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Abstract

We show how the market’s higher order moments can be estimated ex ante

using methods based on Martin (2017). These ex ante higher order moments

predict future realized higher order moments, whereas trailing realized mo-

ments have little predictive power. Higher-moment risks move together in the

sense that skewness becomes more negative when kurtosis becomes more posi-

tive. In addition, higher-moment risk is high when volatility is low, suggesting

that risk doesn’t go away – it hides in the tails. Higher-moment risk has

significant implications for investors; for example, the tail loss probability of a

volatility-targeting investor varies from 3.6% to 9.7%, entirely driven by changes

in higher-moment risk. We empirically analyze the economic drivers of these

risks, such as financial intermediary leverage, market and funding illiquidity,

and potential bubbles.
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Times of financial market distress pose threats to the macroeconomy, as we wit-

nessed in the 2008-2009 financial crisis. For policymakers to act in a timely and

preemptive manner in the event of financial market distress, it is important to mea-

sure the perceived tail risks in real time.

In this paper, we estimate higher moment risk in real time using a new method

and arrive at the following five main results: (1) Moments of the market return,

measured ex ante using option prices, predict future realized moments. (2) Higher

order moments co-move in the sense that skewness (3rd moment) and hyperskewness

(5th moment) become more negative when kurtosis (4th moment) and hyperkurtosis

(6th moment) become more positive. In other words, there are times when higher-

moment risk is high, in the sense that the return distribution is both substantially

left-skewed (due to large negative odd-numbered moments) and fat tailed (due to

large positive even-numbered moments). (3) Higher-moment risks tend to be high

after market run-ups where the variance is low. (4) Higher-moment risk has important

implications for investors; for example, the tail loss probability of a volatility-targeting

investor and varies from 3.6% to 9.7%, entirely driven by changes in higher-moment

risk. (5) The times when higher-moment risks are high are characterized by high

market and funding liquidity, high turnover, and low expected future returns.

Our analysis is based on ex ante moments that are estimated from options prices.

Using methods based on Martin (2017), we translate risk-neutral moments into phys-

ical moments as perceived by an unconstrained power utility investor who wants to

hold the market portfolio. Using S&P 500 as a proxy for the market portfolio, we

estimate ex ante monthly and quarterly moments. These moments are entirely for-

ward looking and, unlike risk-neutral moments, contain no adjustment for risk, which

makes them well suited for studying time-variation in higher-moment risk.

As our first main result, we show that our ex ante moments are positively corre-

lated with ex post realized moments. Consistent with previous research, our ex ante

variance predicts ex post realized variance well.1 More importantly, we show that

1Previous literature has shown that ex post realized variance is well predicted by historical
variance or option implied variance, e.g. Bollerslev, Tauchen, and Zhou (2009), Andersen, Fusari,
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our ex ante higher order moments also predict ex post higher order moments. We

show that our ex ante skewness, kurtosis, hyperskewness, and hyperkurtosis all have

significant predictive power over ex post realized moments. We further show that

our ex ante moments are better at forecasting ex post realized moments than their

trailing (lagged) moments.

Next, we show that these predictability results are robust in several ways. First,

we show that our results are not driven by the large price moves that occurred during

the financial crisis of 2008 to 2009. Second, we show that our moment prediction

holds even when controlling for risk-neutral moments. The latter is important be-

cause option-implied risk-neutral skewness has been shown to predict ex post realized

skewness, e.g. Neuberger (2012).

As our second main result, we find that higher order moments move together in the

sense that skewness and hyperskewness are more negative at times when kurtosis and

hyperkurtosis are more positive. Indeed, we find that skewness is negatively correlated

with kurtosis with a correlation coefficient of −0.80, a negative correlation of −0.66

with hyperkurtosis, and a positive correlation of 0.79 with hyperskewness. These co-

movements in higher order moments are so strong that the first principal component of

the space spanned by skewness, kurtosis, hyperskewness, and hyperkurtosis explains

90% of the joint variation in higher order moments.

The first principal component eigenvector has the same signs for skewness and

hyperskewness, while the sign is opposite for kurtosis and hyperkurtosis. As shown in

Ebert (2013), an investor with power utility has preferences for odd number moments

of any order and is averse to even number moments of any order. A high value of

the first principal component can therefore be interpreted as times when higher order

moment risks are, on average, large (negative for odd moments and positive for even

moments). We therefore define the first principal component as a higher-moment risk

index (HRI).

As our third main result, we find that higher-moment risk varies systematically

and Todorov (2015), and Bollerslev, Hood, Huss, and Pedersen (2016).
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with variance. Specifically, the correlation between variance and the HRI is −0.53

with 95% bootstrapped confidence bounds of [−0.60,−0.48], which emphasizes that

higher-moment risks tend to be high at times when variance is low. In addition,

we find that higher-moment risks tend to be high subsequent to market run-ups,

which are usually “calm” times as measured by variance. We find that the HRI is

positively related to the past two year return. The relation is statistically significant

at a 99% level, showing that the return distribution is more left skewed and fat tailed

subsequent to a “good” period where prices have increased significantly.

Fourth, we show that higher-moment risk has large economic implications for in-

vestors. To understand the importance of higher-moment risk, we study the portfolio

risk of a volatility-targeting investor who holds a portfolio of cash and the market.

The investor adjusts the portfolio weights to achieve a constant volatility of σvol target.

Despite having constant variance, the riskiness of the portfolio varies substantially

over time as higher moment risk varies. Because higher moment risk is high when

variance is low, the portfolio is the riskiest when market variance is low.

To understand the economic magnitude of the systematic variation in higher-

moment risks, we estimate the probability that the return on the volatility-targeting

investor’s portfolio is less than −2σvol target. The monthly probability peaked on June

30th 2014 with a probability of 9.7%, almost three times the size of its low, on February

27th 2008, where the probability was 3.6%. Furthermore, the average probability of

a −2σvol target event is 6.6%, which is large compared to the 2.5% that is implied by a

normal distribution. Similarly, the probability of a portfolio return that is less than

−3σvol target peaked on November 30th 2006 with a probability of 3.6%, which is four

times the size of its low on February 27th 2008, when the probability was 0.76%.

These probabilities are also far above what is implied by a normal distribution, which

is 0.13%.

Furthermore, we find that the probability of a portfolio return that is less than

−2σvol target for the volatility-targeting investor is negatively correlated with variance

with a correlation coefficient of −0.70 and 95% bootstrapped confidence bounds of
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[−0.78,−0.65]. This strong negative correlation further emphasizes the importance

of considering higher-moment risks in portfolio choice problems. For example, this

finding can help explain why Moreira and Muir (2017b) find that investors can earn

high Sharpe-ratios by moving wealth into the market at times when variance is low and

moving wealth out of the market when variance increases. The relative (to variance)

high expected return in calm times may be compensation for elevated higher-moment

risks.

Our fifth main result shows how higher-moment risk is associated with several

economic drivers. First, our results are closely related to the volatility paradox (Bun-

nermeier and Sannikov, 2014), which is the notion that systematic risk is high when

variance is low. In their model, risk increases when variance is low because special-

ized investors are more levered. We therefore investigate how the level of financial

intermediary leverage is associated with higher-moment risk. In particular, we test

if financial intermediaries are more levered when variance is low, and if such varia-

tion in financial intermediary leverage can explain our observed variation in higher

moment risk. Using the measure of financial intermediary leverage from He, Kelly,

and Manela (2016), we find no relation between higher-moment risks and aggregate

financial intermediary leverage.

We next investigate how higher-moment risk is related to market illiquidity and

funding illiquidity. We find that higher-moment risks are positively associated with

both market and funding liquidity. Specifically, using the average value-weighted

bid-ask spread of S&P 500 constituents as a proxy for market illiquidity, we find that

times when the average bid-ask spread is low are times when higher-moment risks are

high. Similarly, using the TED spread as a proxy for funding illiquidity, we find that

a low TED spread is associated with high higher-moment risks.

Lastly, we investigate how higher-moment risks are related to previously suggested

measures of “bubble” characteristics and market valuation. We consider the “bubble”

characteristics: acceleration (Greenwood, Shleifer, and You (2017)), turnover (Chen,

Hong, and Stein (2001)), issuance percentage (Pontiff and Woodgate (2008)), and
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the market valuation measures: CAPE, the dividend-price ratio, and cay (Lettau and

Ludvigson (2001)). We find that higher-moment risk is positively related to price

acceleration: there is more higher-moment risk when the recent price path is more

convex. Also, higher turnover after market run-ups is associated with more higher-

moment risk. Furthermore, there is more higher-moment risk when cay (Lettau and

Ludvigson, 2001) is high. We find no conclusive relation between higher-moment risks

and CAPE, the dividend-price ratio, or equity issuance.

Our paper relates to and extends the existing literature on estimating time-varying

market tail risk by integrating two different approaches. Previous research on tail risk

is based on either (1) physical moments based on backward looking information or

(2) risk-neutral moments based on forward looking option prices. We show that

physical higher-moment risks can be estimated in a forward looking manner, and in

real time, which complements the existing literature that uses historical (backward

looking) returns to estimate tail risks; e.g., using realized returns, Bollerslev and

Todorov (2011) suggest using high frequency intraday returns and fit an extreme

value distribution to the tails of returns. Also, Kelly and Jiang (2014) estimate

market wide tail risks from the cross-section of firm-level returns. Our paper also

relates to the literature that studies tail risk using option prices. However, while

the existing literature studies tail risk using risk-neutral moments (e.g. Siriwardane

(2015), Gao, Gao, and Song (2017), Gao, Lu, and Song (2017), Bates (2000), and

Schneider and Trojani (2017)), we study tail risk using physical moments. Thereby,

we can investigate physical tail probabilities and study which economic drivers can

explain the time-varying patterns in higher-moment risks.

In summary, higher-moment risks can be measured in real time, and a single

factor explains 90% of the joint variation in higher order moments. Furthermore,

times when higher-moment risks are high are characterized by: (1) low variance, (2)

large (and accelerating) recent price run-ups, (3) low market and funding frictions,

(4) high turnover, and (5) low future expected returns.

The paper proceeds as follows: Section 1 covers the theory behind how we es-
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timate higher order moments and tail probabilities. Section 2 covers the data and

the empirical implementation. Section 3 investigates the relation between our ex

ante moments and ex post realized moments. Section 4 studies the commonalities

in higher order moments. Section 5 investigates the systematic patterns in higher-

moment risks. Section 6 studies the implications of time-varying higher-moment risks

for investors. Section 7 studies the economic drivers of higher-moment risks. Section

8 concludes the paper.

1 Inferring Ex Ante Moments from Asset Prices

We consider an economy where agents can trade two assets, a risk-free asset and a

risky asset. The risk-free asset earns a gross risk-free rate of return Rf
t,T between time

t and time T . The risky asset has a price of S and earns a random gross return Rt,T .

The risky asset pays dividends, Dt,T , between time t and time T such that its gross

return is Rt,T = (ST +Dt,T )/St.

Starting from the standard asset pricing formula, we can relate risk-neutral and

physical expected values of the time T random payoff, XT , as

Et[XTmt,T ] = E∗t [XT ]/Rf
t,T (1)

where the asterisk denotes risk-neutral expectation and mt,T is a stochastic discount

factor. If we define the time T random payoff, Xt,T (n), in the following way

Xt,T (n) = Rn
t,Tm

−1
t,T (2)

then equation (1) implies that the n’th moment of the risky asset’s physical return

distribution can be expressed in terms of the risk-neutral expectation of Xt,T (n):

Et[R
n
t,T ] = Et[R

n
t,Tm

−1
t,T︸ ︷︷ ︸

Xt,T (n)

mt,T ] = E∗t [R
n
t,Tm

−1
t,T︸ ︷︷ ︸

Xt,T (n)

]/Rf
t,T (3)

7



So if we know the pricing kernel m, then we can derive all moments of Rt,T directly

from risk-neutral pricing of the claim to Xt,T (n). Following Martin (2017), we com-

pute the physical expected value of Rn
t,T from the point of view of an unconstrained

rational power-utility investor who chooses to be fully invested in the market. This

investor has initial wealth W0 and terminal wealth WT = W0Rt,T . Given the investor’s

utility function, U(x) = x1−γ/(1 − γ), with relative risk-aversion, γ, we can deter-

mine the investor’s stochastic discount factor. Specifically, combining the first order

condition from the investor’s portfolio choice problem with the fact that the investor

holds the market, the stochastic discount factor becomes proportional to R−γt,T :

mt,T = kR−γt,T (4)

for some constant k which is unobservable to us. However, we do not need to learn k

to estimate physical moments; we can correct for k by rewriting (3) in the following

way. First, setting n = 0 in (2) we get Xt,T (0) = m−1t,T and the standard asset pricing

formula (1) then implies the relation:

E∗t [m
−1
t,T ] = Rf

t,T (5)

Then, inserting (5) and (4) into (3), we obtain an expression of the n’th physical

moment perceived by an unconstrained rational power utility investor who chooses

to be fully invested in the market:

Et[R
n
t,T ] =

E∗t [R
n
t,T

m−1
t,T︷ ︸︸ ︷

Rγ
t,T/k]

E∗t [R
γ
t,T/k︸ ︷︷ ︸
m−1
t,T

]
=
E∗t [R

n+γ
t,T ]

E∗t [R
γ
t,T ]

(6)

since k is a constant.

The relation between physical and risk-neutral moments shown in (6) is central

to our empirical analysis. The key insight is that we can estimate the n’th physical
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moment directly from risk-neutral pricing of Rγ
t,T and Rn+γ

t,T . Furthermore, by pricing

claims to the payoffs Rm+γ
t,T for m ∈ {1, ..., n}, we can then estimate standardized

moments.

To understand how we estimate standardized moments from (6), recall the notion

of the n’th standardized moment formula:

n’th standardized moment of Rt,T = Et

[(
Rt,T − Et[Rt,T ]

Var[Rt,T ]1/2

)n]
(7)

Expanding (7) and replacing physical moments with risk-neutral counterparts as pre-

sented in equation (6), we can arrive at expressions for all physical standardized

moments as functions of risk-neutral moments. For example, the third standardized

physical moment (skewness) can be expressed in terms of risk-neutral moments by

first expanding (7) with n = 3:

Skewnesst,T =
Et[R

3
t,T ]− 3Et[Rt,T ]Et[R

2
t,T ] + 2Et[Rt,T ]3

(Et[R2
t,T ]− Et[Rt,T ]2)3/2

(8)

and then replacing the physical moments in (8) with the risk-neutral counterparts

using equation (6). Similar expressions can be written up for other higher order

moments of interest, as seen in Appendix A. Importantly, the right-hand-side of (6)

consists of asset prices which can be estimated directly from current and observable

call and put options written on the risky asset. Hence, higher order moments can be

estimated in real time, without using historical realized returns or accounting data.

1.1 Inferring Ex Ante Market Tail Probabilities

Next, we show how we estimate ex ante tail probabilities from option prices written

on the market. To understand our approach, note first that the probability at time

t of a market return that is lower than α at time T can be written as the physical
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expectation of an indicator function in the following way

Pt(Rt,T < α) = Et[1{Rt,T<α}] (9)

Using the standard asset pricing formula in (1), we can rewrite the probability in

terms of the risk-neutral measure by adjusting the right hand side of equation (9) for

the inverse of the stochastic discount factor in (4)

Pt(Rt,T < α) =
E∗t [R

γ
t,T1{Rt,T<α}]

E∗t [R
γ
t,T ]

(10)

The right hand side of (10) is an asset price that has the simple representation pre-

sented in Proposition 1, which generalizes Result 2 in Martin (2017) from log-utility

to general power utility for any level of relative risk-aversion.

Proposition 1 For the unconstrained rational power utility investor who wants to

hold the market, the conditional physical probability that market return from time t

to T is lower than α is:

Pt(Rt,T < α) =
Rf
t,T

E∗t [R
γ
t,T ]

[
αγput′t,T (αSt −Dt,T )− γ

St
αγ−1putt,T (αSt −Dt,T )

+

∫ αSt−Dt,T

0

γ(γ − 1)

S2
t

(
K +Dt,T

St

)γ−2
putt,T (K)dK

]

where put′t,T (αSt − Dt,T ) is the first derivative of the put option price with strike

αSt −Dt,T .

Proof. The results of Breeden and Litzenberger (1978) imply the equality

E∗t [R
γ
t,T1{Rt,T<α}] = Rf

t,T

∫ ∞
0

(
K +Dt,T

St

)γ
1{K<αSt−Dt,T }put′′t,T (K)dK
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where put′′t,T (K) is the second derivative of the put option price written on the un-

derlying process S. Splitting the integral at αSt −Dt,T we have

E∗t [R
γ
t,T1{Rt,T<α}] = Rf

t,T

∫ αSt−Dt,T

0

(
K +Dt,T

St

)γ
put′′t,T (K)dK

Proposition 1 then follows from using integration by parts twice.

2 Data and Empirical Implementation

We use the Ivy DB database from OptionMetrics to extract information on vanilla call

and put options written on the S&P 500 index for the last trading day of every month.

The data is from January 1996 to December 2015. We obtain implied volatilities,

strikes, closing bid-prices, closing ask-prices, and maturities. As a proxy for the risk-

free rate, we use the zero-coupon yield curve from the Ivy DB database, which is

derived from the LIBOR rates and settlement prices of CME Eurodollar futures. We

also obtain expected dividend payments. We consider options with times to maturity

between 10 and 720 days, and apply standard filters, excluding contracts with zero

open interest, zero trading volume, quotes with best bid below $0.50, and options

with implied volatility higher than 100%.

We use daily realized returns to estimate realized daily moments. We also estimate

monthly moments from monthly returns. In Appendix A, we discuss the estimation

of realized moments in detail.

2.1 Estimating Market Moments

There is a large body of literature devoted to pricing asset derivatives such as those

in (6), using observable option prices written on the asset. Indeed, Breeden and

Litzenberger (1978), Bakshi and Madan (2000), and Bakshi, Kapadia, and Madan

(2003) show that the arbitrage free price of a claim on some future (twice differen-

tiable) payoff can be expressed in terms of a continuum of put and call option prices.
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Specifically for our purposes, using the results of Breeden and Litzenberger (1978),

Martin (2017) shows that we can write the n’th physical moment of Rt,T as

Et[R
n
t,T ] =

E∗t [R
n+γ
t,T ]

E∗t [R
γ
t,T ]

=
(Rf

t,T )n+γ +Rf
t,T [p(n+ γ) + c(n+ γ)]

(Rf
t,T )γ +Rf

t,T [p(γ) + c(γ)]
(11)

with

p(θ) =

∫ Ft,T

0

θ(θ − 1)

Sθt

(
StR

f
t,T − Ft,T +K

)θ−2
putt,T (K)dK (12)

c(θ) =

∫ ∞
Ft,T

θ(θ − 1)

Sθt

(
StR

f
t,T − Ft,T +K

)θ−2
callt,T (K)dK

where Ft,T is the forward price and callt,T (K) and putt,T (K) are call and put option

prices written on the risky asset at time t with horizon T − t and strike K.

In practice, we do not observe a continuum of call and put options and therefore

(11) must be numerically approximated. Let Ft,T be the forward price and, using

the notation from Martin (2017), we can write the price, Ωt,T (K), at time t of an

out-of-the money option with strike K and maturity T as

Ωt,T (K) =

 callt,T (K) if K ≥ Ft,T

putt,T (K) if K < Ft,T

We let K1, ..., KN be the (increasing) sequence of observable strikes for the N out-of-

the money put and call options and define ∆Ki = Ki+1−Ki−1

2
with

∆Ki =

 Ki+1 −Ki if i = 1

Ki −Ki−1 if i = N .

We approximate the integrals in (12) by observable sums such that the n’th physical
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moment becomes:

Et[R
n
t,T ] =

(Rf
t,T )n+γ +Rf

t,T

[∑N
i=1

(n+γ)(n+γ−1)
Sn+γ

(StR
f
t,T − Ft,T +Ki)

n+γ−2Ωt,T (Ki)∆Ki

]
(Rf

t,T )γ +Rf
t,T

[∑N
i=1

γ(γ−1)
Sγ

(StR
f
t,T − Ft,T +Ki)γ−2Ωt,T (Ki)∆Ki

]
(13)

In summary, combining equation (13) with the standardized moment formula in equa-

tion (7), we can express standardized physical moments in terms of the derivatives

prices written on the risky asset.

When we estimate physical moments for a given horizon, say T , for which we do

not observe put and call prices, we linearly interpolate the (standardized) moments

between the two closest horizons available in the data. In a few cases, we need to

extrapolate to obtain moments for the desired horizon.

Our benchmark investor has power utility and a coefficient of relative risk-aversion

of 3, that is, γ = 3. This level of risk-aversion as the benchmark is motivated by

the results of Bliss and Panigirtzoglou (2004), i.e., using our sample we replicate

their results and find that 3 is the optimal option-implied level of risk aversion when

matching realized returns at the monthly horizon. We also estimate moments for the

risk-neutral investor, the log-utility investor, and the power utility investor with a

risk-aversion coefficient of 5.

Figure 1 shows monthly higher order moments and Table 1 shows the moment

summary statistics. The average ex ante estimated skewness is negative for both

horizons and all levels of risk aversion, suggesting that the physical distributions are

left skewed. Consistent with the results of Neuberger (2012), we find that average

skewness is not diminishing in the horizon, in the sense that skewness is close to the

same on a monthly and quarterly horizon. Similarly, average kurtosis is larger than

3 for both horizons and all levels of risk aversion, which means that the physical

distributions are leptokurtic; that is, the tails of the physical return distributions are

fatter than what is implied by a normal distribution.
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2.2 Estimating Market Tail Probabilities

The main challenge when implementing Proposition 1 is that we are required to es-

timate the first derivative of the put option price written on the risky asset at strike

αSt−Dt,T . To handle a sparse and discrete set of observed option prices, we smoothen

observed option prices using a Gaussian kernel smoothening procedure. Specifically,

we smoothen implied volatilities around the strike αSt −Dt,T and choose the kernel

bandwidth to minimize the squared errors between the observed and estimated im-

plied volatilities under the constraint that the estimated option prices do not allow

for arbitrage.

Given a smooth set of option prices around the strike αSt−Dt,T , we compute the

first derivative as the slope between the two adjacent prices:

put′t,T (αSt −Dt,T ) =
putt,T (αSt −Dt,T + h)− putt,T (αSt −Dt,T − h)

2h
(14)

where h is the chosen grid step size in the discretization.

Let K1, ..., KM be the (increasing) sequence of observable strikes for the M out-of-

the money put options where KM is the observed strike that is closest to αSt−Dt,T .

We approximate the integral in Proposition 1 by the observable sum:

M∑
i=1

γ(γ − 1)

S2
t

(
Ki +Dt,T

St

)γ−2
putt,T (Ki)∆Ki (15)

Inserting (14) and (15) into Proposition 1, we can estimate physical probabilities.

3 Estimated Moments Predict Realized Moments

In this section, we show that the ex ante higher order moments estimated using the

methods described in Sections 1 and 2 predict ex post realized higher order moments.

We start with a simple sorting exercise. For each moment, we first sort ex post

realized monthly returns into a “low” or “high” bucket depending on whether the ex
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ante moment is lower or higher than its median time series value. Next, we estimate

the ex post moments for each bucket; for example, we estimate moments using the

monthly ex post returns sorted into the “high” bucket. Figure 2 shows the monthly ex

post realized moments of the two buckets for all moments. The ex post realized returns

sorted into the “high” buckets exhibit in-sample higher moment values, suggesting

that our ex ante moments predict ex post moments, for example, the “high” bucket

for kurtosis has an in-sample kurtosis of 5.93, while the “low” bucket has a kurtosis

of 2.85.

Next, we test more formally the relation between ex ante and ex post moments.

Specifically, we conduct two tests which differ in the way we estimate ex post real-

ized higher order moments. First, we test if the bucket values following our sorting

exercise are extreme compared to what a random sample would produce. For each

moment, we bootstrap a distribution using permutations and then evaluate where in

this distribution our observed “low” and “high” bucket values lie. Panel A of Table

2 reports the values from the ex ante sorting and significance, which is computed

from the bootstrapped distribution in the following way: for the “low” buckets, we

estimate the frequency at which a random permutation lies below what we observe.

For the “high” buckets, we estimate the frequency at which a random permutation

lies above what we observe. For example, the −0.83 value for skewness in the “low ex

ante” bucket is not in the lower 10% of the bootstrapped distribution and is therefore

insignificant at a 90% level. However, the 5.93 value for kurtosis in the “high ex ante”

bucket is in the upper 5% of the bootstrapped distribution for kurtosis and is there-

fore significant at a 95% level. Importantly, our ex ante moments show statistical

significance at a 95% level at least once, for every moment except skewness. Compar-

ing these results to the results we get when sorting the ex post realized returns into

two buckets based on the trailing monthly moments (estimated using daily returns),

we find that our ex ante moments clearly outperform.

Second, we estimate time-varying ex post monthly (and quarterly) realized mo-

ments using daily returns; that is, for a given month, we estimate the in-sample
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moments for that month using the daily returns during that month. The first two

columns of Panel B of Table 2 report correlations between our ex ante moments and

the ex post realized moments. The latter two columns report correlations between ex

post realized moments and their trailing (lagged) moment. We report bootstrapped

standard errors in the appendix.

Correlations between our ex ante variances and ex post variances are 49% to 67%,

and these correlations are both statistically significant at a 99% level. We also find

strong correlations between ex ante and ex post skewness, ranging from 21% to 25%,

which are both significantly different from zero at a 99% level. Correlations of our

ex ante and ex post hyperskewness are positive and significant at the 99% level.

Comparing the correlations of our ex ante moments to those of the trailing moments

we find that, on a monthly horizon, trailing moments do not predict either skewness

or hyperskewness whereas our ex ante moments do. On a quarterly horizon, trailing

moments do predict ex post realized moments, however the correlations are lower

than for our ex ante moments.

Neither our ex ante moments nor the trailing moments seem to be able to predict

ex post kurtosis or hyperkurtosis. For our ex ante moments, this might be because

of the fact that there are fewer available option prices in the right tail of the dis-

tribution, that is, deep out-of-the-money call options are traded less frequently than

deep out-of-the-money put options. We therefore test if our ex ante kurtosis (and

hyperkurtosis) can predict left kurtosis, which is for our purposes the important tail

of the distribution to be able to predict. Therefore, we follow Denbee, Julliard, Li,

and Yuan (2016), and estimate ex post realized left kurtosis in the following way:

Realized left kurtosist,T =

∑
s

(
Daily returns−Realized daily meant,T

Realized daily variance
1/2
t,T

)4

Realized kurtosist,T

where s is the days in the month where Daily return < Realized daily meant,T . The

realized right kurtosis is defined in the obvious way, where daily returns are larger

than the realized mean.
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Panel C of Table 2 shows the correlations between our ex ante kurtosis and the

ex post realized left kurtosis and left hyperkurtosis. Both on a monthly and quar-

terly horizon, our ex ante kurtosis and hyperkurtosis are positively and statistically

significantly correlated to ex post realized left kurtosis and left hyperkurtosis. This

result should be interpreted in the following way: times when our ex ante kurtosis

is high are times when the ex post realized kurtosis can be attributed primarily to

the left tail of the return distribution. Comparing the correlations between our ex

ante moments and ex post realized left kurtosis and left hyperkurtosis to the corre-

lations between trailing moments and ex post left kurtosis and left hyperkurtosis, we

find that while monthly trailing moments do not predict ex post moments, quarterly

trailing moments do predict ex post realized left kurtosis and hyperkurtosis, but the

correlations are smaller than for our ex ante moments.

Overall, Figure 2 and Panel A, B, and C of Table 2 show that our ex ante moments

predict ex post realized moments. It is natural to worry that the results are driven by

the large price moves that occurred during the period of financial distress from 2008 to

2009. To address this concern, Panel A of Table 3 shows correlations between our ex

ante moments and ex post realized moments when removing observations that overlap

with the period August 1st 2008-July 31st 2009. The results are largely unchanged,

suggesting that the financial crisis does not drive the strong predictive results.

Panel B of Table 3 shows th correlations for other levels of risk-aversion. The

results from the point of view of a log-utility investor or a power-utility investor with

a risk-aversion of 5 are not remarkably different from the results presented in Panel

B of Table 2 for the power-utility investor with a risk-aversion of 3.

As a second robustness test of moment predictability, we ask if physical higher

order moments predict ex post realized moments when controlling for risk-neutral mo-

ments. Another way to put it is to ask: do we gain anything in terms of predictability

for moving from risk-neutral to physical moments? Table 3 shows the results of the
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following two-stage procedure. In the first stage, we run the two regressions:

Realized Momentt,T = α1 + β1E
∗
t [Momentt,T ] + εt,T

Et[Momentt,T ] = α2 + β2E
∗
t [Momentt,T ] + ηt,T

where Et[Momentt,T ] is our ex ante physical moment and E∗t [Momentt,T ] is the corre-

sponding risk-neutral moment. The residuals, ε and η, are by construction orthogonal

to risk-neutral moments, and their correlation therefore determines whether physical

moments can explain the variation in realized moments in excess of what is explained

by risk-neutral moments. In the second stage we estimate the correlation between ε

and η. The first two columns of Panel C of Table 3 report these correlations, and

bootstrapped standard errors that correct for the generated regressor problem we face

when estimating the residuals in the first stage regressions are in the appendix.

The correlations between ε and η on a monthly horizon range from 0.09 to 0.16

and are statistically significant at a 95% level for kurtosis, hyperskewnes, and hyper-

kurtosis, implying that our monthly ex ante moments still predict ex post realized

moments when controlling for risk-neutral moments. The results are weaker for quar-

terly moments; only hyperskewness is statistically significant and positive.

As a third robustness test of predictability, we test if our ex ante estimated higher

order moments predict ex post realized moments when controlling for trailing (lagged)

moments. We therefore repeat the two-stage procedure described above. In the first

stage we run the following two regressions

Realized Momentt,T = α3 + β3Realized Momentt−(T−t),t + κt,T

Et[Momentt,T ] = α4 + β4Realized Momentt−(T−t),t + ψt,T

The residuals, κ and ψ, are by construction orthogonal to the historical moments

and their correlation therefore determines whether physical moments can explain the

variation in the realized moments in excess of what is explained by historical moments.

In the second stage we estimate the correlation between κ and ψ. The last two columns
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of Panel C of Table 3 report these correlations, and bootstrapped standard errors that

correct for the generated regressor problem we face when estimating the residuals

in the first stage regressions are in the appendix. Controlling for historical (lagged)

moments does not change our results. Our ex ante moments have predictive power for

ex post realized moments in excess of what is explained by historical moments. Since

trailing quarterly moments do predict ex post realized moments, it is particularly

important to notice that our quarterly moments add predictability in excess of what

the realized trailing moment counterpart can predict.

4 Commonalities in Higher-Moment Risks

Higher order moments exhibit persistent and interesting time-series co-movements,

i.e., higher-moment risks move together, in the sense that skewness and hyperskew-

ness are more negative at times when kurtosis and hyperkurtosis are more positive.

To see this, Table 4 shows monthly (Panel A) and quarterly (Panel B) pairwise corre-

lations between the first six moments of the physical return distribution. The green

(lower right) box shows pairwise correlations between higher order moments. We have

flipped the signs for skewness and hyperskewness such that a higher (more positive)

value can be translated into higher risk — recall that lower (more negative) skew-

ness and hyperskewness implies more mass in the left tail of the return distribution

and therefore higher probabilities of large down movements. These correlations are

all positive and large, suggesting that risk as measured by individual higher order

moments tends to be simultaneously high or low.

The strong co-movement of higher order moments suggests that the joint variation

in higher order moments can be attributed to a single factor. We therefore estimate

the principal components of the space spanned by skewness, kurtosis, hyperskewness,

and hyperkurtosis. The four principal components are shown in Table 5. Interestingly,

at both the monthly and quarterly horizon, the first principal components explains

about 90% of the joint variation in higher order moments, underlining the strong
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co-movement in higher-moment risks.

As was expected, the first principal component eigenvectors have the same signs

for skewness and hyperskewness, while the sign is opposite for kurtosis and hyper-

kurtosis. We standardize each moment to make the eigenvector loadings comparable.

The size of the loadings for the first principal components are very similar across

the moments, namely −0.45 (−0.47 quarterly) for skewness, 0.52 (0.51 quarterly)

for kurtosis, −0.52 (−0.52 quarterly) for hyperskewness, and 0.50 (0.50 quarterly)

for hyperkurtosis, implying that the first principal component is approximately the

average of the standardized higher order moments with the signs flipped for skewness

and hyperskewness. As shown in Ebert (2013), an investor with power utility has

a preference for odd number moments of any order and is averse to even number

moments of any order. A high value of the first principal component can therefore

be interpreted as times when higher order moments (the moments that add mass to

the lower tail of the return distribution) are on average large. It is therefore natural

to define the first principal component as a higher-moment risk index.

Higher-Moment Risk Index: We define a higher-moment risk index (HRI) as the

first principal component of the space spanned by skewness, kurtosis, hyperskewness,

and hyperkurtosis.

5 Systematic Variation in Higher-Moment Risks

Figure 1 displays the time-series plot of the monthly HRI which shows clear systematic

variation in higher-moment risk. During the period of financial market distress from

2008 to 2009, HRI was low, whereas during the low variance period from 2004 to

2007, leading up to the financial crisis, monthly HRI was high, suggesting that higher-

moment risks are high at times when markets are calm. In this section we investigate

these systematic patterns.

The blue (upper right) box of Panel A of Table 4 shows the pairwise correlations

between variance and higher order moments. Variance is negatively correlated to the
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negative of skewness, kurtosis, the negative of hyperskewness, and hyperkurtosis with

correlations ranging from 0.41 to 0.54. This finding is interesting because it reveals

the systematic variation in higher-moment risks; that is, higher-moment risks are high

at times when the market is perceived to be safe and calm as measured by variance.

Said differently, risk doesn’t go away – it hides in the tails.

Figure 3 shows time-series plots of variance and the HRI. In the years after the

high variance period in 2003 (following the dot.com bubble), as the market became

more and more safe as measured by variance, higher-moment risks move steadily in

the opposite direction, i.e., skewness became more negative, kurtosis became more

positive, and overall the HRI increase significantly. Furthermore, as the financial

crisis started to reveal itself, following the default of the Bear Sterns hedge funds, then

market uncertainty spread through higher variance – as the tail of the distribution

diminished, higher-moment risks decreased.

Somewhat surprisingly, the HRI peaked on June 30th 2014, when monthly ex

ante variance was at its lowest point in seven years. This period, which was calm as

measured by variance, was associated with high higher-moment risks. The main polit-

ical and economical uncertainty during this period was associated with the economic

sanctions made by the US targeting Russia over Russia’s continuing involvement in

Crimea.

Panel A of Table 6 shows correlations between variances and the HRI. Generally,

higher-moment risk as measured through the HRI is high at times when variance

is low. On a monthly horizon, the magnitude of the correlation between variance

and HRI is −0.53 with 95% bootstrapped confidence bounds of [−0.60,−0.48]. The

magnitudes and confidence bounds are quantitatively the same for the quarterly HRI.

Related to the co-movements between variance and higher-moment risks, we also

find that higher-moment risks tend to be high after recent market run-ups. To show

this, Figure 4 shows time-series plots of the past two year return and the HRI. Past

returns and the HRI are positively correlated with correlations of 0.38 and 0.35 on

monthly and quarterly horizons respectively. To further investigate the dependen-
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cies between market run-ups and subsequent higher-moment risks we run a set of

regressions of ex ante moments onto the past two year return,2 rt−24,t = Rt−24,t − 1:

Mt,T = β0 + β1rt−24,t + εt,T (16)

where the moments, Mt,T , are variance, skewness, kurtosis, hyperkurtosis, hyper-

skewness, and the higher-moment risk index (HRI). Panel B of Table 6 shows the β1

coefficients of regression (16) and in Panel C of Table 6 we show β1 coefficients of

regression (16) when controlling for the lagged ex ante moment.

We find a negative and significant relation between past returns and variance.

This finding is consistent with the intuition that times after market run-ups are

“calm” times where risk, as measured by variance, is low. Looking at skewness, we

find a statistically significant and negative relation with past returns, implying that

the return distribution tilts to the right and leaves more probability mass in the left

tail of the return distribution subsequent to market run-ups. Similarly, kurtosis is

statistically significant and positive in past returns, hyperskewness is negative in past

returns, and hyperkurtosis is positive in past returns. The results are quantitatively

similar for monthly and quarterly moments. Panel C of Table 6 shows that controlling

for lagged risk does not change our results. We still find strong significant systematic

variation in higher order moments.

6 Implications for Investors

The results presented in Table 4, Table 5, and Table 6 show that times when variance

is low are times when the market’s return distribution is highly left skewed (due to

large negative skewness and hyperskewness) and fat tailed (due to large positive kur-

tosis and hyperkurtosis). That higher-moment risks are high at times when variance

is low runs counter to the way we usually think about risk, i.e., we often equate risk

with variance, saying that risk is high at times when variance is high. To better un-

2This is similar to the market run-up period of Greenwood, Shleifer, and You (2017).
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derstand the importance of higher-moment risks, we next investigate portfolio risks

for two investors who both hold a portfolio of cash and the market.

The first investor holds a constant notional in the market. The probability that

the investor’s portfolio realizes an unexpected return (the shock to the portfolio),

rshockt,T = Rt,T − Et[Rt,T ], less than α is:

Pt(r
shock
t,T < α) (17)

The constant notional investor is exposed to both time-varying variance risk and time-

varying higher-moment risks; that is, the probability that the portfolio realizes an

unexpected return less than α depends on both conditional variance and conditional

higher order moments.

The second investor targets a constant level of portfolio volatility, i.e., the investor

moves wealth in and out of the market such that the portfolio has constant volatil-

ity. Such volatility-targeting strategies are common practice and have been shown

to generate high risk-adjusted returns (e.g. Moskowitz, Ooi, and Pedersen (2012),

Asness, Frazzini, and Pedersen (2012), Moreira and Muir (2017a), and Moreira and

Muir (2017b)). If σt,T is the market’s conditional volatility, rt,T = Rt,T − 1 is the

return on the market, and rft,T is the risk-free rate of return, then rvol targett,T is the

return on the volatility-targeting investor’s portfolio who targets a constant volatility

of σvol target:

rvol targett,T =
σvol target

σt,T︸ ︷︷ ︸
ωt,T

rt,T +

(
1− σvol target

σt,T

)
rft,T

where ωt,T is the fraction of wealth held in the market. If ωt,T > 1, the investor levers

up by borrowing cash to invest more than all the initial wealth in the market. We

assume for simplicity that the investor is unconstrained. The unexpected return of

the volatility-targeting investor’s portfolio is rvol target,shockt,T = rvol targett,T − Et[rvol targett,T ]
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which can be rewritten as:

rvol target,shockt,T = ωt,T rt,T + (1− ωt,T ) rft,T −
(
ωt,TEt[rt,T ] + (1− ωt,T ) rft,T

)
= ωt,T r

shock
t,T

The probability that the volatility-targeting investor’s portfolio realizes an unexpected

return less than α is:

Pt(r
vol target,shock
t,T < α) = Pt

(
σvol target

σt,T
rshockt,T < α

)
(18)

= Pt

(
rshockt,T <

α

σvol target
σt,T

)
For example, if σvol target = 5% and α = −10%, then the probability that the volatility-

targeting investor’s portfolio realizes a return that is 10% lower than expected is

Pt
(
rshockt,T < −2σt,T

)
.3 The volatility-targeting investor’s portfolio is only exposed to

time-varying higher-moment risks, that is, given a level of σvol target, the probability

that the investor’s portfolio realizes a return less than α depends only on conditional

higher order moments. Time-varying variance risk is eliminated by targeting a con-

stant level of portfolio volatility.

Recall that σt,t+h is the ex ante volatility from time t to t+ h, and we then define

σ̄h as the time series average of σt,t+h. For example, the time-series average of monthly

volatility for the S&P 500 index is σ̄h = 5.0%. Figure 5 shows time-series plots of

monthly probabilities, as shown in (17) and (18), where α = −2σ̄month = −10.1% and

the volatility-target is σvol target = 5.0%.

The top figure shows the probabilities of −2σt,t+1 drops in the market, which are

the probabilities of the volatility-targeting investor’s portfolio return. The horizontal

line shows the probability of a −2σt,t+1 drop in the market implied by a normal

distribution, which is 2.5%. The shaded area between the two lines is higher-moment

3Notice that this probability is not necessarily the same as the probability of a port-
folio return of −10%. In the example, the probability of a portfolio return of −10% is
Pt

(
rshockt,T < −2σt,T − Et[rt,T ]

)
.
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risk; that is, the excess probability of a tail event due to negative skewness, excess

kurtosis, and all other higher order moments. Interestingly, the probabilities, in excess

of what is implied by a normal distribution, range from 1.1% to 7.2%, showing that

time-varying higher-moment risks have large economic implications for the risk of the

volatility-targeting investor’s portfolio. The probability of a −2σt,t+1 drop peaked

on June 30th 2014 with a probability of 9.7%, almost three times the size of its low

on February 27th 2008, where the probability was 3.6%. The systematic variation

in the tail probabilities, from 3.6% at high variance times to 9.7% at low variance

times, emphasizes that investors who manage risk by managing variance are implicitly

imposing more risk into their portfolio when variance is low.

The bottom figure shows the probabilities of −2σ̄ = −10.1% drops in the mar-

ket along with the probabilities implied by a normal distribution. The shaded area

between the two lines is higher-moment risk for the constant notional investor. The

probability of a −10.1% drop in the market is, as expected, high when variance is

high. Importantly, higher-moment risk also contributes to the portfolio risk for the

constant notional investor, and the economic magnitude is large. For example, the

probabilities, in excess of what is implied by a normal distribution, range from 0.5%

on October 31st 2006 to 4.8% on August 31st 2015. On August 31st 2015, the total

probability of a −10.1% drop was 9.90%, which means that, on that day, 48% of the

probability mass in the left tail of the return distribution beyond −10.1% was due to

higher-moment risk.

Figure 6 shows time-series plots of monthly probabilities, as shown in (17) and

(18), where α = −3σ̄month = −15.1%. The probability of a portfolio return that is less

than −3σt,t+1 peaked on November 30th 2006 with a probability of 3.6%, which is four

times the size of its low on February 27th 2008, where the probability was 0.8%. These

probabilities are far from what is implied by a normal distribution, which is 0.13%.

Specifically, the average probability of a −3σt,t+1 event is 1.8%, which is fourteen

times higher than what is implied by the normal distribution. Figure 6 shows that

higher-moment risk is even more important when evaluating the probability of events
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further out in the lower tail of the return distribution; that is, the relative amount

of probability mass in the lower tail that is due to higher-moment risk increases the

further we go out in the tail.

The probabilities co-move in the sense that, when the probability of a −2σt,T

event is high, then the probability of a −2σ̄ event is low. To further investigate these

patterns, Panel A of Table 7 reports correlations between variance and the probability

of a portfolio return that is less than α for the constant notional investor and the

volatility-targeting investor. The first column of Panel A shows the correlations

between variance and the probability that the market realizes an unexpected return

less than −2σ̄h (the probability of a constant notional investor)

Pt(r
shock
t,t+h < −2σ̄h)

The correlations range from 0.94 to 0.98 with tight bootstrapped confidence bounds,

showing that the conditional probability that the market realizes a return less than

−10.1% monthly or −15.1% quarterly is highly correlated with conditional variance,

which would be expected just from looking at Figure 5.

Panel A of Table 7 also reports correlations between variance and the probability of

a portfolio return that is less than α for the volatility-targeting investor. Specifically,

we estimate the correlations between variance and the probabilities of a −2σt,t+h

Pt(r
shock
t,t+h < −2σt,t+h)

This probability is equivalent to the probability in (18) with α
σvol target = −2. In-

terestingly, the correlations in the last two column of Panel A are all negative and

range from −0.70 to −0.44, with tight bootstrapped confidence bounds. These high

negative correlations show that the portfolio of the volatility-targeting investor is

most risky at times when variance is low, even though the investor has eliminated all

dependencies on variance in the portfolio.

This finding can help explain why Moreira and Muir (2017a) and Moreira and Muir
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(2017b) find that investors can earn high Sharpe ratios by moving wealth into the

market at times of low variance and moving wealth out of the market when variance

increases (in some sense mimicking a volatility targeting strategy). The relatively (to

variance) high expected return in calm periods may be compensation for the elevated

higher-moment risks.

To better understand the systematic variation in higher-moment risks, we next

investigate the relation between tail probabilities and past returns. Specifically, we

regress tail probabilities onto past two year returns, e.g. the probability of a −2σt,t+1

drop as

Pt(r
shock
t,t+h < −2σt,t+h) = β0 + β1rt−24,t + εt,T (19)

Panel B of Table 7 reports β1 coefficients from regressions such as in (19). We find that

the probability of both a −2σt,t+1 and a −3σt,t+1 drop in the market is statistically

significant and positively related to past returns. The economic magnitude is such

that a 50% market run-up over the past two years implies a 1% higher probability

of a monthly −2σt,t+1 drop in the market. Furthermore, the monthly probability

of a −10% drop in the market is negatively related to past returns, which is to be

expected, because this probability is highly correlated to variance, as shown in Table

6, and periods after market run-ups are usually associated with low variance. Panel C

of Table 7 reports β1 coefficients from regressions such as in (19) when controlling for

lagged probabilities. Controlling for lagged probabilities does not change our results:

high past two year returns imply higher current tail probabilities for the volatility-

targeting investor.

Our finding that market run-ups are related to contemporaneously higher higher-

moment risks supplements the existing literature that relates market run-ups to subse-

quent (realized) market “crashes”, e.g. Greenwood, Shleifer, and You (2017). Specif-

ically, we find that the probability of an x% drop in the market decreases in past

returns. High past returns means low current volatility and a low probability of
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a subsequent x% drop in the market price. However, conditional on variance, the

probability of an x% drop in the market increases in past returns.

7 What Explains Higher-Moment Risk?

In this section we investigate three possible explanations for the systematic variation

in higher-moment risk. First, we investigate how higher-moment risk is associated

with financial intermediary leverage. Second, we study how market and funding

liquidity relates to higher-moment risk. Third, we investigate how higher-moment

risk is associated with common “bubble” characteristics. Throughout this section,

we will focus on monthly horizon ex ante higher-moment risk.

7.1 The Volatility Paradox and Intermediary Leverage

The volatility paradox is the phenomenon that endogenous risk is high even though

exogenous risk is low (Brunnermeier and Sannikov (2014)). Loosely speaking, exoge-

nous risk can be seen as variance and endogenous risk can be seen as higher-moment

risk. When variance is low, investors take on more risk in their positions, for in-

stance through leverage, which creates endogenous risk. This negative relation be-

tween higher-moment risk and variance is closely related to our empirical findings,

we therefore test if our finding can be linked to the economic drivers suggested by

Brunnermeier and Sannikov (2014).

One way in which this endogenous risk may arise is through intermediary lever-

age.4 We test if financial intermediary leverage can help explain higher-moment risks

by running the following regression:

Mt,T = β0 + β1Leveraget + εt,T (20)

4Several papers have shown that financial intermediary leverage is associated with asset returns,
e.g. He, Kelly, and Manela (2016), He and Krishnamurthy (2013), Adrian and Boyarchenko (2012),
and Adrian, Etula, and Muir (2014).
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where the risk, Mt,T , is variance, skewness, kurtosis, hyperkurtosis, hyperskewness,

and the higher-moment risk index (HRI). Leverage is the financial intermediary lever-

age ratio of He, Kelly, and Manela (2016). Regression (20) relates aggregate financial

intermediary leverage to contemporaneous higher-moment risks. Panel A of Table 8

shows the results of regression (20). We find that leverage is positively associated with

contemporaneous ex ante variance, which is consistent with financial intermediary

leverage being counter-cyclical, as noted in He, Kelly, and Manela (2016). The first

column of Panel A shows that aggregate financial intermediary leverage is not related

to the HRI: we find a regression coefficient pf −0.15 which is statistically insignif-

icant. Decomposing higher-moment risks into individual moments, we do not find

a significant relation between financial intermediary leverage and individual higher

order moments. Overall, aggregate leverage does not help explain higher-moment

risks.

Next, we test if conditional (on variance) financial intermediary leverage is asso-

ciated with higher-moment risks. We run the regression:

Mt,T = β0 + β1Leveraget + β2Variancet,T + εt,T (21)

Panel B of Table 8 reports the results of regression (21). Interestingly, we find that,

conditioning on ex ante variance, financial intermediary leverage can help explain

contemporaneous higher-moment risks. We find that skewness, kurtosis, hyperskew-

ness, and hyperkurtosis all load statistically significantly on financial intermediary

leverage, with negative signs for skewness and hyperskewness and positive signs for

kurtosis and hyperkurtosis. Furthermore, the HRI is positively related to conditional

financial intermediary leverage. Given a level of ex ante variance, higher leverage is

associated with higher contemporaneous higher-moment risks.

Panel C in Table 8 reports regression (21) when controlling for lagged risk. Con-

trolling for lagged risk does not change our results. Aggregate financial intermediary

leverage is in general not associated with higher-moment risks. Given a level of ex
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ante variance, and controlling for lagged risk, higher leverage is associated with higher

contemporaneous higher-moment risks.

7.2 Market Liquidity and Funding Liquidity.

Several previous papers link market liquidity and funding liquidity to aspects of the

stock market’s return distribution. Christoffersen, Feunou, Jeon, and Ornthanalai

(2016) suggest market illiquidity as an economic factor driving risk-neutral market

variance and jump risks, or equivalently, higher order moments. They argue that mar-

ket illiquidity is the common culprit of market price drops in cases when the price

drop happened without news about fundamentals, and it is therefore a reasonable

economic driver of market moments. Brunnermeier and Pedersen (2009) show that,

from a theoretical point of view, stocks with low market (and funding) liquidity have

high variance because they are associated with high margin requirements. Further-

more, Danilova and Julliard (2015) develop a model in which volatility and illiquidity

are jointly determined by the same equilibrium forces.

First, we test if high market illiquidity is associated with high contemporaneous

ex ante variance. Thereafter, we investigate the relation between market illiquidity

and higher-moment risks. When testing the relation between higher-moment risks

(or variance) and market illiquidity, we run the regression:

Mt,T = β0 + β1Bid-ask spreadt + εt,T (22)

where the risk, Mt,T , is variance, skewness, kurtosis, hyperkurtosis, hyperskewness,

and the higher-moment risk index (HRI). As a proxy for market illiquidity, we follow

Christoffersen, Feunou, Jeon, and Ornthanalai (2016), and use the average value-

weighted bid-ask spread of constituents of the S&P 500 index.

Panel A of Table 9 reports the results of regression (22). We find that higher

market illiquidity is associated with higher contemporaneous ex ante variance, which
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is consistent with the model of Brunnermeier and Pedersen (2009). The effect is

statistically significant at a 99% level and controlling for lagged variance does not

change the result.

The HRI is negatively related to market illiquidity with a regression coefficient of

−1.22, which is statistically significant at a 99% level. When we control for lagged

HRI, we still get a negative relation between market illiquidity and higher-moment

risks, but the relation is insignificant. The negative relation between the HRI and

market illiquidity shows that higher-moment risks tend to be high at times when the

market is most liquid.

Next, we test the relation between funding illiquidity and higher-moment risks.

We run the regression:

Mt,T = β0 + β1TED spreadt + εt,T (23)

where the risk, Mt,T , is variance, skewness, kurtosis, hyperkurtosis, hyperskewness,

and the higher-moment risk index (HRI). The TED spread is a common proxy for

funding illiquidity, e.g. Frazzini and Pedersen (2014). The TED spread is the three

month LIBOR intrabank interest rate minus the three month T-bill interest rate and

it is available from the St. Louis FED.

Panel B of Table 9 reports the results of regression (23). Contemporaneous ex ante

variance is positively related to funding illiquidity, higher TED spread is associated

with higher ex ante variance. We find that the HRI is negatively related to funding

illiquidity which means that, higher-moment risks are high at times when there is low

friction in the funding market. Controlling for the lagged HRI does not change our

result.

Figure 7 shows time-series plots of market illiquidity and funding illiquidity with

the HRI. Consistent with the results presented in Table 9, we see that the HRI is

negatively correlated with both the bid-ask spread and the TED spread.
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7.3 “Bubble” Characteristics

A range of macroeconomic variables have been proposed as possible indicators of

increased market “crash” risks, or equivalently, increased higher-moment risks. A

partial list of the variables include the suggestion of Chen, Hong, and Stein (2001),

who suggest turnover, Pontiff and Woodgate (2008), who use issuance as a charac-

teristic, and Greenwood, Shleifer, and You (2017), who propose price acceleration as

a higher-moment risk characteristic.

In this section we investigate the relation between common market “crash” indica-

tors and contemporaneous ex ante higher-moment risks. We therefore run regressions

on the form:

HRIt,T = β0 + β1Characteristict + εt,T (24)

where the “bubble” characteristics are: 1) The Greenwood, Shleifer, and You (2017)

variable acceleration, which is defined as the annualized past two year return minus

the return of the first year of the two year return. Acceleration captures the con-

vexity in the recent price path and a high value of acceleration is intended to be

associated with high contemporaneous ex ante higher-moment risks. 2) Issuance as

the percentage of firms in the S&P 500 index that issued equity in the past year.

We follow Greenwood, Shleifer, and You (2017), and define an equity issuance as the

event that a firm’s split-adjusted share count increased by five percent or more. 3)

Market turnover. The market valuation measures are: 4) CAPE, the Shiller cycli-

cally adjusted price-earnings ratio. 5) The dividend price ratio as the past two year

dividends divided by the current market price. 6) Cay, the Lettau and Ludvigson

(2001) log consumption - aggregate wealth ratio.

Table 10 reports the results of regression (24). Marginally, we find that cay is

negatively and significantly related to the HRI. Calm times when expected returns,

as proxied by cay, are low are times when higher-moment risks are high.

Interacting turnover with the past two year return, we find that turnover is posi-
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tively related to the HRI. This finding is consistent with the findings in Chen, Hong,

and Stein (2001), that is, subsequent to market run-ups, a higher turnover is associ-

ated with higher higher-moment risks.

For issuance, we find that, subsequent to market run-ups, a higher level of equity

issuance implies a lower level of contemporaneous higher-moment risks. This finding

is counter to the results of Pontiff and Woodgate (2008). Firms have incentives to

issue equity when the stock price is higher than its fundamental value, which should be

associated with higher contemporaneous higher-moment risks. Other characteristics

show no marginal relation with higher-moment risks.

As a last test, we run a horse race including all “bubble” characteristics. The last

column of Table 10 reports the results of the horse race. Jointly, we find that accelera-

tion is statistically significant and positively related to the HRI, and cay is negatively

related to the HRI. Conditional on market run-ups, turnover is positively associated

with the HRI. Interestingly, issuance changes sign in the horse race compared to the

marginal regressions. Indeed, we find that higher issuance is associated with higher

contemporaneous higher-moment risks when controlling for other characteristics.

Figure 8 shows time-series plots of the HRI and cay. The two time-series are

negatively correlated with an in-sample correlation coefficient of −0.57. Figure 9

shows time-series plots of the HRI and turnover times past two year return. The two

time-series are positively correlated with a correlation coefficient of 0.43, implying

that, after market run-ups when turnover is high, then so are higher-moment risks.

8 Conclusion: when volatility is low, risk hides in

the tails

We show that ex ante physical moments estimated using methods based on Martin

(2017) are superior to historical moments and risk-neutral moments at predicting ex

ante realized moments.

Ex ante higher order moment risks co-move such that the first principal compo-
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nent of the space spanned by skewness, kurtosis, hyperskewness, and hyperkurtosis

explains 90% of the joint variation. We define this first principal component as a

higher-moment risk index (HRI) which captures the time-variation in higher-moment

risks.

Interestingly, the HRI is negatively related to variance. We show that times

when variance is low are the times when the physical return distribution is most

left skewed (due to large negative skewness and hyperskewness) and fat tailed (due

to large positive kurtosis and hyperkurtosis). The economic importance of higher-

moment risk is most easily understood from the point of view of a volatility-targeting

investor. The portfolio risk of this investor is high at times when variance is low,

even though the investor has eliminated variance risk in the portfolio. For example,

the probability that the investor’s portfolio realizes a return less than two standard

deviations varies from 3.6% during times of financial distress to 9.7% during periods

of low variance.

We show empirically how higher-moment risk is associated with market liquidity,

funding liquidity, turnover, and the market valuation variable cay. Times with low

liquidity frictions, low cay, and high turnover are times when higher-moment risks

are high.
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Figure 1: Higher order moments and the higher-moment risk index. The
figures show a time-series plot of monthly higher order moments and the higher-
moment risk index (HRI) for the S&P 500 index. HRI is estimated as the first
principal component of the space spanned by skewness, kurtosis, hyperskewness, and
hyperkurtosis. Times when the HRI is high are times when higher-moment risks are
high.
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Figure 3: Higher-moment risk index and variance. This figure shows time-series
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HRI is high at times when variance is low.
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Figure 4: Higher-moment risk index and the past two year return. These
figures show time-series plots of the past two year return and the S&P 500 higher-
moment risk index (HRI). Past return and the HRI are positively correlated, implying
that higher-moment risk is high subsequent to market run-ups.
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Figure 5: Market tail loss probabilities – two sigma. The top figure shows
portfolio tail loss probabilities for the volatility-targeting investor; that is, the prob-
ability of an unexpected return lower than −2σmonth

t . The dashed line is the tail loss
probabilities implied by a normal distribution. The shaded area between the lines
is higher-moment risk, that is, the part of the tail loss probability that is entirely
driven by changes in higher order moments. The bottom figure shows portfolio tail
loss probabilities for the constant notional investor. Here, σmonth

t is the conditional
monthly ex ante variance and σ̄month is the time-series average of σmonth

t . In our
sample, σ̄month = 5.0%.

43



0.
00

0.
01

0.
02

0.
03

0.
04

Month
P

ro
ba

bi
lit

y 
of

 a
 −

3σ
tm

on
th

 e
ve

nt

1/1996 1/1998 1/2000 1/2002 1/2004 1/2006 1/2008 1/2010 1/2012 1/2014 1/2016

0.
00

0.
01

0.
02

0.
03

0.
04

Probability of a − 3σt
month event

Probability of a − 3σt
month event − normal distribution

0.
00

0.
05

0.
10

0.
15

Month

P
ro

ba
bi

lit
y 

of
 a

 −
3σ

m
on

th
 e

ve
nt

1/1996 1/1998 1/2000 1/2002 1/2004 1/2006 1/2008 1/2010 1/2012 1/2014 1/2016
0.

00
0.

05
0.

10
0.

15

Probability of a − 3σmonth event
Probability of a − 3σmonth event − normal distribution

cor = −0.68

Figure 6: Market tail loss probabilities – three sigma. The top figure shows
portfolio tail loss probabilities for the volatility-targeting investor; that is, the prob-
ability of an unexpected return lower than −3σmonth

t . The dashed line is the tail loss
probabilities implied by a normal distribution. The shaded area between the lines
is higher-moment risk, that is, the part of the tail loss probability that is entirely
driven by changes in higher order moments. The bottom figure shows portfolio tail
loss probabilities for the constant notional investor. Here, σmonth

t is the conditional
monthly ex ante variance and σ̄month is the time-series average of σmonth

t . In our
sample, σ̄month = 5.0%.
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Figure 7: Higher-moment risk index and market and funding illiquidity.
The top figure shows time series plots of the HRI and market illiquidity (proxied by
the average value-weighted bid-ask spread of S&P 500 constituents). The bottom
figure shows time series plots of the HRI and funding illiquidity (proxied by the TED
spread).
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Figure 8: Higher-moment risk index and cay. The figure shows time series plots
of the HRI and cay.
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Table 1: Moment Summary Statistics. In this table we report the average time-
series values for ex ante estimated moments: excess return (ER−Rf), standard de-
viation (St. dev.), skewness (Skew), kurtosis (Kurt), hyperskewness (Hskew), and
hyperkurtosis (Hkurt). We estimate ex ante moments from the point of view of a
risk-neutral investor (γ = 0), a log-utility investor (γ = 1), and two power-utility
investors (γ = 3, γ = 5).

Annualized (%)

Horizon Risk-aversion ER−Rf St. dev. Skew Kurt Hskew Hkurt

Month γ = 0 0 21.07 -1.45 8.90 -46.58 347.41
Month γ = 1 4.44 19.89 -1.31 8.25 -41.01 307.44
Month γ = 3 12.00 18.33 -1.08 7.20 -31.16 233.07
Month γ = 5 18.36 17.32 -0.89 6.43 -23.47 175.88

Quarter γ = 0 0 21.07 -1.17 5.78 -20.58 110.36
Quarter γ = 1 4.44 19.59 -1.09 5.57 -18.64 97.45
Quarter γ = 3 11.48 17.55 -0.95 5.23 -15.56 80.69
Quarter γ = 5 17.12 16.25 -0.81 4.94 -12.93 68.19
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Table 2: Ex Ante Conditional Moments Predict Ex Post Realized Moments.
Panel A reports ex post moments for monthly returns sorted into a low or high bucket
based on the ex ante moment. Panel B reports correlations between our ex ante
moments and ex post realized moments. Panel C reports correlations between our ex
ante kurtosis and hyperkurtosis with ex post left kurtosis and left hyperkurtosis. We
also report correlations between historical moments and ex post moments. We report
bootstrapped standard errors in the appendix and significance as; * when p < 0.1, **
when p < 0.05, and *** when p < 0.01.

Panel A: Sorting on ex ante monthly moments

Our moments Historical moments

Low ex ante High ex ante Low ex ante High ex ante

Variance (%) 0.08∗∗∗ 0.31∗∗∗ 0.07∗∗∗ 0.28∗∗∗

Skewness −0.83 −0.48 −0.49 −0.75

Kurtosis 2.85 5.93∗∗ 3.35 4.46

Hyperskewness −19.03∗∗ −4.24 −5.40 −9.01

Hyperkurtosis 15.70 95.24∗∗∗ 15.34 40.10

Panel B: Correlation between ex ante moments and ex post realized moments

Our moments Historical moments

Month Quarter Month Quarter

Variance 0.67∗∗∗ 0.49∗∗∗ 0.72∗∗∗ 0.46∗∗∗

Skewness 0.21∗∗∗ 0.25∗∗∗ 0.07 0.24∗∗∗

Kurtosis −0.01 0.00 0.06 0.04

Hyperskewness 0.17∗∗∗ 0.20∗∗∗ 0.07 0.15∗∗∗

Hyperkurtosis −0.03 0.06 0.03 0.01

Panel C: Left kurtosis and left hyperkurtosis

Our moments Historical moments

Month Quarter Month Quarter

Left kurtosis 0.19∗∗∗ 0.26∗∗∗ 0.02 0.14∗∗

Left hyperkurtosis 0.17∗∗∗ 0.21∗∗∗ 0.05 0.13∗∗
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Table 3: Ex Ante Conditional Moments Predict Ex Post Realized Moments
— Robustness. Panel A reports correlations between our ex ante moments and ex
post realized moments when we remove observations that overlap with the period from
August 1st 2008 to July 31st 2009. Panel B reports correlations between our ex ante
moments (estimated with different levels of relative risk aversion) and ex post realized
moments. Panel C reports correlations when controlling for risk-neutral moments or
historical moments. We report bootstrapped standard errors in the appendix and
significance as; * when p < 0.1, ** when p < 0.05, and *** when p < 0.01..

Panel A: Excluding August 1st 2008 to July 31st 2009

Our moments Historical moments

Month Quarter Month Quarter

Variance 0.52∗∗∗ 0.49∗∗∗ 0.51∗∗∗ 0.42∗∗∗

Skewness 0.23∗∗∗ 0.23∗∗∗ 0.11 0.25∗∗∗

Kurtosis −0.01 0.00 0.07 0.06

Hyperskewness 0.18∗∗∗ 0.18∗∗∗ 0.09 0.13∗∗∗

Hyperkurtosis −0.03 0.04 0.04 0.01

Panel B: Other levels of risk-aversion

γ = 1 γ = 5

Month Quarter Month Quarter

Variance 0.67∗∗∗ 0.48∗∗∗ 0.67∗∗∗ 0.48∗∗∗

Skewness 0.20∗∗∗ 0.25∗∗∗ 0.21∗∗∗ 0.23∗∗∗

Kurtosis −0.03 0.00 0.01 0.02

Hyperskewness 0.13∗∗∗ 0.17∗∗∗ 0.20∗∗∗ 0.22∗∗∗

Hyperkurtosis −0.06 0.04 −0.01 0.07

Panel C: Marginal correlations

Controlling for Controlling for
risk-neutral moments historical moments

Month Quarter Month Quarter

Variance 0.09 0.12 0.18∗∗ 0.20∗∗∗

Skewness 0.09 0.01 0.20∗∗∗ 0.17∗∗∗

Kurtosis 0.11∗∗ −0.02 −0.02 0.01

Hyperskewness 0.16∗∗∗ 0.14∗∗∗ 0.16∗∗∗ 0.17∗∗

Hyperkurtosis 0.09∗∗ 0.07 −0.03 0.05
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Table 4: Correlations Between S&P 500 Moments. Panel A reports pairwise
correlations between monthly S&P 500 moments. Expected return (Er), variance
(Var), skewness (Skew), kurtosis (Kurt), hyperskewness (Hskew), and hyperkurtosis
(Hkurt). Panel B shows the correlation between quarterly horizon moments. We
report 95% bootstrapped confidence bounds in brackets.

Panel A: Month

Er Var −Skew Kurt −Hskew Hkurt

Er 1 0.99 −0.46 −0.50 −0.48 −0.41
[0.99,1] [−0.56,−0.37] [−0.57,−0.46] [−0.55,−0.43] [−0.48,−0.37]

Var 1 −0.52 −0.54 −0.51 −0.44
[−0.60,−0.43] [−0.60,−0.50] [−0.58,−0.47] [−0.51,−0.40]

-Skew 1 0.80 0.78 0.66
[0.76,0.84] [0.74,0.82] [0.60,0.72]

Kurt 1 0.97 0.93
[0.95,0.98] [0.90,0.95]

-Hskew 1 0.98
[0.97,0.98]

Hkurt 1

Panel A: Quarter

Er Var −Skew Kurt −Hskew Hkurt

Er 1 0.99 −0.46 −0.54 −0.58 −0.56
[0.99,0.99] [−0.55,−0.37] [−0.60,−0.49] [−0.64,−0.54] [−0.62,−0.52]

Var 1 −0.54 −0.62 −0.65 −0.62
[−0.62,−0.47] [−0.67,−0.57] [−0.71,−0.61] [−0.68,−0.57]

-Skew 1 0.83 0.86 0.74
[0.79,0.86] [0.82,0.90] [0.68,0.79]

Kurt 1 0.96 0.94
[0.95,0.97] [0.92,0.96]

-Hskew 1 0.97
[0.96,0.98]

Hkurt 1
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Table 5: Principal Components of Higher-Moment Risks. We estimate the four
principal components (PC) spanning the space of monthly (Panel A) and quarterly
(Panel B) skewness (Skew), kurtosis (Kurt), hyperskewness (Hskew), and hyperkur-
tosis (Hkurt). Panel A reports the loadings on each of the monthly moments. Panel
B reports the loadings on each of the quarterly moments. The last column of Panel
A shows that the first principal component (PC 1) explains 89% of the variation in
monthly higher order moments. Similarly, the last column of Panel B shows that 91%
of the variation in quarterly higher order moments is captured by the first principal
component.

Panel A: Month

Skew Kurt Hskew Hkurt Variation explained

PC 1 eigenvector −0.45 0.52 −0.52 0.50 89%
PC 2 eigenvector 0.85 0.07 −0.20 0.48 10%
PC 3 eigenvector −0.23 −0.83 −0.16 0.48 1%
PC 4 eigenvector −0.13 0.19 0.81 0.54 0%

PC 1 correlation −0.85 0.98 −0.99 0.95

Panel B: Quarter

Skew Kurt Hskew Hkurt Variation explained

PC 1 eigenvector −0.47 0.51 −0.52 0.50 91%
PC 2 eigenvector −0.84 −0.16 0.11 −0.51 7%
PC 3 eigenvector −0.13 −0.84 −0.32 0.40 2%
PC 4 eigenvector −0.25 0.01 0.78 0.57 0%

PC 1 correlation −0.89 0.98 −0.99 0.96
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Table 6: Cyclicality in Higher-Moment Risks. Panel A reports correlations
between ex ante variance and the higher-moment risk index (HRI). We report
bootstrapped 95% confidence intervals in brackets. Panel B reports β1 coefficients
when regressing physical moments onto the past two year returns:

Mt,T = β0 + β1rt−24,t + εt,T

where the moment Mt,T is variance (Var), skewness (Skew), kurtosis (Kurt), hyper-
skewness (Hskew), hyperkurtosis (Hkurt), and the higher-moment risk index. Panel
C reports the regression when controlling for lagged moments. We report t-statistics
in parentheses and significance as; * when p < 0.1, ** when p < 0.05, and *** when
p < 0.01. We correct standard errors for autocorrelation using Newey and West
(1987).

Panel A: Variance and the higher-moment risk index

Horizon HRI

Month −0.53
95% CI [−0.60,−0.48]

Quarter −0.64
95% CI [−0.69,−0.59]

Panel B: Past return and higher-moment risks

Horizon HRI Var (%) Skew Kurt Hskew Hkurt

Month 2.26∗∗∗ −0.30∗ −0.61∗∗∗ 2.75∗∗∗ −24.57∗∗∗ 201.65∗∗

(sd) (0.79) (0.16) (0.14) (1.01) (9.41) (98.06)

Quarter 2.13∗∗ −0.68∗ −0.45∗∗∗ 1.02∗ −9.62∗∗ 50.63∗∗

(sd) (0.88) (0.39) (0.12) (0.56) (3.83) (25.23)

Panel C: Past return and higher-moment risks — controlling for lagged risk

Horizon HRI Var (%) Skew Kurt Hskew Hkurt

Month 0.94∗∗∗ −0.07∗∗ −0.23∗∗∗ 1.16∗∗∗ −11.11∗∗ 109.07∗

(sd) (0.34) (0.03) (0.06) (0.39) (4.53) (57.91)

Quarter 0.47∗∗ −0.14∗∗ −0.15∗∗∗ 0.25∗ −2.04∗∗ 11.98∗∗

(sd) (0.19) (0.06) (0.04) (0.14) (0.86) (5.33)
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Table 7: Constant Notional, Volatility-Targeting, and Higher-Moment
Risks. Panel A reports correlations between ex ante variance and tail loss prob-
abilities. The probabilities are P (rht < −2σ̄h) and P (rht < −2σht ) where rht =
Rt,t+h − Et[Rt,t+h], σ

h
t is the ex ante volatility from time t to t + h, and we de-

fine σ̄h as the time series average of σht . We report bootstrapped 95% confidence
intervals in brackets. Panel B reports regression slope coefficients when regressing
physical tail loss probabilities onto the past two year returns. Panel C reports coeffi-
cients when controlling for lagged probabilities. We report t-statistics in parentheses
and significance as; * when p < 0.1, ** when p < 0.05, and *** when p < 0.01. We
correct standard errors for autocorrelation using Newey and West (1987)

Panel A: Correlations between variance and tail probabilities

Horizon P (rht < −2σ̄h) P (rht < −3σ̄h) P (rht < −2σh
t ) P (rht < −3σh

t )

Month 0.97 0.98 −0.70 −0.54
95% CI [0.96,0.98] [0.96,0.99] [−0.78, −0.65] [−0.62,−0.47]

Quarter 0.97 0.94 −0.58 −0.44
95% CI [0.96,0.98] [0.92,0.96] [−0.66,−0.51] [−0.53,−0.35]

Panel B: Tail probabilities (%) and past return

Horizon P (rht < −2σ̄h) P (rht < −3σ̄h) P (rht < −2σh
t ) P (rht < −3σh

t )

Month −5.28∗ −2.23 2.02∗∗∗ 0.65∗∗∗

(sd) (3.03) (1.44) (0.63) (0.17)

Quarter −5.67 −2.09 1.24∗∗ 0.38∗∗

(sd) (3.61) (1.46) (0.57) (0.18)

Panel C: Tail probabilities (%) and past return - controlling for lagged probabilities

Horizon P (rht < −2σ̄h) P (rht < −3σ̄h) P (rht < −2σh
t ) P (rht < −3σh

t )

Month −1.17∗ −0.56∗ 0.55∗∗∗ 0.26∗∗∗

(sd) (0.60) (0.30) (0.20) (0.09)

Quarter −0.96∗ −0.44∗ 0.38∗∗ 0.11∗∗

(sd) (0.54) (0.26) (0.16) (0.05)
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Table 8: Financial Intermediary Leverage and Higher-Moment Risk. Panel
A reports regression slope coefficients when regressing higher-moment risks onto the
financial intermediary leverage of He, Kelly, and Manela (2016). Panel B reports
coefficients when conditioning on ex ante variance. Panel C reports coefficients when
conditioning on ex ante variance and controlling for lagged risk. We report standard
errors in parentheses and significance as; * when p < 0.1, ** when p < 0.05, and ***
when p < 0.01. We correct standard errors for autocorrelation using Newey and West
(1987).

Panel A: Leverage and higher-moment risks

Horizon HRI Var (%) Skew Kurt Hskew Hkurt

Month −0.14 0.11∗∗∗ 0.05 −0.22 1.27 −4.65
(sd) (0.29) (0.03) (0.07) (0.30) (3.41) (28.54)

Quarter −0.03 0.24∗∗ 0.01 −0.00 0.23 0.37
(sd) (0.51) (0.10) (0.06) (0.39) (2.00) (15.64)

Panel B: Conditional leverage and higher-moment risks

Horizon HRI Var (%) Skew Kurt Hskew Hkurt

Month 0.51∗∗ — −0.07 0.65∗∗∗ −6.59∗∗∗ 68.43∗∗∗

(sd) (0.20) — (0.05) (0.24) (2.49) (24.94)

Quarter 0.76∗∗∗ — −0.10∗∗∗ 0.51∗∗∗ −3.28∗∗∗ 22.29∗∗∗

(sd) (0.19) — (0.03) (0.08) (0.80) (2.60)

Panel C: Conditional leverage and higher-moment risks — controlling for lagged risk

Horizon HRI Var (%) Skew Kurt Hskew Hkurt

Month 0.29∗∗∗ — −0.03∗ 0.38∗∗∗ −3.93∗∗∗ 45.12∗∗∗

(sd) (0.10) — (0.02) (0.13) (1.35) (15.42)

Quarter 0.34∗∗∗ — −0.05∗∗ 0.26∗∗∗ −1.44∗∗∗ 10.16∗∗∗

(sd) (0.10) — (0.02) (0.08) (0.37) (2.37)
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Table 9: Market Liquidity, Funding Liquidity, and Higher-Moment Risks.
This table reports the results when regressing higher-moment risks onto market liq-
uidity (Panel A) and funding liquidity (Panel B). We use the value-weighted bid-ask
spread of S&P 500 constituents as a proxy for market illiquidity. We use the TED
spread as a proxy for funding illiquidity. Panel C and Panel D report results when
controlling for lagged market or funding illiquidity respectively. We report t-statistics
in parentheses and significance as; * when p < 0.1, ** when p < 0.05, and *** when
p < 0.01. We correct standard errors for autocorrelation using Newey and West
(1987).

Panel A: Market illiquidity

Horizon HRI Var (%) Skew Kurt Hskew Hkurt

Month −1.22∗∗∗ 0.17∗∗∗ 0.27∗∗∗ −1.53∗∗∗ 14.18∗∗∗ −128.26∗∗∗

(sd) (0.20) (0.05) (0.04) (0.25) (2.47) (28.29)

Quarter −1.44∗∗∗ 0.40∗∗∗ 0.24∗∗∗ −0.85∗∗∗ 6.30∗∗∗ −37.05∗∗∗

(sd) (0.19) (0.11) (0.03) (0.12) (0.81) (5.85)

Panel B: Funding illiquidity

Horizon HRI Var (%) Skew Kurt Hskew Hkurt

Month −1.41∗∗∗ 0.25∗∗∗ 0.18 −2.12∗∗∗ 14.19∗∗∗ −128.26∗∗∗

(sd) (0.39) (0.11) (0.11) (0.52) (2.47) (28.28)

Quarter −1.37∗∗∗ 0.54∗∗ 0.08 −1.07∗∗∗ 6.30∗∗∗ −37.05∗∗∗

(sd) (0.51) (0.22) (0.11) (0.32) (0.81) (5.85)

Panel C: Market illiquidity — controlling for lagged risk

Horizon HRI Var (%) Skew Kurt Hskew Hkurt

Month −0.68∗∗∗ 0.08∗∗∗ 0.14∗∗∗ −0.78∗∗∗ 8.37∗∗∗ −83.77∗∗∗

(sd) (0.17) (0.02) (0.02) (0.20) (2.15) (24.75)

Quarter −0.55∗∗∗ 0.15∗∗∗ 0.11∗∗∗ −0.31∗∗∗ 2.51∗∗∗ −14.96∗∗∗

(sd) (0.11) (0.05) (0.02) (0.07) (0.51) (3.93)

Panel D: Funding illiquidity — controlling for lagged risk

Horizon HRI Var (%) Skew Kurt Hskew Hkurt

Month −0.57∗∗∗ 0.10∗∗∗ 0.08∗∗∗ −0.88∗∗∗ 8.37∗∗∗ −83.77∗∗∗

(sd) (0.18) (0.02) (0.03) (0.23) (2.15) (24.75)

Quarter −0.38∗∗∗ 0.20∗∗∗ 0.05∗ −0.31∗∗∗ 2.51∗∗∗ −14.96∗∗∗

(sd) (0.12) (0.07) (0.03) (0.08) (0.51) (3.93)
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Table 10: “Bubble” Characteristics and Higher-Moment Risks. This table reports the results when regressing
the higher-moment risk index onto “bubble” characteristics. These are: acceleration, CAPE, dividend-price ratio, cay,
turnover, and issuance. We report t-statistics in parentheses and significance as; * when p < 0.1, ** when p < 0.05, and
*** when p < 0.01. We correct standard errors for autocorrelation using Newey and West (1987).

Dependent variable: Monthly HRI

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Acceleration 2.90 3.86∗∗∗

(sd) (1.62) (3.52)

CAPE -0.03 -0.01
(sd) (-0.76) (-0.39)

Dividend-price ratio -23.73 162.08
(sd) (-0.29) (1.45)

Cay -64.10∗∗∗ -45.80∗∗∗

(sd) (-3.63) (-3.12)

Turnover -3.52∗∗∗ 1.58 -0.00
(sd) (-2.81) (1.33) (-1.07)

Turnover×rt−24,t 9.90∗∗∗ 0.01∗∗

(sd) (3.94) (2.11)

Issuance -2.12 -0.72 6.20∗∗

(sd) (-0.54) (-0.18) (1.97)

Issuance×rt−24,t -27.27∗∗∗ -4.97
(sd) (-3.19) (-0.67)

rt−24,t 0.28 10.77 0.90
(sd) (0.40) (4.00) (0.30)

No. obs. 240 238 240 80 240 240 240 240 80
Adj. R2 0.02 0.00 -0.00 0.32 0.06 0.18 0.00 0.27 0.46
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Appendix A Ex Ante Physical Moments, Risk-Neutral

Pricing, and Realized Moments

Ex ante physical moments and risk-neutral pricing

Using equation (6) we can represent physical ex ante moments in terms of asset prices:

Et[R
i
t,T ] =

E∗t [R
i+γ
t,T ]

E∗t [R
γ
t,T ]

for i ∈ {1, ..., 6}. These asset prices can be used to estimate ex ante physical moments
by expanding the standardized moment formula in equation (7). We estimate kurtosis,
hyperskewness, and hyperkurtosis in the following way:

Kurtosist,T =
Et[R4

t,T ]− 3Et[Rt,T ]
4 + 6Et[Rt,T ]

2Et[R2
t,T ]− 4Et[Rt,T ]Et[R

3
t,T ]

(Et[R2
t,T ]− Et[Rt,T ]2)2

Hyperskewnesst,T =
Et[R5

t,T ] + 4Et[Rt,T ]
5 + 10Et[Rt,T ]

2Et[R3
t,T ]− 10Et[Rt,T ]

3Et[R2
t,T ]− 5Et[Rt,T ]Et[R

4
t,T ]

(Et[R2
t,T ]− Et[Rt,T ]2)5/2

Hyperkurtosist,T =
Et[R6

t,T ]− 5Et[Rt,T ]
6 + 15Et[Rt,T ]

4Et[R2
t,T ]− 20Et[Rt,T ]

3Et[R3
t,T ] + 15Et[Rt,T ]

2Et[R4
t,T ]

(Et[R2
t,T ]− Et[Rt,T ]2)3

−
6Et[Rt,T ]Et[R

5
t,T ]

(Et[R2
t,T ]− Et[Rt,T ]2)3
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Estimating ex post realized moments

Let N be the number of daily realized returns between time t and T and denote the

daily return between day s and s + 1 as rs,s+1. The realized moments between time

t and T are estimated from daily realizations in the following way:

µt,T =
1

N

N∑
i=1

ri−1,i

σ2
t,T =

N
∑N

i=1(ri−1,i − µt,T )2

N − 1

Realized Skewnesst,T =
N1/2

∑N
i=1 (ri−1,i − µt,T )3

σ3
t,T

Realized Kurtosist,T =
N
∑N

i=1 (ri−1,i − µt,T )4

σ4
t,T

Realized Hyperskewnesst,T =
N3/2

∑N
i=1 (ri−1,i − µt,T )5

σ5
t,T

Realized Hyperkurtosist,T =
N2
∑N

i=1 (ri−1,i − µt,T )6

σ6
t,T

This is similar to the methods used by Amaya, Christoffersen, Jacobs, and Vasquez

(2015).
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Appendix B Tables

Table AI: Ex Ante Conditional Moments Predict Ex Post Realized Moments
(Test statistics). This Table reports test statistics for the results reported in Table
2. Panel A reports p-values from the bootstrapped distribution. Panel B reports
bootstrapped standard errors for the correlation coefficient between ex ante moments
and ex post realized moments. Panel C reports bootstrapped standard errors for
the correlation coefficient between ex ante kurtosis and ex post realized left kurtosis.
Panel C reports also reports correlations for hyperkurtosis.

Panel A: Sorting on ex ante monthly moments

Our moments Historical moments

Low ex ante High ex ante Low ex ante High ex ante

Variance 0.00 0.00 0.00 0.01

Skewness 0.19 0.46 0.54 0.74

Kurtosis 0.21 0.03 0.46 0.20

Hyperskewness 0.02 0.45 0.47 0.75

Hyperkurtosis 0.39 0.01 0.38 0.20

Panel B: Correlation between ex ante moments and ex post realized moments

Our moments Historical moments

Month Quarter Month Quarter

Variance 0.07 0.09 0.09 0.10

Skewness 0.06 0.06 0.07 0.06

Kurtosis 0.06 0.07 0.05 0.04

Hyperskewness 0.05 0.06 0.06 0.04

Hyperkurtosis 0.05 0.06 0.04 0.03

Panel C: Left kurtosis and left hyperkurtosis

Our moments Historical moments

Month Quarter Month Quarter

Left kurtosis 0.06 0.07 0.07 0.06

Left hyperkurtosis 0.06 0.06 0.07 0.06
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Table AII: Ex Ante Conditional Moments Predict Ex Post Realized Mo-
ments — Robustness (Test statistics). Panel A reports bootstrapped standard
errors for the correlations between our ex ante moments and ex post realized moments
when we remove observations that overlap with the period from August 1, 2008 to
July 31, 2009. Panel B reports bootstrapped standard errors for the correlations
between our ex ante moments (estimated with different levels of relative risk aver-
sion) and ex post realized moments. Panel C reports bootstrapped standard errors
for the correlations when controlling for risk-neutral moments or historical moments.
We report bootstrapped standard errors in the appendix and significance as; * when
p < 0.1, ** when p < 0.05, and *** when p < 0.01..

Panel A: Excluding August 1, 2008 to July 31, 2009

Our moments Historical moments

Month Quarter Month Quarter

Variance 0.06 0.05 0.07 0.08

Skewness 0.06 0.05 0.07 0.06

Kurtosis 0.06 0.08 0.06 0.07

Hyperskewness 0.05 0.06 0.07 0.07

Hyperkurtosis 0.05 0.07 0.06 0.05

Panel B: Other levels of risk-aversion

γ = 1 γ = 5

Month Quarter Month Quarter

Variance 0.07 0.10 0.06 0.09

Skewness 0.06 0.06 0.06 0.06

Kurtosis 0.06 0.06 0.05 0.06

Hyperskewness 0.05 0.05 0.05 0.07

Hyperkurtosis 0.05 0.05 0.05 0.06

Panel C: Marginal correlations

Controlling for Controlling for
risk-neutral moments historical moments

Month Quarter Month Quarter

Variance 0.17 0.10 0.12 0.06

Skewness 0.06 0.06 0.06 0.06

Kurtosis 0.05 0.06 0.06 0.07

Hyperskewness 0.05 0.06 0.05 0.06

Hyperkurtosis 0.04 0.06 0.05 0.06
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