. From the perspective of asset pricing,

this helps better interpret the properties of the empirical factor-based pricing models. From

the perspective of macroeconomics, additional progress on this front should promote a more

fruitful use of asset pricing data in studies concerned with the sources of aggregate fluctuations.

In this paper we aim to contribute on both fronts.
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A. Data

Macroeconomic variables

Data on the consumption deflator, consumption of non-durables and services and non-

residential investment is from the Bureau of Economic Analysis. Data on the relative price of

equipment is from Israelsen (2010). Data on TFP in the consumption sector is from Basu

et al. (2006).

Firm-level variables

Firm-level variables are from Compustat, unless otherwise noted. We summarize their

definitions in Table 1.

Sample

We omit firms with fewer than 50 weekly stock-return observations per year, firms producing

investment goods, financial firms (SIC codes 6000-6799) and utilities (SIC codes 4900-4949).

In our investment regressions we also exclude firms with missing values of CAPEX (Compustat

item capx), PPE (Compustat item ppent), Tobin’s Q, firms in their first three years following

the first appearance in Compustat, and firms with negative book values. Our sample contains

6,832 firms and 63,295 firm-year observations and covers the 1965-2008 period.

Portfolio construction

HML portfolio We construct a 2× 3 sort, sorting firms first on their market value of equity

(CRSP December market capitalization) and then on their ratio of Book-to-Market (see above

for more details). We construct the value factor (HML) as 1/2(SV − SG) + 1/2(LV − LG),

where SG, SV, LG and LV refer to the corner portfolios.

IMC portfolio We follow Gomes, Kogan, and Yogo (Gomes et al.) and Papanikolaou

(2011) and classify firms as investment or consumption producers based on the U.S. De-

partment of Commerce’s National Income and Product Account (NIPA) tables. We classify

industries based on the sector to which they contribute the most value. We use the 1997

Input-Output tables to classify NAICS industries into investment or consumption producers.

We include common shares (shrcd=10,11) of all firms traded in NYSE, AMEX and NASDAQ

(exchcd=1,2,3).

Portfolios sorted on characteristics We sort firms annually into 10 value-weighted port-

folios based on the past value of characteristic. We estimate βimc using weekly returns.

We include common shares (shrcd=10,11) of all firms traded in NYSE, AMEX and NAS-

DAQ (exchcd=1,2,3). We restrict the sample to firms producing consumption goods, and
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exclude financial firms (SIC6000-6799) and utilities (SIC4900-4949). When using account-

ing variables for characteristics, we rebalance the portfolios on June of every calendar year.

When using moments of stock returns (MBETA, IVOL), we rebalance at the end of every year.
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Tables

Table 1: Definitions

Variable Data Model
Investment (I) capx x z−1K∗f
Capital (K) ppegt z−1 x

∑
j∈J f Kj

Book Assets (A) at z−1
t xt

∑
j∈J ft

Kj

Operating Cash Flows (CF) dp + item ib
∑

j∈J f yj
Payout DIV+REP

∑
j∈J ft

yjt − x z−1K∗f
Market-to-Book (M/B) V / EC V/ K
Tobin’s Q (Q) (V + EP + D - INVT - T)/ K V/ K
Market Capitalization (V) CRSP December market cap Vf
Dividends (DIV) dvc +dvp -
Share Repurchases prstkc -
Book Debt (D) dltt -
Book Preferred Equity (EP) pstkrv -
Book Common Equity (EC) ceq -
Inventories (INVT) invt -
Deferred Taxes (T) txdb -
R&D Expenditures (R&D) xrd -
Cash Holdings (CASH) che -

Table 1 shows the definitions of the variables used in empirical analysis and model simulations.
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Table 2: Parameters

Parameter Symbol Value

Technology
Growth rate of X-shock µx 0.50%
Volatility of x-shock σx 7.00%
Growth rate of IST shock µZ 0.30%
Volatility of IST shock σZ 4.20%
Mean-reversion parameter of project-specific shock θu 0.03
Volatility of project-specific shock σu 1.25

Production
Project DRS parameter α 0.85
Profit margin of investment firms φ 7.5%
Depreciation rate of capital δ 10%

Learning
Noise in public signal σe 15%

Investment

Maximum long-run project arrival rate λ 25
Minimum long-run project arrival rate λ 5
Project arrival rate in high-growth state λH 5.100
Transition probability into high-growth state µH 0.050
Transition probability into low-growth state µL 0.250

Stochastic discount factor
Risk-free rate r 3%
Price of risk of x-shock bx 1.77
Price of risk of IST shock bz 0.57

Table 2 shows the parameters in model calibration.
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Table 3: Calibration

Moment
Data Model

Median 5% 95%

Aggregate moments, real variables
Mean of aggregate dividend growth 0.025 0.025 -0.048 0.076
Volatility of aggregate dividend growth 0.118 0.088 0.055 0.221
Volatility of aggregate investment growth 0.157 0.155 0.100 0.228

Aggregate moments, asset prices
Mean excess return of market portfolio 0.059 0.061 0.034 0.092
Volatility of market portfolio return 0.161 0.145 0.100 0.199
Mean return of HML portfolio 0.035 0.038 0.024 0.047
Volatility of HML portfolio 0.141 0.066 0.041 0.090
Relative market capitalization of I- and C-sector 0.149 0.138 0.060 0.211

Firm characteristics, time-series moments
Median firm investment rate 0.116 0.100 0.041 0.177
Correlation between investment and lagged stock returns 0.177 0.180 0.068 0.249
Correlation between investment and lagged Tobin’s Q 0.280 0.280 0.198 0.387
Serial correlation of return on assets 0.825 0.841 0.821 0.899
Serial correlation of firm investment rate 0.478 0.524 0.421 0.604

Firm characteristics, cross-sectional dispersion (IQR)
Firm investment rate 0.157 0.107 0.048 0.180
Cashflows-to-Capital 0.234 0.234 0.203 0.298
Tobin’s Q 3.412 2.327 1.339 4.280
βimc 0.990 0.691 0.477 0.937
Firm size relative to average size 0.830 0.778 0.725 0.931

Table 3 compares sample moments to moments in simulated data. Stock return moments are estimated over

the sample 1963-2008. The moments of investment growth are estimated using the series on real private

nonresidential investment in equipment and software. Moments of firm-specific variables are estimated using

Compustat data over the 1963-2008 period, where we report time series moments of the investment rate and

cash flows over capital, Tobin’s Q and IMC-beta. Moments of dividend growth are from the long sample

in Campbell and Cochrane (1999). We construct the value factor (HML) in the consumption sector as

1/2(LV −LG) + 1/2(SV −SG) where LV , LG, SV , LG refer to the corner portfolios of a 2-by-3 sort on ME

and BE/ME using consumption firms only and NYSE breakpoints. We exclude firms producing investment

goods, financial firms (SIC6000-6799), and utilities (SIC4900-4949).
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Table 4: Portfolios sorted on Tobin’s Q

Data

Lo 2 3 4 5 6 7 8 9 Hi Hi-Lo

E(R)− rf (%) 10.26 9.48 7.43 5.74 4.19 4.27 5.76 5.13 4.94 1.47 -8.79

(4.43) (5.01) (3.91) (2.82) (1.80) (2.10) (2.21) (1.91) (1.93) (0.58) (-3.26)

σ(%) 19.06 19.74 16.87 16.62 18.13 17.29 17.35 20.85 20.31 24.94 20.75

βmkt 0.86 0.92 0.82 0.82 0.90 0.89 0.87 1.06 0.99 1.15 0.29

(7.25) (7.27) (8.82) (10.24) (16.87) (20.49) (15.79) (13.78) (15.13) (9.61) (1.66)

α(%) 5.98 4.90 3.35 1.66 -0.32 -0.20 1.43 -0.17 -0.00 -4.29 -10.27

(3.25) (3.68) (3.22) (1.61) (-0.35) (-0.26) (1.16) (-0.14) (-0.00) (-2.25) (-3.64)

R2(%) 65.33 69.79 75.77 78.14 79.96 86.69 81.02 83.85 76.71 69.02 6.55

βimc 0.07 0.17 0.12 0.22 0.21 0.31 0.15 0.41 0.31 0.68 0.61

I/K 0.08 0.09 0.10 0.11 0.12 0.14 0.16 0.18 0.21 0.28
Q 0.29 0.53 0.72 0.95 1.27 1.77 2.56 4.07 7.57 23.83

Model

Lo 2 3 4 5 6 7 8 9 Hi Hi-Lo

E(R)− rf (%) 10.12 8.31 7.36 6.71 6.16 5.70 5.32 5.03 4.81 4.85 -5.27

(6.44) (4.87) (4.05) (3.50) (3.05) (2.69) (2.43) (2.25) (2.16) (2.35) (-5.71)

σ(%) 11.23 12.30 13.16 13.98 14.78 15.53 16.14 16.47 16.51 15.82 6.89

βmkt 0.72 0.80 0.86 0.92 0.97 1.02 1.06 1.08 1.08 1.03 0.31

(21.96) (33.01) (46.04) (60.03) (66.17) (63.02) (56.91) (54.01) (51.91) (46.87) (7.71)

α(%) 5.61 3.30 1.98 0.99 0.12 -0.63 -1.24 -1.66 -1.88 -1.51 -7.13

(11.73) (8.95) (6.49) (3.89) (0.39) (-2.50) (-4.29) (-5.30) (-5.89) (-4.94) (-10.83)

R2(%) 89.60 94.29 96.07 96.94 97.27 97.25 97.11 96.92 96.80 96.08 53.34

βimc 0.50 0.57 0.64 0.70 0.78 0.84 0.90 0.93 0.93 0.86 0.36

I/K 0.08 0.08 0.09 0.10 0.10 0.11 0.11 0.12 0.13 0.15

Q 1.81 2.21 2.56 2.92 3.31 3.71 4.10 4.51 5.01 5.89

Table 4 shows characteristics for the 10 portfolios of firms sorted on Tobin’s Q (see Table 1 for variable
definitions). The top panel shows results from actual data, the bottom panel shows results from data simulated
by the model. We report average returns in excess of the risk-free rate, as well CAPM alphas and univariate
post-formation betas with respect to the market portfolio, βmkt

t , and the investment minus consumption
portfolio (defined in Appendix A), βimc

t . Estimation is done at annual frequencies in both the model and
the data. The sample period is 1965-2008 and excludes firms producing investment goods, financial firms
(SIC6000-6799) and utilities (SIC4900-4949).
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Table 5: Portfolios sorted on the earnings-to-price ratio (EP)

Data

Lo 2 3 4 5 6 7 8 9 Hi Hi-Lo

E(R)− rf (%) 2.28 1.65 2.23 5.35 7.34 6.65 7.89 8.23 8.95 11.19 8.91

(0.72) (0.84) (1.13) (2.56) (3.67) (3.47) (3.51) (3.33) (3.98) (4.25) (3.00)

σ(%) 25.72 16.90 16.24 16.99 18.25 17.27 17.86 19.05 19.76 20.96 19.72

βmkt 1.21 0.86 0.85 0.85 0.90 0.88 0.91 0.92 0.81 0.97 -0.25

(10.72) (12.44) (15.67) (12.41) (10.86) (13.09) (10.10) (10.37) (4.85) (9.59) (-1.62)

α(%) -3.80 -2.63 -2.00 1.11 2.85 2.26 3.36 3.64 4.88 6.35 10.15

(-2.24) (-2.67) (-3.02) (1.72) (2.40) (3.10) (2.95) (2.88) (2.50) (3.15) (3.51)

R2(%) 72.25 83.28 88.35 81.05 78.41 83.92 83.54 75.21 55.15 68.98 5.11

βimc 0.87 0.31 0.30 0.08 0.17 0.24 0.17 0.18 -0.04 0.18 -0.69

IK 0.13 0.12 0.11 0.11 0.11 0.11 0.10 0.11 0.12 0.13

Q 2.20 2.11 1.99 1.80 1.62 1.41 1.34 1.22 1.00 0.44

Model

Lo 2 3 4 5 6 7 8 9 Hi Hi-Lo

E(R)− rf (%) 2.97 3.75 4.32 4.91 5.49 6.11 6.82 7.62 8.60 10.18 7.21

(0.99) (1.41) (1.75) (2.15) (2.57) (3.06) (3.66) (4.43) (5.48) (7.47) (3.93)

σ(%) 20.48 18.69 17.55 16.53 15.59 14.65 13.66 12.63 11.48 9.85 13.33

βmkt 1.36 1.25 1.18 1.11 1.05 0.99 0.92 0.84 0.76 0.62 -0.74

(26.04) (32.56) (40.53) (51.63) (66.04) (78.22) (63.71) (44.29) (30.22) (17.48) (-9.53)

α(%) -5.76 -4.28 -3.27 -2.24 -1.27 -0.24 0.90 2.18 3.71 6.18 11.94

(-7.65) (-7.86) (-7.81) (-7.09) (-5.28) (-1.42) (3.66) (7.25) (9.67) (11.69) (10.47)

R2(%) 92.30 94.52 95.84 96.59 97.12 97.25 96.88 95.69 92.83 83.49 64.23

βimc 1.22 1.09 0.99 0.91 0.83 0.75 0.66 0.58 0.49 0.35 -0.90

I/K 0.13 0.12 0.12 0.11 0.11 0.10 0.09 0.08 0.07 0.07

Q 4.27 4.26 4.11 3.86 3.61 3.27 2.97 2.69 2.47 2.26

Table 5 shows characteristics for the 10 portfolios of firms sorted on the earnings-to-price ratios (see Table
1 for variable definitions). The top panel shows results from actual data, the bottom panel shows results
from data simulated by the model. We report average returns in excess of the risk-free rate, as well CAPM
alphas and univariate post-formation betas with respect to the market portfolio, βmkt

t , and the investment
minus consumption portfolio (defined in Appendix A), βimc

t . Estimation is done at annual frequencies in both
the model and the data. The sample period is 1965-2008 and excludes firms producing investment goods,
financial firms (SIC6000-6799) and utilities (SIC4900-4949).
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Table 6: Portfolios sorted on return-to-assets (ROA)

Data

Lo 2 3 4 5 6 7 8 9 Hi Hi-Lo

E(R)− rf (%) 1.56 3.10 4.44 4.49 5.59 5.70 5.41 6.22 4.56 6.21 4.66

(0.28) (0.91) (1.52) (1.71) (2.60) (2.86) (2.61) (3.15) (2.23) (2.45) (0.88)

σ(%) 42.17 30.22 23.95 19.96 17.36 18.18 18.17 17.26 17.16 18.93 32.94

βmkt 1.69 1.43 1.15 0.93 0.86 0.93 0.95 0.89 0.88 0.94 -0.75

(8.74) (7.41) (9.38) (8.55) (12.92) (14.88) (19.48) (12.26) (16.35) (14.33) (-3.56)

α(%) -6.89 -4.07 -1.29 -0.14 1.30 1.04 0.66 1.79 0.16 1.51 8.40

(-1.47) (-1.73) (-1.00) (-0.09) (1.22) (1.02) (0.85) (1.86) (0.20) (1.32) (1.65)

R2(%) 52.06 73.15 74.28 69.84 79.06 85.15 88.51 85.50 85.02 80.15 16.75

βimc 1.43 1.01 0.31 0.30 0.12 0.31 0.23 0.24 0.19 0.33 -1.10

IK 0.14 0.11 0.10 0.09 0.10 0.10 0.10 0.12 0.14 0.17

Q 3.76 1.15 0.85 0.87 0.89 0.88 1.04 1.39 2.20 4.85

Model

Lo 2 3 4 5 6 7 8 9 Hi Hi-Lo

E(R)− rf (%) 3.79 5.12 6.69 6.98 7.09 7.13 7.07 7.03 6.97 7.11 3.32

(1.80) (2.73) (3.27) (3.58) (3.74) (3.83) (3.84) (3.83) (3.86) (4.19) (2.13)

σ(%) 18.79 16.00 14.66 14.01 13.65 13.46 13.37 13.40 13.31 12.72 7.70

βmkt 1.25 1.07 0.98 0.94 0.91 0.90 0.89 0.89 0.88 0.83 -0.42

(31.44) (47.93) (56.28) (59.10) (56.51) (54.62) (51.39) (47.16) (44.00) (34.89) (-7.90)

α(%) -4.21 -1.77 0.37 0.94 1.22 1.34 1.34 1.30 1.32 1.81 6.02

(-5.79) (-2.26) (1.47) (3.75) (4.74) (5.06) (4.92) (4.48) (4.17) (4.65) (6.80)

R2(%) 94.40 96.46 96.86 96.78 96.64 96.53 96.37 96.17 95.80 93.71 60.24

βimc 1.05 0.83 0.73 0.68 0.64 0.63 0.62 0.61 0.60 0.55 -0.49

IK 0.10 0.09 0.09 0.09 0.08 0.09 0.09 0.09 0.10 0.11

Q 3.31 2.98 2.79 2.75 2.84 2.96 3.18 3.44 3.89 4.93

Table 6 shows characteristics for the 10 portfolios of firms sorted on profitability (see Table 1 for variable
definitions). The top panel shows results from actual data, the bottom panel shows results from data simulated
by the model. We report average returns in excess of the risk-free rate, as well CAPM alphas and univariate
post-formation betas with respect to the market portfolio, βmkt

t , and the investment minus consumption
portfolio (defined in Appendix A), βimc

t . Estimation is done at annual frequencies in both the model and
the data. The sample period is 1965-2008 and excludes firms producing investment goods, financial firms
(SIC6000-6799) and utilities (SIC4900-4949).
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Table 7: Portfolios sorted on the investment rate (IK)

Data

Lo 2 3 4 5 6 7 8 9 Hi Hi-Lo

E(R)− rf (%) 7.46 6.98 7.25 7.08 6.98 6.00 5.74 4.07 3.28 2.51 -4.94

(3.00) (3.42) (4.40) (3.73) (3.29) (2.64) (2.45) (1.67) (1.30) (0.65) (-1.42)

σ(%) 20.60 17.04 15.15 16.47 16.33 17.81 18.72 19.50 23.00 33.30 24.86

βmkt 0.94 0.82 0.73 0.83 0.85 0.91 0.93 0.99 1.16 1.56 0.62

(7.79) (10.05) (10.61) (12.24) (15.75) (12.85) (15.96) (14.18) (14.69) (9.52) (2.91)

α(%) 2.77 2.87 3.61 2.92 2.70 1.43 1.09 -0.89 -2.52 -5.27 -8.04

(1.40) (2.16) (4.13) (4.38) (2.87) (1.70) (0.88) (-0.89) (-2.02) (-1.85) (-2.41)

R2(%) 67.02 75.49 75.24 82.93 88.70 85.42 80.01 83.89 82.52 70.80 20.13

βimc 0.13 0.14 0.07 0.13 0.24 0.30 0.23 0.35 0.67 1.16 1.03

IK 0.03 0.05 0.07 0.09 0.11 0.13 0.16 0.21 0.30 0.64

Q 0.96 0.78 0.91 1.03 1.19 1.45 1.73 2.08 2.83 4.54

Model

Lo 2 3 4 5 6 7 8 9 Hi Hi-Lo

E(R)− rf (%) 9.41 8.13 7.24 6.53 5.97 5.54 5.52 6.10 6.34 4.61 -4.81

(5.95) (4.57) (3.77) (3.20) (2.78) (2.48) (2.48) (2.99) (3.45) (2.30) (-7.85)

σ(%) 11.51 13.03 14.09 14.95 15.67 16.18 15.97 14.64 13.39 14.45 4.41

βmkt 0.75 0.87 0.94 1.00 1.05 1.09 1.07 0.99 0.90 0.98 0.22

(27.22) (44.25) (61.23) (70.66) (63.66) (56.21) (45.82) (52.66) (56.02) (53.67) (7.10)

α(%) 4.52 2.49 1.12 0.04 -0.85 -1.49 -1.44 -0.30 0.50 -1.71 -6.23

(11.11) (8.34) (4.41) (-0.02) (-3.34) (-5.05) (-4.42) (-1.00) (1.90) (-6.81) (-13.88)

R2(%) 91.98 95.73 96.81 97.13 97.11 96.87 96.60 96.84 96.81 97.11 53.01

βimc 0.48 0.62 0.72 0.80 0.87 0.92 0.92 0.79 0.67 0.78 0.29

I/K 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.14 0.25

Q 2.36 2.81 3.21 3.60 3.96 4.22 4.36 4.31 2.90 2.97

Table 7 shows characteristics for the 10 portfolios of firms sorted on investment rate (see Table 1 for variable
definitions). The top panel shows results from actual data, the bottom panel shows results from data simulated
by the model. We report average returns in excess of the risk-free rate, as well CAPM alphas and univariate
post-formation betas with respect to the market portfolio, βmkt

t , and the investment minus consumption
portfolio (defined in Appendix A), βimc

t . Estimation is done at annual frequencies in both the model and
the data. The sample period is 1965-2008 and excludes firms producing investment goods, financial firms
(SIC6000-6799) and utilities (SIC4900-4949).

55



Table 8: Portfolios sorted on the market beta (BMKT)

Data

Lo 2 3 4 5 6 7 8 9 Hi Hi-Lo

E(R)− rf (%) 5.81 6.40 5.42 6.73 5.92 5.08 6.02 5.04 3.98 3.84 -1.97

(2.51) (3.04) (2.72) (3.77) (3.13) (2.65) (2.43) (1.95) (1.19) (0.98) (-0.52)

σ(%) 18.20 16.21 17.50 15.60 16.86 16.62 20.16 21.02 25.47 30.98 26.47

βmkt 0.71 0.64 0.78 0.76 0.80 0.83 1.06 1.10 1.27 1.46 0.75

(5.19) (5.42) (5.33) (13.67) (10.39) (10.02) (18.41) (24.42) (14.65) (11.75) (4.26)

α(%) 2.24 3.21 1.53 2.93 1.90 0.95 0.74 -0.44 -2.39 -3.47 -5.71

(1.11) (2.09) (1.32) (2.72) (1.59) (0.87) (0.76) (-0.43) (-1.64) (-1.48) (-1.87)

R2(%) 49.70 50.28 64.13 76.94 73.46 80.12 88.95 88.09 81.13 72.10 25.93

βimc 0.10 -0.13 -0.00 0.12 0.05 0.11 0.44 0.57 0.78 1.14 1.05

I/K 0.09 0.09 0.09 0.09 0.10 0.11 0.12 0.13 0.15 0.17
Q 1.04 1.02 1.07 1.13 1.23 1.32 1.48 1.62 1.98 2.61

Model

Lo 2 3 4 5 6 7 8 9 Hi Hi-Lo

E(R)− rf (%) 9.59 8.63 7.81 7.14 6.53 6.01 5.50 5.07 4.63 4.04 -5.55

(6.50) (5.38) (4.54) (3.92) (3.37) (2.93) (2.54) (2.21) (1.90) (1.56) (-4.06)

σ(%) 10.66 11.66 12.53 13.32 14.13 14.88 15.65 16.49 17.33 18.33 9.84

βmkt 0.68 0.76 0.83 0.88 0.94 0.99 1.05 1.10 1.15 1.22 0.54

(21.22) (29.69) (39.88) (53.09) (67.40) (71.61) (63.28) (52.33) (41.13) (31.87) (9.21)

α(%) 5.21 3.74 2.49 1.46 0.48 -0.38 -1.21 -2.00 -2.78 -3.77 -8.98

(10.71) (9.56) (7.63) (5.34) (1.91) (-1.78) (-4.77) (-6.26) (-6.73) (-6.95) (-10.14)

R2(%) 87.92 92.50 94.89 96.17 96.78 97.12 97.05 96.72 96.01 94.66 63.49

βimc 0.40 0.47 0.54 0.60 0.67 0.73 0.80 0.86 0.93 1.02 0.65

I/K 0.05 0.07 0.08 0.08 0.09 0.10 0.11 0.11 0.11 0.12

Q 2.40 2.55 2.73 2.96 3.16 3.41 3.63 3.80 3.91 3.96

Table 8 shows characteristics for the 10 portfolios of firms sorted on market beta. The top panel shows results
from actual data, the bottom panel shows results from data simulated by the model. We report average
returns in excess of the risk-free rate, as well CAPM alphas and univariate post-formation betas with respect
to the market portfolio, βmkt

t , and the investment minus consumption portfolio (defined in Appendix A), βimc
t .

Estimation is done at annual frequencies in both the model and the data. The sample period is 1965-2008
and excludes firms producing investment goods, financial firms (SIC6000-6799) and utilities (SIC4900-4949).

56



Table 9: Portfolios sorted on idiosyncratic return volatility (IVOL)

Data

Lo 2 3 4 5 6 7 8 9 Hi Hi-Lo

E(R)− rf (%) 5.02 5.96 6.40 7.28 5.84 5.60 3.59 3.42 1.01 -0.84 -5.86

(2.45) (2.60) (3.23) (2.89) (1.99) (1.72) (0.97) (0.87) (0.20) (-0.14) (-0.95)

σ(%) 15.35 17.38 17.82 20.69 25.59 26.55 30.27 32.75 39.33 42.44 37.05

βmkt 0.77 0.92 0.93 1.07 1.29 1.26 1.45 1.53 1.67 1.76 0.98

(12.71) (44.95) (18.91) (19.60) (15.81) (10.53) (10.81) (9.59) (9.23) (8.20) (3.97)

α(%) 1.14 1.34 1.73 1.92 -0.63 -0.68 -3.67 -4.24 -7.34 -9.64 -10.78

(1.12) (1.65) (2.10) (2.69) (-0.42) (-0.30) (-1.41) (-1.43) (-1.71) (-1.90) (-1.83)

R2(%) 82.67 91.64 89.14 86.86 82.69 72.53 74.67 70.99 58.41 55.65 22.85

βimc 0.07 0.27 0.32 0.41 0.77 0.81 0.98 1.04 1.55 1.45 1.37

I/K 0.10 0.11 0.11 0.12 0.13 0.14 0.15 0.16 0.15 0.12
Q 0.93 1.19 1.23 1.28 1.38 1.43 1.65 1.88 1.95 2.25

Model

Lo 2 3 4 5 6 7 8 9 Hi Hi-Lo

E(R)− rf (%) 9.61 8.27 7.56 7.02 6.57 6.15 5.76 5.39 4.99 4.37 -5.24

(6.45) (4.86) (4.15) (3.68) (3.31) (2.99) (2.71) (2.47) (2.25) (1.95) (-5.38)

σ(%) 10.90 12.51 13.36 13.99 14.49 14.92 15.33 15.65 15.88 15.85 7.03

βmkt 0.70 0.83 0.89 0.94 0.98 1.01 1.03 1.05 1.07 1.07 0.36

(21.74) (35.65) (49.38) (65.35) (76.75) (70.48) (60.14) (49.43) (42.20) (35.09) (6.99)

α(%) 5.06 2.92 1.79 0.97 0.29 -0.32 -0.89 -1.40 -1.89 -2.50 -7.56

(10.78) (8.65) (6.44) (3.96) (1.06) (-1.65) (-3.48) (-4.63) (-5.33) (-6.01) (-10.68)

R2(%) 89.17 94.78 96.29 96.90 97.13 97.09 96.93 96.65 96.15 95.53 54.79

βimc 0.41 0.56 0.63 0.69 0.74 0.79 0.82 0.85 0.87 0.89 0.48

I/K 0.04 0.06 0.07 0.08 0.08 0.09 0.10 0.11 0.13 0.15

Q 2.63 3.09 3.33 3.50 3.63 3.74 3.83 3.84 3.74 3.12

Table 9 shows characteristics for the 10 portfolios of firms sorted on idiosyncratic volatility. The top panel
shows results from actual data, the bottom panel shows results from data simulated by the model. We report
average returns in excess of the risk-free rate, as well CAPM alphas and univariate post-formation betas with
respect to the market portfolio, βmkt

t , and the investment minus consumption portfolio (defined in Appendix
A), βimc

t . Estimation is done at annual frequencies in both the model and the data. The sample period
is 1965-2008 and excludes firms producing investment goods, financial firms (SIC6000-6799) and utilities
(SIC4900-4949).
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Table 10: Return comovement

Cross-sections Eigenvalues

IK EP IVOL BMKT Q ALL λ1/
∑
λi

IK 35.5
(p-value) (0.00)
-EP 72.2 35.6
(p-value) (0.00)
IVOL 40.7 22.4 51.5
(p-value) (0.00)
BMKT 81.0 63.9 53.7 41.0
(p-value) (0.00)
Q 76.7 67.0 39.7 63.8 30.8
(p-value) (0.00)

ALL (IK, EP, IVOL, BMKT, Q) 92.0 77.9 46.8 89.7 74.2 33.2
(p-value) (0.00) (0.00) (0.03) (0.00) (0.00) (0.00)

IMC 61.3 60.8 54.0 67.5 69.6 68.6
∆zI 31.9 35.2 14.2 49.3 19.0 38.4

Table 10 shows return comovement across the five decile portfolio sorts, on IK, EP, IVOL, BMKT, and Q
(see Table 1 for variable definitions). We extract the first principal component from standardized return
residuals from a market model regression. We normalize the sign of the first principal component so that it
loads positively on portfolio 10 with the exception of the EP sort, where it loads negatively on portfolio 10.
In addition, we extract the first principal component from a pooled cross-section of 20 portfolios that includes
portfolios 1, 2, 9 and 10 from each sort. We show the correlation matrix of these principal components, along
with their correlations with IMC, HML and the real proxy for the IST shock ∆zI (Appendix A contains the
details of portfolio construction). We compute p-values based on 10,000 permutations, where we randomly
and independently permute the time-series order of each cross-section.

Table 11: Loadings of 1st PC on corner portfolios
Portfolio 1 2 9 10
IK -0.244 -0.261 0.248 0.243
E/V 0.201 0.016 -0.276 -0.230
Q -0.291 -0.223 0.074 0.216
BMKT -0.233 -0.334 0.245 0.239
IVOL -0.237 -0.071 0.190 0.120

Table 11 reports loadings of the first principal component of the pooled cross-section on the extreme decile
portfolios sorted on IK, EP, BMKT and IVOL (see Table 1 for variable definitions). Estimation is done at
annual frequencies. The sample period is 1965-2008 and excludes firms producing investment goods, financial
firms (SIC6000-6799) and utilities (SIC4900-4949).
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Table 12: Correlation between characteristic decile assignments

Sort
Data Model

Q IK EP BMKT Q IK EP BMKT
Q
IK 38.1 19.3
EP -63.6 -20.6 -47.4 -27.5
BMKT 20.5 19.3 -14.3 40.4 25.6 -73.2
IVOL 12.3 11.3 -11.5 21.3 12.7 44.3 -49.2 39.1

Table 12 reports correlations between portfolio decile assignments across the characteristics Q, IK, EP, BMKT,
and IVOL (see Table 1 for variable definitions). The sample period is 1965-2008 and excludes firms producing
investment goods, financial firms (SIC6000-6799) and utilities (SIC4900-4949).
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Table 13: Pricing the characteristics-sorted portfolios with a common factor

Investment rate

Lo 2 3 4 5 6 7 8 9 Hi Hi-Lo GRS

α -0.96 0.03 0.53 0.29 1.66 1.05 0.64 -0.82 0.56 0.37 1.32 0.668
(-0.63) (0.03) (0.91) (0.40) (1.64) (1.00) (0.55) (-0.61) (0.46) (0.16) (0.62) (0.89)

βmkt 0.94 0.82 0.73 0.83 0.85 0.91 0.93 0.99 1.16 1.56 0.62
(10.78) (12.66) (27.40) (25.03) (18.57) (14.72) (14.42) (13.56) (23.74) (12.00) (5.16)

βz -0.29 -0.22 -0.24 -0.20 -0.08 -0.03 -0.03 0.01 0.24 0.44 0.73
(-6.48) (-6.68) (-10.91) (-6.78) (-2.36) (-0.95) (-0.53) (0.12) (5.13) (5.54) (10.01)

R2 79.87 86.34 91.37 92.91 90.29 85.60 80.24 83.89 89.55 82.03 75.75

Earnings to Price

Lo 2 3 4 5 6 7 8 9 Hi Hi-Lo GRS

α -0.28 -2.49 -1.96 -0.63 1.23 0.74 1.37 1.10 0.17 2.89 3.17 1.303
(-0.12) (-1.82) (-2.48) (-0.52) (0.87) (0.93) (1.34) (0.80) (0.11) (2.05) (1.41) (0.21)

βmkt 1.21 0.86 0.85 0.85 0.90 0.88 0.91 0.92 0.81 0.97 -0.25
(12.99) (12.24) (17.20) (16.47) (13.78) (17.86) (17.49) (17.57) (10.52) (12.92) (-2.66)

βz 0.27 0.01 0.00 -0.13 -0.13 -0.12 -0.15 -0.20 -0.37 -0.27 -0.54
(2.85) (0.21) (0.10) (-2.38) (-2.07) (-2.77) (-3.80) (-5.09) (-6.27) (-10.57) (-5.83)

R2 79.59 83.31 88.36 85.15 81.48 86.93 88.43 82.16 77.43 79.68 54.24

Market beta

Lo 2 3 4 5 6 7 8 9 Hi Hi-Lo GRS

α -1.64 -1.71 -2.37 1.16 -0.83 -0.80 1.23 0.66 1.11 1.57 3.21 0.947
(-0.93) (-2.13) (-2.51) (1.08) (-0.97) (-0.72) (1.22) (0.56) (0.92) (0.67) (1.27) (0.57)

βmkt 0.71 0.64 0.78 0.76 0.80 0.83 1.06 1.10 1.27 1.46 0.75
(5.97) (12.20) (9.40) (17.32) (16.61) (13.91) (19.05) (25.19) (18.26) (15.55) (6.94)

βz -0.30 -0.38 -0.30 -0.14 -0.21 -0.14 0.04 0.09 0.27 0.39 0.69
(-6.97) (-11.87) (-7.24) (-4.01) (-4.05) (-2.56) (0.96) (2.80) (4.01) (5.87) (8.16)

R2 67.55 86.40 83.59 81.95 83.76 84.44 89.19 89.16 88.53 82.47 70.47

Idiosyncratic volatility

Lo 2 3 4 5 6 7 8 9 Hi Hi-Lo GRS

α -0.81 0.88 1.44 2.14 1.51 1.71 -1.46 -0.76 -1.13 -5.25 -4.44 0.688
(-0.82) (1.10) (1.46) (1.76) (0.97) (0.76) (-0.60) (-0.28) (-0.26) (-1.26) (-0.94) (0.88)

βmkt 0.77 0.92 0.93 1.07 1.29 1.26 1.45 1.53 1.67 1.76 0.98
(18.56) (34.90) (18.74) (19.99) (15.87) (10.49) (11.79) (10.54) (9.14) (8.24) (4.24)

βz -0.15 -0.04 -0.02 0.02 0.17 0.19 0.17 0.27 0.48 0.34 0.49
(-5.09) (-1.18) (-0.61) (0.28) (3.15) (2.76) (2.92) (4.22) (2.72) (2.97) (3.75)

R2 89.01 91.92 89.24 86.90 85.42 75.71 76.77 75.41 68.18 59.84 34.32

Tobin’s Q

Lo 2 3 4 5 6 7 8 9 Hi Hi-Lo GRS

α 1.76 1.77 0.73 -0.44 -2.30 -0.70 0.21 0.57 0.93 -0.42 -2.18 0.647
(1.48) (1.16) (0.61) (-0.40) (-2.52) (-0.69) (0.15) (0.35) (0.56) (-0.21) (-1.00) (0.91)

βmkt 0.86 0.92 0.82 0.82 0.90 0.89 0.87 1.06 0.99 1.15 0.29
(12.24) (11.63) (13.70) (13.28) (14.91) (16.46) (16.81) (13.45) (12.86) (12.92) (3.83)

βz -0.33 -0.24 -0.20 -0.16 -0.15 -0.04 -0.09 0.06 0.07 0.30 0.63
(-11.16) (-3.93) (-4.74) (-3.72) (-5.41) (-1.50) (-2.13) (1.10) (0.75) (3.75) (7.32)

R2 84.52 79.62 85.23 84.39 84.63 87.02 82.96 84.34 77.53 78.47 66.13

Table 13 reports portfolio alphas and betas with respect to the two-factor model that includes the market
portfolio and the first principal component of the pooled cross-section (PC1, normalized to standard deviation
of 10%) of Q, IK, EP, BMKT and IVOL portfolios. See Table 1 for variable definitions. Estimation is done at
annual frequencies. The sample period is 1965-2008 and excludes firms producing investment goods, financial
firms (SIC6000-6799) and utilities (SIC4900-4949).
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Table 14: Stochastic discount factor

Factor price (1) (2) (3) (4) (5)

∆x
0.75 -0.77

[0.04, 1.46] [-1.80, 0.25]

Rmkt 0.21 0.52 0.37
[0.02, 0.40] [0.31, 0.73] [0.17, 0.57]

∆zI
-1.35

[-2.24, -0.46]

Rimc -0.71
[-1.06, -0.36]

−Rhml -0.65
[-0.98, -0.32]

SSQE (%) 4.23 0.92 3.61 0.75 1.40

Table 14 reports empirical estimates of γx and γz from the model SDF: m = a− γx ∆x− γz ∆z. We sort

firms on Q, IK, EP, BMKT and IVOL (see Table 1 for variable definitions), and use portfolios 1, 2, 9, and 10

from each sort, resulting in a total of 20 portfolios. See Appendix A and main text for more details. We use

annual data in the 1965-2008 period and report first-stage estimates and the sum of squared errors (SSQE)

along with 90%-confidence intervals around the point estimates computed using the Newey-West procedure

with 3 lags.
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Table 16: Fama-MacBeth regressions: Data versus Model

A. Market Beta
DATA MODEL

(1) (2) (3) (4) (5) (6) (1) (2) (3) (4) (5) (6)
BMKT(t-1) -0.025 -0.008 0.054 -0.060 -0.004 0.001

(-2.38) (-1.06) (3.68) (-4.24) (-0.86) (0.46)
BIMC(t-1) -0.021 -0.046

(-2.17) (-3.67)

B̂IMC(t) -0.245 -0.078
(-4.79) (-4.22)

B. Investment rate
DATA MODEL

(1) (2) (3) (4) (5) (6) (1) (2) (3) (4) (5) (6)
BMKT(t-1) -0.019 -0.004 0.052 -0.060 -0.005 0.008

(-1.92) (-0.62) (3.48) (-4.08) (-0.91) (1.03)
BIMC(t-1) -0.022 -0.018 -0.050 -0.046

(-2.45) (-1.98) (-3.72) (-3.46)

B̂IMC(t) -0.126 -0.228 -0.079 -0.077
(-4.09) (-4.49) (-4.49) (-4.03)

IK(t-1) -0.130 -0.115 -0.115 -0.112 -0.068 -0.042 -0.078 -0.052 -0.037 -0.030 -0.009 -0.009
(-3.23) (-3.04) (-3.00) (-2.95) (-3.54) (-2.30) (-4.95) (-2.44) (-2.14) (-1.12) (-1.12) (-1.04)

C. Earnings-to-Price
DATA MODEL

(1) (2) (3) (4) (5) (6) (1) (2) (3) (4) (5) (6)
BMKT(t-1) -0.024 -0.012 0.040 -0.007 -0.001 0.001

(-2.43) (-1.44) (2.94) (-2.39) (-0.23) (0.36)
BIMC(t-1) -0.023 -0.018 -0.007 -0.007

(-2.60) (-1.97) (-2.08) (-1.53)

B̂IMC(t) -0.128 -0.200 -0.081 -0.084
(-4.22) (-4.10) (-3.15) (-3.18)

EP(t-1) 0.252 0.233 0.229 0.224 0.190 0.163 0.501 0.419 0.406 0.406 0.025 0.011
(5.62) (5.77) (5.84) (5.85) (5.67) (5.44) (4.32) (4.38) (4.45) (4.44) (1.16) (0.90)

D. Idiosyncratic volatility
DATA MODEL

(1) (2) (3) (4) (5) (6) (1) (2) (3) (4) (5) (6)
BMKT(t-1) -0.019 -0.014 0.027 -0.053 -0.003 0.002

(-2.07) (-1.79) (2.78) (-4.00) (-0.66) (0.76)
BIMC(t-1) -0.017 -0.011 -0.044 -0.041

(-2.17) (-1.81) (-3.64) (-3.52)

B̂IMC(t) -0.095 -0.162 -0.074 -0.075
(-3.85) (-3.36) (-4.05) (-3.98)

IVOL(t-1) -1.407 -1.207 -1.213 -1.164 -0.821 -0.438 -0.209 -0.183 -0.182 -0.032 -0.031
(-3.28) (-2.83) (-2.87) (-2.77) (-1.94) (-1.35) (-4.41) (-5.16) (-3.70) (-3.67) (-1.51) (-1.35)

E. Tobin’s Q
DATA MODEL

(1) (2) (3) (4) (5) (6) (1) (2) (3) (4) (5) (6)
BMKT(t-1) -0.016 -0.004 0.046 -0.046 -0.004 0.001

(-1.74) (-0.47) (2.45) (-3.90) (-0.80) (0.22)
BIMC(t-1) -0.019 -0.017 -0.040 -0.038

(-2.38) (-1.88) (-3.48) (-3.29)

B̂IMC(t) -0.119 -0.205 -0.074 -0.074
(-3.83) (-3.33) (-3.92) (-3.93)

log Q(t-1) -0.028 -0.025 -0.024 -0.024 -0.015 -0.009 -0.011 -0.008 -0.008 -0.008 -0.003 -0.002
(-5.41) (-5.50) (-5.34) (-5.41) (-3.46) (-1.69) (-4.52) (-5.41) (-5.81) (-5.81) (-2.32) (-2.22)

Table 16 reports results of Fama and MacBeth (1973) regressions using lagged firm characteristics, lagged
point estimates of IMC beta (BIMC) estimated using equation (35) and contemporaneous fitted values of

IMC beta (B̂IMC) using the regression model in the last column of Table 15. Estimation is done at annual
frequencies, with the stock return on fiscal year t defined as the stock return from June of calendar year t to
May of calendar year t+ 1. The sample period is 1965-2008 and excludes firms producing investment goods,
financial firms (SIC6000-6799) and utilities (SIC4900-4949).
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Table 17: Investment response to IST shock: Model versus Data

IKft
A. Model B. Data (∆zI)

Q IK EP BMKT IVOL Q IK EP BMKT IVOL
∆zt−1 2.48 1.92 4.16 2.48 1.94 0.37 0.23 1.14 0.42 0.41

(4.64) (4.45) (5.27) (4.84) (4.43) (1.83) (1.02) (2.17) (2.19) (1.28)

D(Gf )2 ×∆zt−1 0.13 0.64 -0.59 0.15 0.59 0.03 0.16 -0.47 0.06 0.21
(1.25) (3.32) (-2.66) (1.21) (3.72) (0.22) (1.54) (-1.04) (0.42) (0.98)

D(Gf )3 ×∆zt−1 0.39 1.17 -1.05 0.47 0.98 0.15 0.48 -0.43 -0.06 0.36
(2.00) (4.54) (-4.03) (2.69) (4.85) (1.10) (4.01) (-1.04) (-0.35) (1.57)

D(Gf )4 ×∆zt−1 0.72 1.52 -1.61 0.79 1.46 0.54 0.67 -0.67 0.33 0.64
(3.60) (5.40) (-4.89) (3.94) (5.34) (2.00) (3.66) (-1.55) (1.59) (2.14)

D(Gf )H ×∆zt−1 1.50 2.30 -2.39 1.37 2.44 0.78 0.89 -0.78 0.94 0.31
(4.78) (6.60) (-5.27) (4.81) (5.97) (2.48) (2.62) (-1.65) (2.52) (1.27)

IKft
C. Data (IMC) D. Data (PC1)

Q IK EP BMKT IVOL Q IK EP BMKT IVOL
∆zt−1 0.69 0.65 2.04 0.91 0.63 -0.23 0.17 1.14 -0.10 0.04

(3.53) (3.53) (3.95) (5.40) (2.21) (-0.84) (0.77) (2.00) (-0.29) (0.13)

D(Gf )2 ×∆zt−1 0.15 0.14 -0.96 -0.25 0.28 0.24 -0.08 -1.03 -0.07 0.05
(1.65) (1.27) (-2.15) (-1.80) (1.61) (2.03) (-0.65) (-1.89) (-0.44) (0.36)

D(Gf )3 ×∆zt−1 0.32 0.13 -1.26 -0.10 0.35 0.40 0.13 -1.18 0.03 0.38
(2.46) (0.85) (-2.41) (-0.77) (1.66) (2.92) (0.93) (-2.20) (0.18) (0.19)

D(Gf )4 ×∆zt−1 0.54 0.38 -1.49 -0.00 0.32 0.54 0.13 -1.22 0.20 0.50
(2.91) (1.72) (-3.18) (0.00) (0.88) (2.28) (1.24) (-2.35) (0.71) (1.68)

D(Gf )H ×∆zt−1 0.49 1.06 -1.56 0.74 0.86 0.77 0.84 -1.47 1.13 0.82
(1.42) (3.53) (-3.43) (2.28) (3.19) (2.34) (1.92) (-2.92) (3.07) (2.53)

Table 17 shows the differential response of investment of firms with different characteristics Gf ∈
{Q, IK,EP,BMKT, IV OL} on measures of the IST shock ∆z ∈ {∆zI , Rimc, PC1}, normalized to unit
standard deviation. We show the estimated coefficients b1 . . . b5 from equation (40), along with t-statistics
computed using standard errors clustered by firm and year. The sample period is 1965-2008 and excludes
firms producing investment goods, financial firms (SIC6000-6799) and utilities (SIC4900-4949).

64



Table 18: Return predictability in the model

Horizon (k) a. Price/Dividend b. Price/Earnings

(years) Slope t R2 Slope t R2

1 -0.10 -2.04 0.07 -0.14 -2.02 0.07
2 -0.19 -2.47 0.13 -0.27 -2.42 0.13
3 -0.26 -2.76 0.19 -0.38 -2.70 0.19
4 -0.33 -2.97 0.24 -0.47 -2.94 0.24
5 -0.40 -3.18 0.28 -0.57 -3.15 0.28

Horizon (k) c. Tobin’s Q d. Investment rate

(years) Slope t R2 Slope t R2

1 -0.11 -1.81 0.06 -0.06 -1.93 0.06
2 -0.22 -2.29 0.12 -0.12 -2.32 0.12
3 -0.32 -2.65 0.17 -0.18 -2.56 0.16
4 -0.39 -2.82 0.21 -0.22 -2.70 0.20
5 -0.47 -3.02 0.25 -0.27 -2.84 0.23

Table 18 reports results of return predictability regressions in simulated data. In particular, we report
coefficients b(k) from

k∑
h=1

rM,t+h =a(k) + b(k)xt + ut+h

rM is log gross return on the market portfolio; x is the log aggregate price dividend ratio (panel a), aggregate
price-earnings ratio (panel b), aggregate Tobin’s Q (panel c), and aggregate investment rate (panel d).
Standard errors are computed using the Newey-West procedure with the number of lags equal to 1.5 times
the return horizon. Point estimates, t-statistics, and the R2 are median values across 1,000 independent
simulations of the model. For each simulated sample we start with 100 years of simulate data and omit the
first 50 years to eliminate the effect of initial conditions.
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Figure 3: Risk premium of dividend strips
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Figure 3 plots the expected excess returns on aggregate dividend strips in the model, with tenors from 0 to
20 years.
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