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Abstract

We propose a theory of the coexistence of traditional and shadow banks. In our model, bankers can

choose to set up a traditional or a shadow bank: shadow banks escape the costly regulation traditional

banks must comply with, but forgo deposit insurance, which traditional banks can rely upon. Thus, in a

crisis, shadow banks repay their creditors by selling assets at fire-sale prices to traditional banks, which

fund these purchases with insured deposits. This creates a complementarity between traditional and

shadow banks. We show that in equilibrium, the two bank types coexist. The analysis implies that an

increase in deposit insurance leads to a decrease in the relative size of the traditional banking sector, and

that in equilibrium, the shadow banking sector is larger than socially optimal. Our model is consistent

with several facts from the 2007 financial crisis: assets and (deposit-like) liabilities migrated in large

amounts from shadow banks to traditional banks, and shadow bank assets were sold to traditional

banks at fire sale prices.
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1 Introduction

Shadow banks now account for about a quarter of total financial intermediation worldwide (IMF, 2014).1

This includes market-based institutions ranging from money market funds to asset-backed securities is-

suers, supplying credit through more or less complex intermediation chains outside of the traditional

regulated banking system. By most accounts, the emergence of shadow banking has been largely mo-

tivated by regulatory arbitrage, i.e. an attempt to bypass the cost associated with the regulations tradi-

tional banks must comply with (Gorton and Metrick, 2012; Acharya et al., 2013), enabled by financial

innovation allowing many of the services provided by traditional banks to be sustained by other types

of banks (see e.g. Merton, 1995; Rajan, 1998a).

Following the failures of financial regulation revealed by the crisis of 2007, the need for regulatory re-

forms emerged as a consensus (Duffie, 2016). However, while their collapse was at the heart of the crisis,

shadow banks remain difficult to regulate (FSB, 2016b). Regulatory changes and new technologies have

re-shaped the modern financial landscape.2 Policymakers and academics are concerned that tightened

regulations of traditional banks might shift financial intermediation away from traditional banks and to-

wards shadow banks (Hanson et al., 2011; Sunderam, 2015). Meanwhile, the crisis saw large amounts of

assets and liabilities transferred from shadow to traditional banks, which suggests that the interactions

between traditional and shadow banks are more complex than mere regulatory arbitrage. To gauge the

effects of traditional banks’ regulation in the presence of shadow banks, one needs to understand these

interactions, and in particular why traditional and shadow banks coexist in the first place.

We propose a theory of the coexistence of traditional and shadow banks. In our model, bankers can

choose to set up a traditional or a shadow bank: shadow banks escape the costly regulation traditional

banks must comply with, but forgo deposit insurance, which traditional banks can rely upon in a crisis.

Thus, in a crisis, shadow banks repay their creditors by selling assets at fire-sale prices to traditional

banks, which fund these purchases with insured deposits. This creates a complementarity between

traditional and shadow banks: the larger the relative size of the traditional banking sector, the higher

these asset prices, and thus the higher a banker’s incentive to set up a shadow bank in the first place. We

show that in equilibrium traditional and shadow banks coexist. The analysis implies that an increase

in deposit insurance leads to a decrease in the relative size of the traditional banking sector, and that in

equilibrium, the shadow banking sector is larger than socially optimal. Our model is consistent with

several facts from the 2007 financial crisis: assets and (deposit-like) liabilities migrated in large amounts

from shadow banks to traditional banks, and shadow bank assets were sold to traditional banks at fire

sale prices.

Specifically, we consider a model with three dates 0, 1, 2, and two groups of agents: bankers and

households. At date 0, each banker can set up a traditional bank or a shadow bank. The banker invests

her endowment, which constitutes the banks’ equity. Banks can also issue claims to households, which

1This estimate is in terms of credit intermediation (see IMF, 2014). For descriptions of shadow banking, see Pozsar et al. (2013)
for the United States, ESRB (2016) for the European Union, IMF (2014) and FSB (2016a) for global estimates. Globally, shadow
banks’ assets were worth $80 trillion in 2014, up from $26 trillion more than a decade earlier (FSB (2016a)).

2For instance, "fintech" shadow banks have emerged, see BIS (2016), Buchak et al. (2017).
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we assume must be money-like claims, i.e., riskless short-term debt (henceforth "short-term debt").3

With these funds, banks invest in risky assets which pay off at date 2. At date 1, two states are possible:

Either a crisis occurs, in which case date-2 asset returns are low and uncertain, or no crisis occurs and

date-2 asset returns are high and safe.

We assume two differences between traditional and shadow banks. On the one hand, traditional

banks incur a cost associated with the regulation they must comply with, which shadow banks evade.

This assumption captures the idea that shadow banking is largely motivated by regulatory arbitrage

(Hanson et al., 2011; Acharya et al., 2013). On the other hand, traditional banks can, up to a limit, issue

claims backed by deposit insurance, which shadow banks cannot. Therefore in a crisis at date 1, despite

uncertain asset returns, deposit insurance enables traditional banks, but not shadow banks, to issue the

riskless claims households demand. We assume that deposit insurance is actuarially fairly priced and

limited, i.e. each bank can issue riskless debt only up to a fixed dollar amount. This limit may stem,

for instance, from fiscal costs (see Davila and Goldstein, 2016), or ex-ante distortions in banks’ behavior

(Calomiris and Kahn, 1991; Diamond and Rajan, 2001).4 There is no other built-in difference between

traditional and shadow banks, which face the same choice sets.

If at date 1 there is no crisis, asset returns are high and safe. Thus all banks can issue riskless debt,

which they do to refinance their assets with short-term debt. Instead, in a crisis, shadow banks are

unable to roll over their short-term debt because their assets are risky and households demand riskless

debt. Hence, shadow banks must liquidate assets to repay their creditors. Traditional banks can buy

shadow banks’ assets in a crisis, because of their unique ability to finance these purchases by issuing

short-term debt backed by deposit insurance. Because of limited deposit insurance, traditional banks

have limited debt capacity and therefore shadow banks’ assets trade at a discount.

At date 0, when bankers choose to set up a traditional or a shadow bank, they trade off the costs and

benefits associated with each type of bank, i.e. low regulation costs but need to sell assets at a discount in

a crisis versus high regulation cost but ability to buy assets at a discount in a crisis. The trade-off depends

on the asset discount anticipated in a crisis, itself a function of the relative size of the two banking sectors.

The larger the relative size of the traditional (shadow) banking sector, the higher (lower) asset prices in

a crisis, and the higher bankers’ incentive to set up a shadow (traditional) bank in the first place. In

that sense, traditional and shadow banks form an ecosystem. In equilibrium, expected profits in the

traditional and shadow banking sectors are equal, such that bankers are indifferent between setting

up a traditional or a shadow bank. This pins down asset prices in a crisis and the relative size of the

traditional and shadow banking sectors in equilibrium.

Our analysis is consistent with several facts from the 2007 financial crisis.

First, in our model in a crisis, shadow banks are unable to roll over their existing debt. This is

3The view of banks as providers of safe money-like liabilities has its roots in Gorton and Pennacchi (1990). Recent papers show
that when households have infinite risk-aversion (Gennaioli et al., 2013) or Epstein-Zin preferences with infinite relative risk
aversion and infinite intertemporal elasticity of substitution (Caballero and Farhi, 2016), "money-like" short-term debt arises as
the optimal financial contract between the bank and households. Likewise in our model, we show in Appendix B.1 that short-term
debt arises endogenously if we assume that households are infinitely risk averse.

4In practice, deposit insurance only guarantees a limited level of deposits. In the U.S., this limit holds per depositor, per FDIC-
insured bank. Hence, in practice, deposit insurance only guarantees a fixed level of deposits. In our model, we assume that each
bank is limited in the total dollar amount of riskless debt it can issue using deposit insurance.
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consistent with the evidence that in the crisis, shadow banks entirely stopped using several classes

of assets as collateral and their creditors withdrew their ("repo") debt (Gorton and Metrick, 2012). In

contrast to shadow banks, in our model, traditional banks are able to issue short-term debt in a crisis.

This is consistent with the evidence that during the crisis, almost $600 billion of deposits went into the

largest traditional banks in less than a month, following the bankruptcy of Lehman Brothers in 2008q3

(see Acharya and Mora, 2015, for a discussion).

Second, in our model, if a crisis occurs, shadow banks must liquidate assets to repay their credi-

tors. In turn, traditional banks purchase shadow banks’ assets. This is consistent with the evidence

that in the crisis, about $800 billion assets flew out of shadow banks, out of which $550 billion flew

into traditional banks from 2007q4 to 2009q1.5 In our model, traditional banks finance these purchases

by issuing riskless debt backed by deposit insurance. Using Call Report data, we regress traditional

banks’ asset purchases on deposit changes. We find evidence that traditional banks purchased assets

sold by shadow banks by issuing insured deposits. Finally, consistent with our assumption that deposit

insurance is limited, there is evidence that in the crisis, mortgage-backed government-agency securi-

ties traded at spreads well above historical norms (Merrill et al., 2012; Gagnon et al., 2011). Such high

spreads for a security with no credit risk points to the scarcity of asset buyers’ arbitrage capital.

Third, in our model, assets trade at a discount in a crisis. Gorton and Metrick (2012) provide ev-

idence that in the crisis, certain higher-rated bonds traded at a higher spread than lower-rated bonds

of the same category and maturity. Massive sales of higher-rated bonds pushed their price down to

attract buyers. This negative spread is suggestive of fire sale prices. Other evidence of asset fire sales is

documented in Krishnamurthy (2008) and Chernenko et al. (2014).

Arbitrage of regulatory costs has been an important feature of the banking industry since the first

Basel accords of 1988. Some debates about the effectiveness of banking regulation thus center on the

ability of shadow banks to escape regulation (Hanson et al., 2011; Buchak et al., 2017). Yet, this view

does not account for the reason of the coexistence between the two sectors.

As an illustration, we study how, in our model, the level of deposit insurance affects the relative size

of traditional and shadow banks. We find two competing effects.

On the one hand, traditional banks’ increased debt capacity allows them to operate on a larger scale.

This effect increases bankers’ incentives to set up a traditional bank. On the other hand, traditional

banks use their increased debt capacity to bid up shadow banks’ assets prices in a crisis. In turn, higher

asset prices in a crisis increases shadow banks’ initial debt capacity, which allows them to operate on a

larger scale, which increases bankers’ incentives to set up a shadow bank.

We show that the latter effect dominates the former. To gain intuition about this result, recall that

asset prices are pinned down in equilibrium so that traditional banks’ regulatory costs are offset by their

profits from buying shadow banks’ assets at a discount, and bankers are indifferent between setting up

5See for instance He et al. (2010). The reason why these numbers do not exactly add up is twofold. First, traditional banks have
used depost inflows in the crisis for other purpose than asset purchases (for instance, to meet credit line drawdowns, as shown in
Ivashina and Scharfstein, 2010). Second, the documented figures come from balance sheets data and it need not be that, for a given
volume, assets switching from one bank to the other keep a constant value. Indeed, it can be that assets trade at a discount, in
which case the asset seller’s balance sheets contraction is greater than the buyer’s balance sheets expansion. Abbassi et al. (2015)
also find that banks played an important role in providing price support to the distressed securities markets by buying fire-sold
securities.
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either type of bank. All else being equal, when deposit insurance expands, traditional banks use their

increased debt capacity to bid up shadow banks’ assets prices. Higher asset prices increases bankers’

incentives to set up a shadow bank. Therefore asset prices must decrease to return to their equilibrium

level. This requires an increase in the relative size of the shadow banking sector.

Last, we consider the normative implications of our analysis, and show that the equilibrium relative

size of the shadow banking sector exceeds it socially optimal level. When starting a shadow bank,

bankers take asset prices in a crisis as given and fail to internalize the effect of their asset sales on asset

prices. Since shadow banks’ ability to issue riskless debt initially depends on the collateral value of

their assets in a crisis, this creates a pecuniary externality (Gromb and Vayanos, 2002; Lorenzoni, 2008).

Therefore, the equilibrium fraction of bankers operating a shadow bank is larger than socially optimal.

The reverse reasoning holds true for traditional banks, such that in equilibrium, the fraction of bankers

operating a traditional bank is smaller than socially optimal. The social planner can improve welfare

with transfers from bankers starting a shadow bank, to bankers starting a traditional bank (e.g. with

lump-sum taxes).

The paper proceeds as follows. In Section 2 we document stylized facts from the crisis, which our

model replicates. Section 3 presents the model, and we analyze the possible coexistence between tradi-

tional and shadow banks in Section 4. In Section 5 we discuss the implications of our model , and we

develop a normative approach in Section 6. Section 7 concludes.

Related Literature Merton (1995) and Rajan (1998a,b) are early discussions of the future of traditional

banks in light of increased competition from other types of banks.6 More recently, Hanson et al. (2011)

show concerns that given heightened competition, tightened regulation of traditional banks will drive

a larger share of intermediation into shadow banks.7 In this paper, we find that regulatory costs explain

why traditional banks forgo investment opportunities and keep slack to purchase shadow banks’ assets

in a crisis. Therefore despite higher regulatory costs, traditional banks are complements to shadow

banks.

Some papers study banking regulation in the presence of shadow banks, motivated by the regula-

tory arbitrage mechanism. In Ordonez (2013), regulation provides a commitment device for traditional

banks to avoid excessive risk taking. He finds that an optimal policy is to tax shadow banks and sub-

sidize traditional banks, allowing banks to self-select into the traditional and shadow banking sectors

depending on their investment opportunities. In Plantin (2015), optimal capital requirements for tradi-

tional banks depend on shadow banks’ ability to issue money-like claims to households, which comes

from the liquidity of shadow banks’ assets. This liquidity is determined by the degree of information

asymmetry in the market for shadow banks assets. In Begenau and Landvoigt (2017), random bailouts

are more likely for traditional banks than for shadow banks. In their model, households price bank debt

rationally, so that shadow banks respond to higher capital requirements by increasing their size but not

their riskiness. Therefore higher capital requirements for traditional banks leads to more shadow banks,

6Other examples include Boyd and Gertler (1994) and James and Houston (1996).
7Several empirical studies find evidence of regulatory arbitrage (see e.g. Houston et al., 2012; Acharya et al., 2013; Karolyi and

Taboada, 2015).
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but this does not reduce financial stability. Finally, Farhi and Tirole (2017) study the optimal regulatory

contract that satisfies traditional banks’ “participation constraint" such that they do not migrate to the

shadow banking sector. This contract specifies the costs (regulation) and benefits (access to lending of

last resort, and deposit insurance) for each bank type. Contract conditions are optimally differentiated

between traditional and shadow banks. The existing literature studies the emergence of shadow banks

as a response to tightened regulation of traditional banks, and the policy implications thereof, but not

the coexistence of traditional and shadow banks.

A second group of theories assume the coexistence of traditional and shadow banks, looking at

various implications. Gertler et al. (2016) build a model in which shadow banks have an advantage

in managing assets, while traditional banks have an advantage in overcoming agency frictions in fund

borrowing. Their objective is to account for the buildup and collapse of shadow banks, and identify

the transmission of crises to the economy. In Moreira and Savov (Forthcoming), shadow banks’ debt

requires less collateral but is more fragile. Periods of low uncertainty are associated with expansions

of shadow banks and economic booms, while shadow banks collapse under uncertainty, and in turn

the economy tanks. Luck and Schempp (2016) study the conditions for runs in the shadow banking

sector to spread to traditional banks. When the (exogenous) fraction of uninsurable deposits in the

economy is high, Voellmy (2017) shows that the risk of bank runs on traditional banks is minimized

when shadow banks absorb the bulk of uninsured deposits. Hanson et al. (2015) study which assets are

held by traditional versus shadow banks. Our focus is on interactions between traditional and shadow

banks to derive the conditions of their coexistence.

Our model is in line with theories of banks as issuers of riskless claims. A seminal paper is Gorton

and Pennacchi (1990).8 Our model is based on Stein (2012), however we consider two types of banks,

traditional and shadow banks, which interact in equilibrium. Gennaioli et al. (2013) present a model of

shadow banks catering to investors’ demand for riskless debt through securitization. In our model, we

also assume that banks issue riskless claims to cater to their investors’ demand.9

Finally, some papers study the coexistence of traditional and shadow banks. LeRoy and Singhania

(2017) assume that deposit insurance subsidizes traditional banks, benefitting shadow banks through

different channels depending on how deposit insurance is priced. The relative size of the traditional

banking sector then depends on the size of the insurance subsidy. Gornicka (2016) develops a model

where shadow banking stems from regulatory arbitrage by traditional banks, and traditional banks

provide exogenous guarantees to shadow banks that render both bank types complements. To the best

of our knowledge, our paper is the first to provide a theory of the coexistence of traditional and shadow

banks based on their interaction in a crisis, consistent with stylized facts from the 2007 financial crisis.

8Other recent papers include DeAngelo and Stulz (2015) and Plantin (2015).
9We show in Appendix B.1 that short-term debt arises endogenously in our model if we assume that households are infinitely

risk averse.
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2 Stylized facts

We use data from the Financial Accounts of the United States (henceforth FAUS), the Federal Reserve

H8 Releases and the quarterly Call Reports. A detailed description of data construction can be found in

Appendix A.1.

2.1 Fact 1: Liabilities flow from shadow to traditional banks

Table 1 in Appendix A.2 shows the evolution of short-term debt for traditional and shadow banks from

2006q4 to 2011q1. First, in the crucial phase of the crisis in the fall of 2008, investors stopped rolling

over shadow banks’ short-term debt. Gorton and Metrick (2012) document investors’ run on one of

their major yet unstable source of funding: the sale and repurchase market (the "repo" market) (see also

Krishnamurthy et al. (2014) and Copeland et al. (2014)). Commercial paper, another major source of

funding for shadow banks, also collapsed (Kacperczyk and Schnabl, 2010).

In the meantime, traditional banks’ short-term debt increased. Figure 11 in Appendix A.2 shows a

sudden $600 billion inflow in deposits and borrowings into the largest US traditional banks, in three

weeks from September 10th to October 1st, 2008. This inflow is coherent with the risk management

motive proposed in Kashyap et al. (2002) to explain why traditional banks combine demand deposits

with loan commitments or lines of credit: In a crisis, borrowers draw down on their credit lines while

investors seek a safe haven for their wealth, turning to traditional banks because these latter provide

insurance due to the government guarantee on their deposits (see also Gatev and Strahan (2006)).10

Nevertheless, as shown in Acharya and Mora (2015), it was not until the U.S. government’s intervention

just before the Lehman failure on September 15, 2008 that deposit flew into traditional banks. Core

deposits eventually increased by close to $800 billion by early 2009 (see also He et al. (2010)).11

2.2 Fact 2: Asset flow from shadow to traditional banks

Mortgage-backed securities guaranteed by government-sponsored enterprises ("GSE MBS") are part of

the assets transferred from shadow banks to traditional banks in the crisis (see Figure 13 in Appendix

A.2.4). Although our data does not allow us to identify whether these changes were due to changes

in the value of assets or changes in ownership, we show below that this picture does not change when

accounting for the repayment/maturity rate of MBS net of the new issuance rate, suggesting asset pur-

chases by traditional banks. Empirical work by He et al. (2010) and Bigio et al. (2016) provide estimates

of the amount of assets that were transferred from shadow to traditional banks during the crisis. From

2007q4 to 2009q1, He et al. (2010) find that shadow banks decreased their holdings of securitized assets

by approximately $800 billion while traditional banks increased theirs by approximately $550 billion.

Looking at the wider period from 2007q1 to 2013q1 and considering total asset holdings, Bigio et al.

10This explains why there is no evidence that funds flowed into the banking system when spreads widened during the 1920s,
prior to the expansion of the federal safety net with the creation of federal deposit insurance.

11Although many shadow banks exhibit procyclical leverage (Adrian and Shin (2010)), traditional banks attracted deposits in
the crisis so that their leverage was countercyclical. Despite the increase in traditional banks’ book equity in the crisis documented
in Appendix A.2.3, we find that increase in deposits was such that traditional banks’ market leverage increased in the crisis. Baron
(2016) finds evidence of banks’ countercyclical equity issuance not only in the crisis, but across credit cycles after 1980.
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(2016) document a net asset outlfow of $1702 billion out of shadow banks and an asset inflow of $1595

billion into traditional banks.12

One testable prediction of our theory is that traditional banks finance shadow banks’ asset purchases

in the crisis by issuing short-term debt backed by deposit insurance. We use the Call Reports and He

et al. (2010)’s estimates to test this prediction in the cross-section of traditional banks. Results and details

about the sample construction are in Appendix A.3. We find support for the central mechanism of our

theory: Traditional banks purchased mortgage-backed securities in the crisis by issuing more insured

deposits. Besides, we find that those banks that purchased assets in the crisis did so at the expense

of credit. This is in line with Shleifer and Vishny (2010) and Stein (2013) who discuss how market

conditions shape the allocation of scarce bank capital across lending and asset purchases. Abbassi et al.

(2015) find comparable results using German data.

2.3 Fact 3: Asset fire sales

Our illustration of asset fire sales comes from Gorton and Metrick (2012). The authors provide a snap-

shot of fire sales of assets in the crisis that we reproduce on Figure 14 in Appendix A.3.1. We see a

negative spread between higher- and lower-rate bonds with the same maturity. Aaa-rated corporate

bonds would normally trade at higher prices (i.e. lower spreads) than any lower-grade bonds with the

same maturity (say, Aa-rated ones). Sales of higher-rated bonds were so massive that their price was

pushed down to attract buyers. This negative spread thus is suggestive of fire sale prices.

Other examples in the literature suggest that asset prices have deviated significantly from fundamen-

tal values and were sold at fire-sale prices during the crisis. Using data on insurance companies, Merrill

et al. (2012) show that risk-sensitive capital requirements, together with mark- to-market accounting,

can cause financial intermediaries to engage in fire sales of RBMS securities. Krishnamurthy (2008) dis-

cusses pricing relationships reflecting similar distortions on agency MBS, and notably the increasing

option-adjusted spread of Ginnie Mae MBS versus the US Treasury with the same maturity. Gagnon

et al. (2011) also document substantial spreads on MBS rates - well above historical norms. Because this

security has no credit risk, this evidence points to the scarcity of arbitrage capital in the marketplace and

the large effects that this shortage can have on asset prices. Finally, using micro-data on insurers’ and

mutual funds’ bond holdings, Chernenko et al. (2014) finds that in order to meet their liquidity needs

during the crisis, investors traded in more liquid securities such as government-guaranteed MBS. This

strategy is consistent with theories of fire sales where investors follow optimal liquidation strategies:

although spreads on GSE MBS were very high in the fall of 2008, those assets remained the most liquid

ones in securitization markets at that time.
12Another important aspect of this asset transfer is the purchase of assets from the Federal Reserve, which balance sheets

increased by approximately $1954 billion (Bigio et al. (2016)).
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3 Model

We consider a model with three dates 0, 1, 2, one type of goods, and two groups of agents, bankers and

households.

At date 0, a unit mass of identical bankers start with a net worth n of goods. They are risk neutral

and indifferent between consuming at t = 0, 1, 2. Bankers can each set up a traditional bank or a shadow

bank, henceforth T-bank or S-bank. They invest a quantity ni ∈ [0,n] (i = {S, T }) into either bank type,

which becomes the bank’s equity.

Banks can invest in risky assets which pay off at date 2. At date 1, two statesΩ1 ≡ {B,G} are possible.

State B occurs with probability p, in which bad news on asset returns arrives. We dub this state a "crisis".

State G occurs with probability (1 − p), in which good news on asset returns arrives. At date 2, three

state Ω2 ≡ {GG,BG,BB} are possible. In state G at date 1, there is a probability 1 that state GG occurs

at date 2. In state B at date 1, there is a probability q that state BG occurs at date 2, and a probability

(1 − q) that state BB occurs at date 2. See below what happens at each date and state.

A unit mass of identical households is endowed with a large quantity of consumption goods at

t = {0, 1}. Households cannot invest directly in risky assets, and can only invest in claims issued by

banks. They can consume at each date t = {0, 1, 2}, have linear preferences over consumption at all

dates, and do not discount future consumption. At date t ∈ {0,1}, and in each stateω ∈ Ω1, households’

utility function is:

Ut,ω (Ct) = Ct,ω + Et,ω [Ut+1] (1)

with U2,ω = C2,ω. The timeline of the model is detailed in Figure 1.

t = 0

• Bankers choose to set up a
T- or S-bank

• Bankers choose how much
of their endowment to
invest in the bank

• T- and S-banks choose how
much short-term debt to
issue, how much assets to
purchase

t = 1

• T- and S-banks choose how
much short-term debt to
issue, how much assets to
sell and purchase

• T- and S-banks repay their
short-term debt

t = 2

• T- and S-banks repay their
short-term debt

Figure 1: Timeline of the model
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3.1 Risky assets

Both T- and S-banks can invest in risky assets at t = 0, whose payoffs are summarized on Figure 2.

t = 0 t = 1 t = 2

1 asset
Bad state

(B)
0(1 − q)

rq

(1 − p)

Good state
(G) Rp

Figure 2: Asset payoff

Investing one unit of goods in the risky asset at t = 0 yields a risky payoff {R, r, 0} in terms of

consumption goods at t = 2, in each respective state of Ω2 ≡ {GG,BG,BB}. At t = 2, assets have no

liquidation value. At t = 1, news about the occurrence of the possible states of t = 2 is revealed. State

G occurs at t = 1 with probability p, and it is then known with certainty that state {GG} occurs at t = 2

so that the asset payoff is R > 0. However, state B occurs with probability (1 − p) at t = 1, and there is

then uncertainty about asset returns at t = 2. At t = 1 in state B, there is a probability q that state BG

occurs at t = 2, and a probability (1 − q) that state BB occurs. At t = 2 in state BG, assets pay off r > 0.

At t = 2 in state BB, assets pay off 0.

3.2 Bank’s choices

At each date and state, T- and S-banks face the same choice sets, and are subject to limited liability

constraints.

Time 0 At t = 0, i-banks (i = {S, T }) invest Ii0 units of goods in risky assets. In addition to their equity

ni, they raise an amount Di0 of goods from households by issuing riskless short-term debt. The interest

rate on short-term debt issued at t = 0 is r0. The key assumption here is that households demand

riskless debt.13 This assumption captures what we see as a fundamental role of banks: their ability to

act as safety and liquidity providers to households

Time 1 At t = 1, T- and S-banks can trade assets in a competitive secondary market, where all banks

participate. In state ω1 ∈ {B,G}, i-banks purchase an amount Ii1,ω1
of assets at an endogenous price

p1,ω1 . i-banks can also sell their assets on the market. We assume liquidation costs: a share ε ∈ (0, 1] of

assets sold is destroyed.14 Finally, i-banks can raise an additional amount of goods Di1,ω1
from house-

13Alternative model specifications closer to the safe asset literature would yield similar results. For instance, in Gennaioli
et al. (2013) households have an infinite risk-aversion utility function, and in Caballero and Farhi (2016) they have Epstein-Zin
preferences with infinite relative risk aversion and infinite intertemporal elasticity of substitution.

14One can also interpret ε as the cost of breaking up a lending relationship, or the loss associated to a loosened monitoring
ability induced by a change of ownership. The adjustment cost (1 − ε) is a form of technological illiquidity, whose importance is
emphasized in Brunnermeier and Sannikov (2014).
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holds at t = 1, by issuing riskless short-term debt. The interest rate on short-term debt issued at t = 1

is r1,ω1 . This debt can be used to roll over previously issued debt, or to finance asset purchases. i-banks

repay their date-0 creditors an amount r0D
i
0 of goods.

Time 2 At t = 2, assets pay off goods, and they have no liquidation value. i-banks repay their date-1

creditors an amount r1,ω1D
i
1,ω1

of goods.

3.3 Differences between T- and S-banks

We assume two differences between T- and S-banks.

Assumption 1 (Differences between traditional and shadow banks). Traditional and shadow banks differ

in two ways:

1. T-banks can rely upon deposit insurance at t = 1 in state B (in a crisis), up to an amount k per bank.

2. T-banks must comply with costly regulation: At t = 2, T-banks only get a fraction δ ∈ [0, 1] of asset payoffs.

On the one hand, T-banks can, up to a limit, issue claims backed by deposit insurance, which S-banks

cannot. Therefore in a crisis, T-banks can use deposit insurance to back short-term debt, which shadow

banks cannot because asset returns are uncertain. Specifically, the deposit insurance fund enables them

to issue short-term debt at t = 1 in state B by insuring them against risky asset returns. We assume

that the deposit insurance fund is owned by the government and actuarially fairly priced: To obtain one

unit of good at t = 2 in state BB from the fund, T-banks have to pay 1−q
q units of goods to the fund

at t = 2 in state BG such that the government is making zero profit in expectation. We assume that

the maximum guarantee per T-bank is limited to k > 0. One interpretation is that the government has

limited fiscal capacity at t = 2 in state BB and therefore cannot insure a greater amount than k > 0.

Another interpretation is that the government’s ability to enforce payments from T-banks to the fund at

t = 2 in state BG is limited. One last interpretation for parameter k is a reduced form for informational

frictions which prevents T-banks from taking too much debt at t = 1 in state B. In the recent crisis,

investors ran on S-banks because they were not protected by deposit insurance (Gorton and Metrick,

2012). In contrast, T-banks experienced deposit inflows in the form of insured deposits (see Section 2

and He et al., 2010; Acharya and Mora, 2015), illustrating the value of deposit insurance in a crisis (Iyer

et al., 2016).

On the other hand, T-banks incur a cost associated with the regulation they must comply with, which

shadow banks evade.15 We assume that T-banks face regulatory costs δ ∈ (0, 1), which decreases their

assets payoffs to {δR, δr, 0} at t = 2, in each respective state of Ω2 ≡ {GG,BG,BB}. This assumption

captures the idea that shadow banking is largely motivated by regulatory arbitrage (Hanson et al., 2011;

Acharya et al., 2013), reflecting a wide variety of costs associated to higher regulations imposed to tra-

ditional banks: regulatory compliance costs, financing of regulatory bodies, costs to generate regulatory

information, etc.16

15In our model, regulation is not only a cost to T-banks, it is a social cost.
16From a positive perspective, it can also be interpreted more broadly as a series of costs associated to T-banks’ business model:
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3.4 Parametric assumptions

Assumption 2 (Assumption on asset returns). At t = 0, expected asset returns satisfy:

δ (pR+ (1 − p)qr) > 1 (2)

Condition (2) ensures that as of t = 0, investing in assets is a positive net present value investment

for both T- and S-banks. This implies that each banker invests her full endowment in the bank she sets

up, be it a T-bank (nT = n) or a S-bank (nS = n) , and that banks invest in as many assets as they can at

date 0.

We make two additional assumptions on the size of the guarantee k, and the regulatory costs δ.

Assumption 3 (Assumptions on T-banks’ parameters). T-banks’ regulatory costs are low enough to prevent

asset trade at t = 1 in state G:

δ > 1 − ε (3)

The level k of deposit insurance at t = 1 in state B is low enough:

k < k∗ ≡ δqr

1 − δqr
n (4)

Condition (3) enables us to rule out asset transfers at t = 1 in state G between the two types of inter-

mediaries: it will always be optimal for any type of bank to choose to continue their time 0 investment,

at t = 1 in state G rather than selling assets. This assumption is simplifying but it could be relaxed

at little cost. Relaxing this assumption generates asset transfers from T-banks to S-banks in the good

information state: indeed, if δ < 1 − ε, it is more valuable for a T-bank to sell assets to S-banks which

value it more17, and incur the illiquidity cost ε, rather than keeping assets and incurring the regulatory

cost 1 − δ on date-2 asset returns.

Condition (4) implies that the maximum amount of riskless debt T-banks can issue at t = 0 and roll

over at t = 1 in state B is constrained by the size of the guarantee fund at t = 1 in state B, i.e. k. This

ensures that T-banks are able to issue a maximum amount k of riskless debt both at t = 0 and at t = 1

in all states. Otherwise, the limited liability constraint at t = 2 in state BG might be binding, in which

case the deposit insurance limit is inoperative. Because we are interested in the interactions between T-

and S-banks in a crisis when the deposit insurance limit is binding, we rule out this case in the paper

exposition. However, Appendix B.3.2 provides a complete characterization of equilibria when condition

(4) is not satisfied.

Additional restrictions We introduce additional restrictions that we refer to in the analysis.

they have higher operating costs (e.g. bricks-and-mortar expenses associated with bank branches), employ more workers, provide
more services to their customers.

17Each unit of assets generates a return R for a S-bank in date 2, GG instead of δR for T-banks, and none of them discount future
payoffs
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Assumption 4 (Additional restrictions). At t = 1 in state B, expected asset returns are lower than one:

qr < 1 (5)

We assume that the cost of regulation is high enough such that banks gain from trade at t = 1 in state B:

δ <
p

ε (p (R− 1) + (1 − p)qr) + p
(6)

Condition (5) reflects the fact that in a crisis at date 1, date-2 expected asset returns are low.18 We do

not impose condition (6) on regulatory costs (δ), but we will see later that this condition is necessary for

asset prices at t = 1 in state B to be such that there is gain from asset trade between T- and S-banks at

t = 1 in state B, given condition (4). Note that our parametric restrictions are not mutually exclusive.

4 Model analysis

4.1 Equilibrium definition

We define a competitive equilibrium as follows.

Definition 1 (Equilibrium). A competitive equilibrium consists of asset holdings
{
Iit
}i=T ,S
t=0,1 , quantities of debt

issued
{
Dit
}i=T ,S
t=0,1 , bankers’ equity investments

{
ni
}i=T ,S, interest rates

{
r0, r1,ω1

}
ω1=B,G, asset prices in a

crisis
{
p1,ω1

}
ω1=B,G, and bankers’ probability to set up a S-bank χS, such that:

1.
{
Iit
}i=T ,S
t=0,1 and

{
Dit
}i=T ,S
t=0,1 maximize i-banks’ (i = S, T ) expected payoff Vi0

(
p1,G,p1,B, r0, r1,G, r1,B,nS

)
.

2. ni maximizes the expected payoff of a banker setting up an i-bank (i = S, T )

3. short-term debt markets clear at t = 0, and at t = 1 in states B and G for respective interest rates

{r0, r1,G, r1,B}.

4. asset market clears at t = 1 in states B and G at respective prices {p1,B,p1,G}.

5. bankers’ probability to set up a S-bank χS maximizes bankers’ expected payoff

max
χS∈[0;1]

χSVS,B
0 (.) + (1 − χS)VT ,B

0 (.) .

4.2 Equilibrium implications of the assumptions

We start by detailing several equilibrium conditions implied by our assumptions.

18We discuss in the analysis how condition (5) is sufficient – but not necessary – to determine the effect of changes in the deposit
insurance limit (k). See Section 5.2, and Appendix B.9.
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4.2.1 Debt market clearing conditions

Households are endowed with a large amount of consumption goods at each date t = 0, 1, such that

interest rates on short-term debt is pinned down by households’ utility function. Given the linear utility

function and no time discounting, this rate is 1 in equilibrium, i.e.

r∗0 = r∗1,B = r∗1,G = 1.

4.2.2 Time 1, G asset market clearing condition

At t = 1 state G, T- and S-banks must repay their creditors an amount r0D
i
0 (i = S, T ), which they can do

either by issuing riskless short-term debt or by selling part of their assets. They can also purchase assets

from other banks. Since expected asset returns are R > 1 at t = 1 in stateG, both T- and S-banks can issue

an amount Di1,G (i = S, T ) of riskless short-term debt to repay their date-0 creditors, with DS1,G 6 RIS0

and DT1,G 6 δRIT0 .

It is optimal for both T and S–banks to avoid the asset liquidation cost ε: if banks were to sell their

assets, asset buyers would pay a fair price R per asset but sellers would only obtain (1 − ε)R. This is

strictly lower than asset expected returns if banks keep their assets. Even T-banks, for which expected

asset returns are δRIT0 , do not have an incentive to sell assets at date 1 in state G due to assumption (3).

In equilibrium, there is no asset supply at date 1 in state G, therefore no asset trade. Without loss

of generality, we simplify T- and S-banks’ programs by solving without considering the asset market

at t = 1 in state G, as if banks’ only option in this state is to repay their creditors by issuing new debt.

These two problems are equivalent in equilibrium.

4.3 Shadow banks’ program

We expose and solve S-banks’ program backwards.

Date 1, state G. At t = 1 in state G, S-banks can only repay their creditors by issuing new debt. If

S-banks do not default, their value function at t = 1 in state Gwrites:

VS,ND
1,G

(
IS0 ,DS0

)
= RIS0 −DS0 ,

where S-banks’ asset investment level IS0 and debt level DS0 at t = 0 are taken as given. S-banks do not

default if and only if their RIS0 −DS0 > 0. At t = 1 in stateG, if S-banks have a higher debt level inherited

from t = 0, they cannot repay their creditors and therefore default.

By assumption, T- and S-banks can only borrow using short-term debt. We take the convention to

set the value function to −∞ if banks default on their debt. S-banks’ value function at t = 1 in state G

thus writes:

VS1,G

(
IS0 ,DS0

)
=

 RIS0 −DS0 if DS0 6 RIS0

−∞ otherwise
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where IS0 is the investment level of the S-bank at t = 0, and DS0 the investment level of the S-bank at

t = 0.

Date 1, state B. At t = 1 in state B, S-banks choose how much they borrow from households, how

much assets they sell and how much assets they buy.

At t = 1 in state B there is a probability (1 − q) that assets pay off zero (see Figure 2). Therefore S-

banks are unable to roll over their short-term debt. Indeed, their assets are risky and creditors demand

riskless debt. Hence, the only way for S-banks to pay their debt is to sell assets to pay back their creditors.

Shadow banks can also choose to sell more assets than what they need to repay their debt, either to

consume or to buy assets from other banks.

Remark that S-banks can only buy assets at t = 1 in state B by selling assets purchased at t = 0 and

incurring a liquidation cost ε. Therefore in equilibrium, S-banks do not sell their assets to buy other

banks’ assets.

If S-banks do not default, their value function at t = 1 in state Bwrites:

VS,ND
1,B

(
IS0 ,DS0 ,p1,B

)
= max
αS1,B∈[0;1]

αS1,BqrI
S
0 + (1 −αS1,B)(1 − ε)p1,BqrI

S
0 −DS0

s.t. (1 −αS1,B) (1 − ε)p1,BqrI
S
0 > DS0

where IS0 is the investment level of S-banks at t = 0, DS0 their investment level at t = 0, p1,B the asset

price at date 1 in state B, and αS1,B is the share of assets purchased at t = 0 that S-banks do not sell at

t = 1 in state B. S-banks are also subject to a limited liability constraint which ensures that their debt

is riskless. As before, we set the value function to −∞ in case of default. We show in Lemma 2 that

S-banks optimally repay their debt at t = 1 in state B, by selling their assets. For a given amount of debt

to repay, shadow banks need to sell less assets when asset prices are high, i.e. when the collateral value

of their assets is high.

Lemma 1 (S-banks at t = 1 in state B). At t = 1 in state B, S-banks use the proceeds from asset sales to repay

their debt.

Proof. See Appendix B.2.1.

Date 0. At t = 0, S-banks choose their levels of debt DS0 and investment IS0 to avoid default at t = 1

so that the debt they issue to households is riskless. They also face a funding constraint: their date-0

investment is financed with bankers’ net worth and debt raised from households.19

19Due to condition (2), bankers always choose to invest all their endowment into the bank they set up (see Section 4.5 below).
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The date-0 value function of a S-bank writes:

VS0

(
p1,B,nS

)
= max
DS0 ,IS0 >0

[(1 − p)
(
(1 − ε)p1,BqrI

S
0 −DS0

)
max

(
1

(1 − ε)p1,B
; 1
)

+ p
(
RIS0 −DS0

)
+ (DS0 +nS − IS0 )]

s.t. DS0 +nS > IS0

DS0 6 (1 − ε)p1,BqrI
S
0

DS0 6 RIS0

Denoting pS1 ≡
1

(1−ε)(qr+p(R−1)
1−p )

< 1
1−ε , we obtain Proposition 1.20

Proposition 1 (S-banks at t = 0). At t = 0, S-banks take future asset prices as given, and optimize over the

quantity of asset investment (IS0 ) and amount of borrowing from households (DS0 ):

1. If asset prices at t = 1 in state B are low (0 6 p1,B < p
S
1 ), S-banks do not borrow from households at t = 0

using short-term debt, and they invest in assets backed by equity.

2. If asset prices at t = 1 in state B are high (pS1 < p1,B <
1

(1−ε)qr ), S-banks borrow up to the limit from

households at t = 0 using short-term debt, which they repay at t = 1 in state B by selling their assets . This

limit, as well as the amount of assets they invest in at t = 0, are determined by the collateral value of their

assets t = 1 in state B.

Proof. See Appendix B.2.2.

Although S-banks do not have access to deposit insurance, they can initially issue riskless debt in-

sofar as they are backed by the liquidation value of the assets they sell at t = 1 in state B. When

liquidating at t = 1 in state B, proceeds from the sale of a fraction (1 − αS1,B) of their assets are (1 −

αS1,B)(1 − ε)p1,BqrI
S
0 where p1,Bqr is the asset price at t = 1 in state B.

The proceeds of assets sale depend on T-banks’ ability to purchase assets in a crisis, which are fi-

nance using short-term debt backed by deposit insurance. Indirectly, S-banks therefore rely on T-banks’

deposit insurance via asset sales in a crisis. We now turn to T-banks’ optimization program.

4.4 Traditional banks’ program

We expose and solve T-banks’ program backwards.

Date 1, state G. At t = 1 in state G, T-banks can only repay their creditors by issuing debt. As before,

we define T-banks’ value function at t = 1 in state G as:

VT1,G

(
IT0 ,DT0

)
=

 δRIT0 −DT0 if DT0 6 δRIT0

−∞ otherwise

20See Appendix B.2.2 for the technical solution.
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where T-banks’ asset investment level IT0 and debt level DT0 at t = 0 are taken as given. T-banks do

not default if and only if their δRIT0 −DT0 > 0. At t = 1 in state G, if T-banks have a higher debt level

inherited from t = 0, they cannot repay their creditors and therefore default. As before, we set T-bank’s

value function in case of default to −∞.

Date 1, state B T-banks can issue riskless debt to households at t = 1 in state B backed by deposit

insurance, which makes their debt riskless despite a non-zero probability of zero asset returns at t = 2.

T-banks are subject to three constraints: they must (i) pay the deposit insurance fund at an actuarially

fair price for backing their short-term debt, (ii) repay their debt and (iii) they cannot back more than the

deposit insurance limit k.

Constraint (i) puts an upper bound on the amount of riskless debt issued at t = 1 in state B: this

amount cannot exceed expected asset returns. Note that the deposit insurance fund does not subsidize

T-banks: T-banks must repay the debt DT1,B issued at date 1 in state B, either by repaying this amount

DT1,B at t = 2 in state BB, or by paying 1−q
q DT1,B to the guarantee fund at t = 2 in state BB, such that the

expected net payment made to the deposit insurance fund at date 1 in state B is:

q
1 − q

q
DT1,B + (1 − q)(−DT1,B) = 0.

Constraint (ii) is T-banks’ date-2 limited liability constraint in state BG, which writes:

1 − q

q
DT1,B +DT1,B 6 δr

(
IT1,B +αT1,BI

T
0

)
where IT0 is the investment in assets at date 0, αT1,B is the share of T-banks’ unliquidated assets, IT1,B is

the amount of assets purchased andDT1,B is the amount of riskless short-term debt issued, all at t = 1 in

state B. This constraint rewrites:

DT1,B 6 δqr
(
IT1,B +αT1,BI

T
0

)
.

Constraint (iii) is the limit on deposit insurance which stems from Assumption 1, and writes:

DT1,B 6 k.

In addition to these constraints, T-banks must repay date-0 creditors and finance their date-1 asset

purchases either by issuing debt backed by deposit insurance, or by selling part of their assets. If T-banks
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do not default, their value function at t = 1 in state Bwrites:

VT ,ND
1,B

(
IT0 ,DT0 ,p1,B

)
= max{

αT1,B,DT1,B,IT1,B

} (δ− p1,B
)
qrIT1,B +αT1,BδqrI

T
0 + (1 −αT1,B)p1,BqrI

T
0 (1 − ε) −DT0

s.t. (1 −αT1,B)p1,BqrI
T
0 (1 − ε) +D1,B > DT0 + p1,BqrI

T
1,B

D1,B 6 qδ
(
rαT1,BI

T
0 + rIT1,B

)
αT1,B ∈ [0; 1]

DT1,B ∈ [0;k]

IT1,B ∈ R+

Again, we set T-bank’s value function in case of default to −∞, such that in case of default their

value function is equal to −∞. As shown in Lemma 3 (in Appendix B.3.1), the T-bank does not default

on its debt if and only ifDT0 6 D
T
0
(
IT0 ,p1,B

)
.21 The value function of a T-bank at t = 1 in state B is given

in Proposition 2.

Proposition 2 (T-banks at t = 1 in state B). At t = 1 in state B, T-banks take asset prices, the investment level

(IT0 ) and debt (DT0 ) raised at t = 0 as given, and optimize over the quantity of asset sales (1 − αT1,B), quantity of

asset purchases (IT1,B) and amount of borrowing from households (DT1,B):

1. If asset prices are low (p1,B < δ), T-banks issue as much debt backed by deposit insurance as they can, i.e.

DT1,B = k, to repay their debt and purchase assets, and they do not sell assets.

2. If asset prices have intermediate values (δ < p1,B <
δ

1−ε ), T-banks issue debt backed by deposit insurance

to repay their debt, and they do not purchase nor sell assets.

3. If asset prices are high (p1,B > δ
1−ε ), T-banks do not issue debt backed by deposit insurance, they use the

proceeds from asset sales to repay their creditors, and they do not purchase assets.

Proof. See Appendix B.3.2.

Depending on asset prices, T-banks choose whether they purchase or sell assets. When asset prices

are attractive enough, i.e. when they are low, T-banks borrow from households by raising short-term

debt backed by deposit insurance, for which they pay an actuarially fair premium.

In Appendix B.3.2 we show that these intuitions remain true in the case where at t = 0, T-banks

borrow more debt than the deposit insurance limit, i.e. if DT0 > k. In that case, T-banks cannot fully

repay their creditors by issuing debt backed by deposit insurance at t = 1 in state B. Then if asset prices

are low at t = 1 in state B, T-banks issue the maximum level k of debt backed by deposit insurance to

repay their creditors, and sell assets to repay the remaining debt. In that case if asset prices are high,

T-banks do not raise debt at t = 1 in state B, and they sell assets to repay their existing debt (similarly as

in Proposition 2).

Finally, if the amount of debt raised by T-banks at t = 0 is higher than their profits at t = 1 in state B,

i.e. if DT0 > D
T
0
(
IT0 ,p1,B

)
(where DT0

(
IT0 ,p1,B

)
is given in Lemma 3 in Appendix B.3.1), T-banks cannot

21D
T
0
(
IT0 ,p1,B

)
depends on asset prices at t = 1 in state B as shown in Appendix B.3.1.
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repay their creditors. They then default on their debt, in which case our convention is that their value

function is −∞.

We now turn to date 0, at which T-banks raiseDT0 6 D
T
0
(
IT0 ,p1,B

)
in equilibrium, so that they do not

to default on their debt at t = 1.

Date t = 0. At t = 0, T-banks choose how they borrow from households in the form of short-term

debt, and how much assets to invest in, which they finance with a mix of equity and short-term debt

issued to households. As discussed before, T-banks choose a debt level such that they do not default at

t = 1 (see Appendix B.3.1), in both states B and G. T-banks’ value function at t = 0 thus writes:

VT0

(
p1,B,nT

)
= max

{DT0 ,IT0 ∈R2
+}
p
(
δRIT0 −DT0

)
+ (1 − p)VT ,ND

1,B (DT0 , IT0 ,p1,B) + (DT0 +nT − IT0 )

s.t. IT0 6 DT0 +nT

DT0 6 D0,B

(
IT0 ,p1,B

)
DT0 6 δRIT0

We denote pT1,L < pT1,H two asset price thresholds defined in Appendix B.3.2. Under condition (4),

we obtain Proposition 3.22

Proposition 3 (T-banks at t = 0). At t = 0, T-banks take future asset prices as given, and optimize over the

quantity of asset investment (IT0 ) and amount of borrowing from households (DT0 ):

1. If asset prices at t = 1 in state B are low (0 < p1,B < pT1,L), T-banks do not borrow from households at

t = 0 using short-term debt, and they invest in assets backed by equity.

2. If asset prices at t = 1 in state B are high (pT1,L < p1,B < p
T
1,H), T-banks finance asset investment with the

maximum amount of short-term debt k at t = 0, which they repay at t = 1 in state B by issuing debt backed

by deposit insurance.

Depending on the asset price at t = 1 in state B, T-banks choose how much short-term debt to issue

at t = 0 to invest assets, versus how much buffer to keep to purchase assets from S-banks at t = 1 in state

B. Although the guarantee fund enables T-banks to issue short-term debt at t = 1 in state B, they have

to trade-off between those two investment opportunities because they can only issue a limited amount

of debt backed by deposit insurance in a crisis.

If asset prices are low, T-banks’ return from purchasing assets in a crisis is greater than that from

investing in assets at date 0. T-banks then prefer not to issue debt at t = 0, to keep slack in order to

purchase assets at t = 1 in state B. If asset prices are high, T-banks invest in assets at t = 0, and do not

purchase assets in a crisis. For very high asset prices in a crisis, T-banks might even sell some assets. We

will show that this does not occur in equilibrium.

22See Appendix B.3.2 for the complete technical solution both when condition (4) is met and when it is not.
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One important implication is that the deposit insurance limit has an impact on T-banks’ date-0 debt

level. Indeed, T-banks can issue riskless debt at t = 0 backed by deposit insurance, but only up to an

amount k, satisfying condition (4). T-banks can therefore issue up to an amount k of riskless short-term

debt no matter the asset price at t = 1 in state B, generating a positive spillover from deposit insurance

at t = 1 in state B onto t = 0. If they issue more debt at t = 0, they need to sell assets at t = 1 in state B

to repay their debt.

4.5 Banker’s equity investment choices

Given the value functions Vi0
(
p1,B,ni

)
, bankers initially choose to set up one bank type i (i ∈ {S; T }),

and allocate their initial net worth n between a part ni they invest in their bank, which becomes the

bank’s equity, and a remaining part (n−ni) that they consume.

When investing ni ∈ [0;n] units of their endowment into a i-bank, bankers obtain the bank’s residual

payoff. At t = 0 the value function of setting up an i-bank is Vi0
(
p1,B,ni

)
. Bankers’ problem writes as

follows

Vi,B0
(
p1,B

)
= max
ni∈[0;n]

(n−ni) + Vi0

(
p1,B,ni

)
Then,

1. If p1,B <
1

(1−ε)qr , bankers choose ni = n. Indeed, each unit of banker’s investment in the i-bank

can at least be transformed into purchases of assets the bank can invest in. Expected asset returns

are then at least δ(pR + (1 − p)qr), which provides more utility to the banker than immediate

consumption (assumption 2).

2. If p1,B > 1
(1−ε)qr the banker is indifferent between all possible allocations of her initial net worth.

In any case, we have

Vi,B0
(
p1,B

)
= Vi0

(
p1,B,n

)
.

4.6 Asset market clearing in a crisis

We derive the market-clearing conditions for the asset market at t = 1 in state B, taking the shares χS (

(1 − χS)) of S-banks (T-banks) as given. We first define an equilibrium on the asset market at t = 1 in

state B.

Definition 2 (Asset market equilibrium definition). A market equilibrium at t = 1 in state B is defined by

1. A quantity S(p1,B) of assets supplied,

2. A quantity D(p1,B) of assets demanded,

3. A price p1,B such that D(p1,B) = S(p1,B).
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We obtain the following Proposition. Definitions of the thresholds pS1 , pT1,L, pT1,H, together with the

off-equilibria solutions for p1,B > p
T
1,H, are given in Appendix B.5.

Proposition 4 (Asset supply and demand in a crisis). At date 1 in state B (in a "crisis"), with χS ∈ [0; 1] the

share of S-banks and (1 − χS) that of T-banks, the aggregate demand for assets writes:

D(p1,B) =



+∞ if p1,B = 0
k

p1,Bqr
(1 − χS) if 0 < p1,B < p

T
1,L

∈
[
0; k
p1,Bqr

(1 − χS)
]

if p1,B = pT1,L

0 if p1,B > p
T
1,L

and the aggregate supply of assets writes:

S(p1,B) =



0 if 0 6 p1,B < p
S
1

∈
[
0; n(1−ε)

1−(1−ε)p1,Bqr
χS
]

if p1,B = pS1
n(1−ε)

1−(1−ε)p1,Bqr
χS if pS1 < p1,B < p

T
1,H

∈
[

n(1−ε)
1−(1−ε)p1,Bqr

χS; n(1−ε)
1−(1−ε)p1,Bqr

χS +
(1−ε)
qr

(−k
δ )+qr(n+k)

1−p1,B(1−ε)qr

(
1 − χS

)]
if p1,B = pT1,H

Proof. See Appendix B.5.

If asset prices are low, there is a high demand for assets by T-banks, such that T-banks do not invest

in assets at t = 0 to keep slack to purchase assets at t = 1 in state B. If asset prices are high, T-banks

prefer investing in assets at t = 0, which they finance by issuing debt to households.

If asset prices are low (lower than pS1 ), S-banks do not issue debt at t = 0, because the price they

would obtain by selling assets in a crisis is low, making the cost of date-0 debt too high. If asset prices

are high (higher than pT1,H), both T and S-banks are willing to sell assets, which induces a positive supply

whatever the allocation of intermediaries between the two types of banks. This is impossible and thus

restricts the set of prices that can prevail in equilibrium to [0;pT1,H].

The asset supply and demand schedules derived in Proposition 4 are illustrated in Figure 5.

(a) Case δ = 1
No asset trade

(b) Case δ < 1 (δ = 0.8)
Asset trade

Figure 3: Numerical illustration of the asset market at t = 1 in state B
(T-banks’ demand in red, S-banks’ supply in black)
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As illustrated in Figure 5, Proposition 4 implies that T- and S-banks would not trade assets if regu-

latory costs on T-banks are not high enough. The reason is that for T-banks to keep a buffer at t = 0

to purchase asset from S-banks at t = 1 in state B, regulatory costs need to be high enough. Otherwise

T-banks would rather invest in assets at t = 0 than keep a buffer to purchase assets from S-banks at a

price such that S-banks are willing to sell their assets. Condition (6) ensures that pS1 < pT1,L such that

there exist parametric spaces where the asset market clears. Henceforth we assume that condition (6) is

met such that asset trade is feasible. Taking the fraction of bankers initially setting up a S-bank (T-bank)

as given, i.e. χS (respectively (1 − χS), we characterize in Proposition 5 the different asset market equi-

libria that can prevail as a function of the relative size of T- and S-banks. Definitions of the thresholds

χS and χS, together with a technical solution, are given in Appendix B.5..

Proposition 5 (Asset market equilibrium). In equilibrium, asset demand is equal to asset supply (D(p1,B) =

S(p1,B)), and:

1. With T-banks only (χS = 0), no assets are traded and p1,B ∈ [pT1,L;pT1,H].

2. When T- and S-banks coexist (χS ∈ (0; 1)),

(a) either S-banks’ relative size is small (χS 6 χS), assets are traded at a price p1,B = pT1,L.

(b) or S-banks’ relative size is intermediate (χS ∈
[
χS;χS

]
), assets are traded at a price p1,B ∈ [pS1,;p

T
1,L].

(c) or S-banks’ relative size is large (χS > χS), assets are traded at a price p1,B = pS1 .

3. With S-banks only (χS = 1), no assets are traded (D(p1,B) = S(p1,B) = 0) and p1,B ∈ [0;pS1 ]. No assets

are traded.

Proof. See Appendix B.5.

4.7 The allocation program: Coexistence of T- and S-banks

We study bankers’ choice to set up a T- or a S-bank at t = 0. Bankers compare expected profits in each

i-bank (i = {T ,S}), i.e. value functions at t = 0, and choose a probability χS ((1 − χS)) to set up a S-bank

(T-bank) such as to solve

max
χS∈[0;1]

χSVS0
(
p1,B

)
+ (1 − χS)VT0

(
p1,B

)
where p1,B is the asset price at t = 1 in state B. Figure 4 illustrates the different bankers’ allocation

equilibria as a function of T-banks’ regulatory costs δ (see Assumption 1).23

Figure 4 illustrates that there exists a non-empty parameter set for which asset prices in a crisis are

pinned down in equilibrium such that T- and S-banks’ expected profits are equal (as described in Section

4.6). Bankers are then indifferent between setting up a T- or S-bank initially. We refer to Section 5.2 for a

discussion of changes in regulatory costs on the equilibrium relative size of T- and S-banks.

23We set the following parameter values: n = 1,p = 0.5, r = 1,q = 0.99,R = 1.15,k = 8.1,ε = 0.1.
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T-banks 

only

S-banks 

only

Figure 4: Conditions for the coexistence of T- and S-banks

We focus in this Section on the unique equilibrium in which T- and S-banks coexist. We refer to

Appendix B.6 for a complete charaterization of bankers’ equilibrium allocations between T- and S-banks.

We show in Appendix B.6 that the coexistence equilibrium is uniquely pinned down by asset prices in a

crisis, and Appendix B.8 gives the parametric conditions for T- and S-banks to coexist.

Proposition 6 (Coexistence of traditional and shadow banks). There exists a unique equilibrium such that

(i) at t = 0 bankers invest all their endowment in a bank, (ii) at t = 1 in state G no assets are traded and banks

repay their creditors by issuing debt, and (iii) at t = 1 in state B, S-banks sell assets to T-banks at a price such

that bankers are indifferent between setting up a traditional or a shadow bank initially.

The conclusion we draw from Proposition 6 is that both types of intermediaries can coexist and

interact on the asset market (type-3 equilibrium). In that case, S-banks issue debt initially thanks to

T-banks’ ability to back debt in a crisis to purchase assets from shadow banks. In such a situation, asset

fire-sales always occur for the following reason.

T-banks can buy S-banks’ assets in a crisis, because of their unique ability to finance these purchases

by issuing short-term debt backed by deposit insurance.24 In a crisis, traditional banks can purchase

assets from shadow banks by issuing short-term debt backed by deposit insurance. This is consistent

with evidence from the crisis, during which traditional banks on-boarded $550 billion worth of assets

while experiencing a sudden deposit inflow.

Because of limited deposit insurance, the total quantity of assets they can finance at t = 0 and t = 1

in state B is limited. T-banks face a trade-off between issuing debt at t = 0 and keeping some buffer in

order to issue debt at t = 1 in state B so as to purchase S-banks’ assets. To purchase assets from S-banks

in a crisis, T-banks thus need to be compensated for foregoing asset investment at t = 0, and S-banks

asset trade at a discount. This is consistent with evidence of fire sales in the 2007 crisis (see e.g. Gorton

and Metrick, 2012).
24Recall that we assumed households cannot purchase assets directly. This assumption could be relaxed in the presence of a

premium for money-like claims issued by T-banks, as in Stein (2012), in which case T-banks would buy S-banks’ assets because
they could pay a higher price than households thanks to the premium they would obtain by issuing money-like claims.
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Asset prices are lower than the price at which the traditional banks value the asset (i.e. δ), i.e. the

fire sale is not entirely driven by the need for T-banks to be compensated for higher regulatory costs.

However, asset prices cannot be too low: S-banks have to be willing to pay a cost at t = 1 in state B, to

issue debt initially. These trade-offs are key to understand the occurrence of fire-sales in a crisis and the

interaction between T- and S-banks.

5 Implications

5.1 Gains from trade and the complementarity between T- and S-banks

When bankers choose to set up a T- or a S-bank, they trade off the costs and benefits associated with

each bank type. To highlight the role of asset trade in a crisis, as a thought experiment, we assume that

banks cannot trade assets in a crisis. In this case, S-banks cannot rely on T-banks to purchase their assets

in a crisis. As a result, S-banks cannot issue short-term debt at t = 0. Meanwhile, T-banks use deposit

insurance to repay their creditors in a crisis. However, access to deposit insurance for T-banks comes at

the cost of costly regulation. In this thought experiment, bankers trade-off expected profits for S-banks

without debt versus that of T-banks without the benefits of purchasing fire-sold assets in a crisis.

Keeping similar notations as in the model, the value function at t = 0 of setting up a S-bank in the

absence of an asset market at t = 1 in state Bwrites:

VS,NM
0 = [pR+ (1 − p)qr]n (7)

where we denote "NM" for "no market". Meanwhile, the value function at t = 0 of setting up a T-bank

in the absence of an asset market at t = 1 in state Bwrites:

VT ,NM
0 = p [δR(n+ k) − k] + (1 − p) [δqr(n+ k) − k] (8)

This has two implications. First, theses value functions are a lower bound for the value functions of

bankers setting up a T- or S-bank in the model with an asset market. This implies that opening up the

asset market generates gains from trade, thereby increasing total expected profits in the banking sector.

The effect of asset trade on banks’ value function is illustrated in Figure 5.
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(b) Case 2: VT0 < VS0 absent asset trade

Figure 5: Value functions against asset price in a crisis
(VT0 in red, VS0 in black, dashed without an asset market)

Second, banks’ value functions are modified in the presence of an asset market. Figure 5 illustrates

that the introduction of an asset market, in which T-banks purchase assets from S-banks at a discount,

benefits both bank types: both T- and S-banks’ expected profits increase when assets are traded (plain

curves in Figure 5 are above dashed lines for most asset prices). The shaded area represents banks’ gains

from trade on the asset market at t = 1 in state B.

Figure 5 illustrates the finding in Section 4.7 that depending on parameter values, either T- or S-

banks’ expected profits can be relatively higher absent a market for S-banks’ assets in a crisis (see also

Figure 4). In Figure 5a (Figure 5b), parameter values are such that expected profits without asset trade

are relatively higher for T-banks (S-banks), so that absent an asset market, only T-banks (S-banks) exist

in equilibrium (the red dashed line in Figure 5a is above the black dashed line, and conversely in Figure

5b).25 In both cases, we find that banks gain from trade, so that asset trade allows for the coexistence of

T- and S-banks.

We interpret this as a rationale for the coexistence of T- and S-banks. In our model, T- and S-banks

coexist because they trade assets in a crisis. At date 0, when bankers choose to set up a T- or a S-bank,

they trade off the costs and benefits associated with each type of bank, i.e. low regulation costs but need

to sell assets at a discount in a crisis versus high regulation cost but ability to buy assets at a discount

in a crisis. The trade-off depends on the asset discount anticipated in a crisis, itself a function of the

relative size of the two banking sectors. The larger the relative size of the traditional (shadow) banking

sector, the higher (lower) asset prices in a crisis, and the higher bankers’ incentive to set up a shadow

(traditional) bank in the first place. In that sense, traditional and shadow banks form an ecosystem. In

equilibrium, bankers must be indifferent between setting up a traditional or a shadow bank. This pins

down asset prices and thus the relative size of the T- and S-banking sectors in equilibrium.

25In both cases, we set n = 1,p = 0.9, r = 1,q = 0.99,δ = 0.9. In Figure 5a we set k = 8.1 and R = 1.15 while in Figure 5b,
k = 4 and R = 1.13.
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5.2 Deposit insurance and regulatory costs: Effects on the relative size of T- and

S-banks

Arbitrage of regulatory costs has been an important feature of the banking industry since the first Basel

accords of 1988. Some debates about the effectiveness of banking regulation thus center on the ability of

shadow banks to escape regulation (Hanson et al., 2011; Buchak et al., 2017). Yet, the regulatory arbitrage

view does not account for the reason of the coexistence between the two sectors, which in our model

is based on their interaction in a crisis. We study how, in our model, deposit insurance and T-banks’

regulatory costs affect the relative size of the two banks types.

Changes in the deposit insurance limit k First, we study how, in our model, the level of deposit

insurance affects the relative size of T- and S-banks. We focus on the unique equilibrium such that they

coexist, as characterized in Proposition 6.26

In the coexistence equilibrium, T- and S-banks’ value functions are equal at t = 0, so that bankers are

indifferent between setting up a T- or S-bank. We consider small increases in k, but the reverse reasoning

holds for small decreases in k. We then discuss the effect of greater changes in k.

On the one hand, traditional banks’ increased debt capacity allows them to operate on a larger scale.

This effect increases T-banks’ expected profits, therefore bankers’ incentives to set up a T-bank initially.

On the other hand, T-banks use their increased debt capacity to bid up shadow banks’ assets prices in a

crisis. In turn, higher asset prices in a crisis increases S-banks’ initial debt capacity, which allows them

to operate on a larger scale. This effect increases S-banks’ expected profits, therefore bankers’ incentives

to set up a S-bank initially. We show in Proposition 7 that the latter effect dominates the former.

Proposition 7 (Changes in the deposit insurance limit). An increase in deposit insurance (k) leads to a

decrease in the relative size of the T-banking sector (1 − χS).

Proof. See Appendix B.9.

To gain intuition about Proposition 7, recall that asset prices are pinned down in the equilibrium in

which T- and S-banks coexist, so that T-banks’ regulatory costs are offset by their profits on S-banks’

assets purchases, and bankers are indifferent between setting up either type of bank. All else being

equal, when deposit insurance expands, because T-banks use their increased debt capacity to bid up

shadow banks’ assets prices, asset prices must decrease to return to their equilibrium level for T- and

S-banks to coexist. This requires an increase in the relative size of the S-banking sector.

Note that this reasoning only holds for small changes in k. Holding δ fixed, when k is low enough,

only one bank type exist in equilibrium. Indeed, for low levels of k, T-banks require too high a compen-

sation for purchasing assets at t = 1 in state B, so that S-banks are better off not issuing debt. There is no

asset trade in equilibrium, and depending on parameter values, only one bank exist in equilibrium (see

Section 5.1). Finally, bankers only set up S-banks, and no debt is issued. T-banks are then wiped out,

which is an effect already emphasized in existing models of shadow banking as regulatory arbitrage

(see e.g. Plantin (2015), Ordonez (2013), Harris et al. (2015)).
26See Appendix B.8 for the parametric restrictions under which this equilibrium occurs.
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Figure 6: Share of S-banks according to the deposit insurance limit

Figure 6 displays the fraction of bankers setting up a S-bank, for different values of the deposit

insurance limit (k). We use the same parameter values as in Figure 5a (condition 4 is satisfied: 0 < k < k).

The black line represents the fraction of bankers setting up a S-bank in equilibrium. When k is low, T-

banks can only issue a small amount of debt backed by deposit insurance in a crisis. As a result, S-banks

cannot expect a large support from T-banks in a crisis, and S-banks cannot raise a lot of debt initially.

In equilibrium, there is no asset trade and all bankers set up a T-bank (χS = 0).27 As k increases, T-

banks bid up S-banks’ asset prices in a crisis, so that S-banks can raise more debt initially. S-banks’

expected profits increase, and in equilibrium T- and S-banks coexist. As shown in Proposition 7, in the

coexistence equilibrium, small increases in the deposit insurance limit k provide incentives for bankers

to set up more S-banks initially, so that χS is increasing in k for intermediate values of k (boundaries are

given in Appendix B.8).

Changes in regulatory costs Second, we study how, in our model, changes in T-banks’ regulatory costs

(δ) affects the relative size of T- and S-banks. The message we draw from Figure 4 is that the coexistence

of T- and S-banks requires regulatory costs to satisfy two conditions. First, regulatory costs must be

high enough for T-banks to keep slack at t = 0 to purchase assets from S-banks in a crisis (at t = 1 in

state B), i.e. δ < δ.28 T- and S-banks then trade assets in a crisis, so that they become complements.

Second, regulatory costs must be low enough for bankers to have incentives to set up T-banks initially,

i.e. δ > δ.29 In the coexistence equilibrium, the higher T-banks’ regulatory costs, i.e. the lower δ, the

higher the relative size of S-banks.

27Under the parameter values used here, as in Figure 5a, only T-banks exist for low values of k.
28Where δ ≡ 1/(pR+ (1 −p)qr) is derived from condition 2. Note that condition 3 is satisfied under the parameter values

chosen in Figure 4 (δ > 1 − ε = 0.9).
29Where δ ≡ p/ (ε (p (R− 1)+ (1 −p)qr)+p) is derived from condition 6.
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Figure 7: Share of S-banks according to T-banks’ regulatory costs

5.3 Discussion

Analogy with capital requirements We consider an extension of our model in which instead of a limit

on deposit insurance, T-banks have to satisfy capital requirements. Specifically, we assume that at t = 1

in state B, T-banks cannot issue more debt than a fraction (1 − c) of their assets’ market value, i.e. they

are subject to the following capital requirement at t = 1 in state B:

DT1,B 6 (1 − c)
[
αT1,BI

T
0 + p1,BqrI

T
1

]
(9)

whereDT1,B denotes T-banks’ debt raised from households, αT1,B is the fraction of T-banks’ assets that are

not sold, p1,B the asset price, all at t = 1 in state B, and ITt the quantity of assets purchased by T-banks

at t = 0, 1.30

We consider a decrease in T-banks’ capital requirements (c), but the symmetric reasoning is true for

an increase in capital requirements. We obtain Proposition 8.

Proposition 8 (Changes in capital requirements). An increase in T-banks’ capital requirements (c) leads to

an increase in the relative size of the T-banking sector (1 − χS).

Proof. See Appendix B.10.

We show in Proposition 8 that changes in capital requirements (c) have similar effects on the relative

size of T- and S-banks as changes in the deposit insurance limit (k, see Section 5.2). An increase in T-

banks’ capital requirements reduces T-bank’s debt capacity in a crisis. This reduces S-banks’ asset prices

in a crisis, and in turn, increases bankers’ incentives to set up a T-bank ex-ante. Conversely, lower capital

requirements in a crisis increases T-bank’s debt capacity in a crisis.

We view this result as a caution for policies aimed at increasing T-banks’ countercyclical capital

buffers. In bad times, when T-banks use their increase debt capacity to bid up S-banks’ assets prices,

30At t = 1 in state B, we assume that capital requirements are stringent enough for (9) to bind in equilibrium, and that T-banks
do not sell assets to repay their creditors. See Appendix B.10.
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Figure 8: Share of S-banks according to the probability that no crisis occurs at t = 1

this might increase the relative size of S-banks. We discuss in Section 6 how the decentralized and

socially optimal relative sizes of T- and S-banks might differ.

Crisis expectations and relative size of S-banks Bankers do not make expectational errors in our

model. Asset fire sales in a crisis are preplanned and bankers take them into account when deciding

to set up T- or S-bank at t = 0. However, there is accumulating research suggesting that the scope and

severity of the crisis were vastly underestimated. Markets did not seem to be aware of the possibility of

a large negative shock (Coval et al., 2009): investment banks and rating agencies used incorrect models,

neglecting the systematic component in the risks of individual mortgages. Even securitization specialists

were not aware of a large-scale housing bubble and a looming crisis in 2004–2006 (Cheng et al., 2014).

It is not entirely clear that fire sales in the crisis reflected careful deliberations that supported S-banks

from an ex ante perspective. Gennaioli et al. (2013, 2015) propose models of S-banking where neglect

risk of large and unlikely bank losses sow the seeds of a financial crisis. Expectational errors seem to be

key to understand the crisis, but also financial instability in general.31

To understand the impact of neglected risks in our model, we study how the (perceived) probability

of a crisis affects bankers’ choice to set up a T-bank or a S-bank. An implicit assumption here is that

changes in the probability (p) of a good news at t = 1 versus that of a bad news (1 − p), i.e. a crisis,

reflects all bankers’ expectations at t = 0. Whether these probabilities are correct or not does not matter

as long as bankers share the same expectation.

Figure 8 shows that T- and S-banks only exist for intermediate values of bankers’ expectations of

a crisis (1 − p). Recall that T- and S-banks coexist because T-banks regulatory costs are offset by the

purchase of S-banks’ assets in a crisis, at a discount. Therefore when bankers do not anticipate a crisis,

i.e. when p is high, T-banks’ expected profits from S-banks’ fire-sold assets are too unlikely.32 All

bankers then set up a S-bank initially; and only S-banks exist in equilibrium. Conversely when bankers

31See for instance Greenwood and Hanson (2013), Baron and Xiong (2016), and Bordalo et al. (2017).
32This corresponds to parametric values such that condition (6) is violated, i.e. such that p > δεqr

1−δε[ R−1−qr]−δ .
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anticipate a crisis with a higher probability, i.e. when p is low, S-banks’ expected losses from S-banks’

discounted assets in a crisis are too likely. In equilibrium, S-banks then choose not issue debt at t = 0

to avoid those losses in a crisis, T-banks do not keep slack at t = 0 and instead issue debt which they

refinance at t = 1 in state B backed by deposit insurance (see Proposition 3). As a result, T- and S-banks

do not anticipate asset trade in a crisis when p is low, and S-banks cannot issue riskless debt at t = 0.

Under the parametric values used in Figure 8 (as in Figure 4), only T-banks exist because S-banks choose

not to trade assets if a crisis is too likely to occur.

Post-crisis banking regulations There have been several policy initiatives to impose restrictions on

banks’ trading activities since the crisis. Prohibiting regulatory arbitrage is the paradigm in Section 619

of the Dodd-Frank Act in the U.S. (known as the "Volcker Rule"), in the Financial Services Act of 2013 in

the U.K. (based on the Report of the Vickers Commission), as well as the 2012 Report of the European

Commission’s High-level Expert Group on Bank Structural Reform in the E.U. (known as the Liikanen

Report). Those regulation proposals include a prohibition of proprietary trading by T-banks ("Volcker

Rule"), a separation between different risky activities (Liikanen Report), and ring-fencing of depository

institutions and systemic activities (Report of the Vickers Commission, enacted in 2013 in the Financial

Services Act).

These reforms illustrate regulators’ concerns about the permeability between T- and S-banks. Reg-

ulatory arbitrage was indeed an important motive for T-banks to set up off balance-sheets conduits -

which Pozsar et al. (2013) refer to as "internal shadow banking" (see also Acharya et al. (2013)). How-

ever, our key finding is that, even absent contractual relationships or explicit guarantees between T- and

S-banks, the two bank types coexist because they are complements. The complementarity between the

two bank types comes from S-banks’ asset sales to T-banks in a crisis: both bank types gain from asset

trade (see Section 5). One implication of this complementarity is that T-banks channel the support from

the deposit insurance to S-banks, even absent contractual relationships between the two.

This paper suggests that T-banks’ profits from S-banks’ fire-sold assets in a crisis outweigh the (reg-

ulatory) costs that they have to comply with. This offers an explanation for the coexistence of T- and

S-banks. When discussing banking reforms one needs to consider the implications on both bank types,

in light of the reasons why they coexist in the first place. This paper provides a framework to do so.
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6 Normative approach

We now conduct a normative analysis. We study the aggregate surplus in the economy, hence the

aggregate profit of T- and S-banks. A way to think about our exercise is to consider that bankers don’t

consume the profits they make, but that they pay dividends to households at date 2. This measure is

comparable to that in Stein (2012).

We focus on the analysis of the efficiency of the banker’s allocation between the two bank types,

by considering the allocation problem faced by the social planner. The planner internalizes the impact

of allocation choices on the equilibrium price p1,B which clears the asset market at date 1 in state B,

choosing an allocation χS∗ ∈ [0; 1] such as to solve the following program:

χS∗ = argmax
χS∈[0;1]

χSVS,B
0

(
.,p∗1,B

)
+ (1 − χS)VT ,B

0
(
.,p∗1,B

)

where p1,B is a market price for assets at t = 1 in state B. χS being fixed, T- and S-banks make the same

choices as in the decentralized equilibrium and the equilibrium price p∗1,B is expressed as a function of

χS as described in Proposition 6.

We focus on parametric conditions in which the decentralized equilibrium is such that T- and S-

banks coexist and the asset price at t = 1 in state B is such that p1,B ∈ (pS1 ;pT1,L) (see Appendix B.6).

In the decentralized equilibrium, bankers then set up a S-bank with a uniquely defined probability

χS∗ ∈ (χS;χS) (see Proposition 6).

Proposition 9. When T- and S-banks coexist in equilibrium, the fraction of bankers operating a S-bank (χS)

is larger than socially optimal. Conversely, the fraction of bankers operating a T-bank (1 − χS) is smaller than

socially optimal.

Proof. See Appendix B.11.

When setting up a S-bank, bankers take asset prices in a crisis as given and fail to internalize the effect

of their asset sales on asset prices. Since S-banks’ ability to issue riskless debt initially depends on the

collateral value of their assets in a crisis, this creates a pecuniary externality (Gromb and Vayanos, 2002;

Lorenzoni, 2008). Conversely, when choosing to set up a T-bank, bankers take asset prices in a crisis as

given and fail to internalize the effect of their asset purchases on asset prices, hence S-banks’ ability to

issue riskless debt initially. Figure 9 illustrates the deviation between decentralized and socially optimal

fractions of bankers setting up T- and S-banks.
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When the constrained optimal allocation differs from the decentralized one, as in Figure 9, transfers

between the two forms of intermediation technology can increase the central planner’s objective func-

tion. The aim of such a transfer is to provide incentives for bankers to set up a T-bank, instead of a

S-bank. For instance, lump sum taxes on S-banks that are used to subsidy T-banks can implement the

socially optimal constrained allocation.

Note that the decentralized market allocation needs not be inefficient. For instance, if the decentral-

ized allocation is one in with S-banks only (see Appendix B.6 for the parametric restrictions under which

it is the case), decentralized and socially optimal allocations coincide, as illustrated in Figure 10. When

T- and S-banks do not coexist in equilibrium, lump-sum taxes and subsidies between T- and S-banks

need not be implemented.

0.2 0.4 0.6 0.8 1.0
χS

1.0

1.1

1.2

1.3

1.4

Figure 10: Decentralized and socially optimal equilibrium allocations coincide
(VT0 in red, VS0 in black,W(.) in blue)
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7 Conclusion

We propose a theory of the coexistence of traditional and shadow banks, which is consistent with several

facts from the 2007 financial crisis that we document. In our model, bankers must choose to set up a

traditional or a shadow bank. We assume two differences between traditional and shadow banks. On

the one hand, traditional banks incur a cost associated with the regulation they must comply with,

which shadow banks evade. On the other hand, traditional banks can issue claims backed by deposit

insurance, which shadow banks cannot. Traditional and shadow banks otherwise face the same choice

sets.

When bankers initially choose to set up a traditional or a shadow bank, they trade off the costs and

benefits associated with each type of bank, i.e. low regulation costs but need to sell assets at a discount

in a crisis versus high regulation cost but ability to buy assets at a discount in a crisis. The trade-off

depends on the asset discount anticipated in a crisis, itself a function of the relative size of the two

banking sectors. In the coexistence equilibrium, bankers are indifferent between setting up a traditional

or a shadow bank. This pins down asset prices and thus the relative size of the traditional and shadow

banking sectors.

We analyze our model’s implications for the effect of changes in the level of deposit insurance for

traditional banks, and find that expanding support to traditional banks in a crisis increases asset prices,

so that more bankers set up a shadow bank initially.

Finally, we consider the normative implications of our analysis. We find that asset sales generate a

pecuniary externality, and the relative size of S-banks is larger than socially optimal. Bankers indeed fail

to internalize that setting up a shadow bank reduces asset prices in a crisis, hence reducing all shadow

banks’ ability to raise debt initially. Conversely, the relative size of traditional banks is smaller than

socially optimal, because bankers fail to internalize that setting up a traditional bank increases asset

prices in a crisis, hence increasing shadow banks’ ability to raise debt initially.
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Appendix

A The data

A.1 Stylized balance sheets of US financial intermediaries

In the FAUS data, we identify traditional banks as private depository institutions (L.110). Those insti-

tutions are composed of U.S.-chartered depository institutions (L.111), foreign banking offices (L.112),

banks in U.S.-affiliated areas (L.113) and credit unions (L.114). The stylized facts that we document

do not hinge on a particular definition of shadow banks, and our goal is not to provide an accurate

measure of shadow banking (for global estimates of shadow banking, see IMF (2014) and FSB (2016a)).

We define shadow banks as chains of market-based transactions among legal institutions which, taken

together, perform maturity transformation activities comparable to that of traditional banks. In this sec-

tion, shadow banks are the sum of money market mutual funds (L.121), mutual funds (L.122), issuers of

asset-backed securities (L.127) and security brokers and dealers (L.130).33

We aggregate those financial intermediaries that we include in our definition of the shadow bank-

ing sector, and define short-term debt using the FAUS by using Krishnamurthy and Vissing-Jorgensen

(2015)’s definition of short-term debt in the FAUS data, 60% of which is composed of small time and sav-

ings deposits in the 2007-09 period. The list of FAUS items included in shadow banks’ short-term debt

is: Security repurchase agreements (net), Depository institution loans n.e.c., Trade payables, Security

credit (Customer credit balances), Security credit (U.S.-chartered institutions), Security credit (foreign

banking offices in U.S.), Taxes payable, Commercial paper, Open market paper.

We obtain stylized balance-sheets of traditional and shadow banks by consolidation of the financial

balance sheets of the legal institutions for which we have data in the Financial Accounts of the United

States (FAUS).

A.2 Fact 1: Liabilities flow from shadow to traditional banks

A.2.1 Table 1

We take the definition of the largest US bank-holding companies on Figure 11 from the Federal Reserve’s

website (https://www.ffiec.gov/nicpubweb/nicweb/HCSGreaterThan10B.aspx/).

33Earlier descriptive studies adopt similar approaches to shadow banks, see e.g. Pozsar et al. (2013), or Adrian and Shin (2010).
Acharya et al. (2013), McCabe (2010) and Krishnamurthy et al. (2014) use more micro data to measure shadow banks’ short-term
debt and its collapse.
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Cumulative flows since 2006q4
Shadow banks ($Bill) Traditional banks ($Bill)

2007q2 +437 +106
2007q3 +606 +230
2007q4 +514 +454
2008q1 +378 +591
2008q2 +623 +732
2008q3 +284 +751
2008q4 +505 +1104
2009q1 -277 +1733
2009q2 -670 +1659
2009q3 -966 + 1428
2009q4 -1132 +1436
2010q1 -1353 +1409
2010q2 -1354 +1431
2010q3 -1412 +1317
2010q4 -1440 +1420
2011q1 -1471 +1596
2011q2 -1398 +2011

Table 1: Traditional and shadow banks: short-term debt inflows (negative values denote outflows)
source: Financial Accounts of the United States. We define traditional, shadow banks, and short-term debt in

Appendix A.1.

A.2.2 Figure 11
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A.2.3 Book versus market value of equity
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Figure 12: Traditional banks: Book versus market value of equity
source: CRSP, Call Reports

He et al. (2010) and Bigio et al. (2016) also find that traditional banks’ book equity increased by around

US $250 billion during the crisis. Figure 12 provides evidence of this increase in the stock of book equity

of the US traditional banking sector through the crisis. This Figure is based on reported book value of

equity, which is the leverage measure most used for regulatory purposes. However, there are reasons

to believe that the true level of capital for the traditional banking sector was lower. We use data from

CRSP to measure the market value of traditional banks’ equity and we see that most of the increase in

book value of equity disappears when one looks at market value of equity.

A.2.4 Fact 2: Asset flow from shadow to traditional banks
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A.3 Regression: Traditional banks’ MBS purchases in the crisis

One main testable prediction of our theory is that traditional banks are able to purchase assets from

shadow banks in a crisis, insofar as they benefit from a guarantee on their deposits. This guarantee

indeed enables them to attract deposits precisely when shadow banks have to repay their creditors.

Publicly available data on purchases/sales of assets by traditional and shadow banks during the crisis

is not available. Therefore we try to estimate purchases/sales of mortgage-backed securities (henceforth

MBS) applying He et al. (2010)’s methodology on traditional banks’ regulatory data from the Call Re-

ports. We observe the total value of MBS holdings by each traditional bank before the crisis (denote it

P_2007q4 ∗MBS_2007q4i where P_2007q4 is the fair price of MBS securities in 2007q4 andMBS_2007q4

is the quantity of MBS held by bank i in 2007q4) and after the crisis (P_2009q1 ∗MBS_2009q1i). Besides,

denoting f the repayment/maturity rate of MBS net of the new issuance rate during the period from

2007q4 to 2009q1, the International Financial Reporting Standards (IFRS) give us the following account-

ing identity:

P_2009q1 ∗MBS_2009q1i − P_2007q4 ∗MBS_2007q4i ∗ (1 − f) =MBSPurchasesi −MBSLossesi

As in He et al. (2010), we test three different scenarii based on (i) the total losses that traditional

banks incurred on MBS assets during the 2008 crisis, and (ii) Bloomberg WDCI estimates for the net

repayment rate f. Under scenario 1 the repayment rate used to construct the MBS_Purchases variable is

7% and total losses imputed to the financial sector are $500 billion.34 Under scenario 2, the repayment

rate is 12% and total losses are $176 billion. Under the "naive" scenario, we do not correct for the net

repayment rate nor total losses.

We analyze the data formally by running the following OLS regression on changes in various items

of traditional banks’ balance sheets from 2007q4 to 2009q1:

MBSPurchasesi = β1.Change_insured_depositsi

+ β2.Change_uninsured_depositsi + β3.Change._Crediti

+ β4.Unused_commitments_ratio_2007q4i + β5.Capital_ratio_2007q4_i

+ β6.Log_assets_2007q4_i + β7.Controls_i + εi

where MBSPurchasesi is our estimated purchases/sales of mortgage-backed securities by traditional

bank i normalized by total assets (banks are aggregated to the top holder level in the Call Reports).

The data come from the quarterly Call Reports and He et al. (2010)’s estimates. We use the procedure

described in Acharya and Mora (2015) to construct our sample. All missing observations are consid-

34Note that the only available estimate on MBS losses in the crisis is an aggregate over the traditional banking sector from
the IMF’s Global Financial Stability Report of October 2008 and Bloomberg WDCI (which explains why we test two scenarii
thereafter). Denote those estimates for the entire traditional banking sector losses on MBS assetsMBSLosses. Although we try
to estimate MBS purchases/losses by taking into account potential losses on those assets when using the change in MBS holdings
from 2007q4 to 2009q1 adjusted for the net repayment/maturity rate, we cannot account for differences in losses across traditional
banks. We therefore assume that losses incurred by traditional banks are proportional to the amount of MBS they hold, so that
MBSLossesi =

MBS_2007q4i∑
kMBS_2007q4k

∗MBSLosses and
∑
kMBSLossesk =MBSLosses.
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ered equal to zero, and banks are aggregated to top holder level (RSSD9348). Table 2 above details the

construction of variables.

Variable Variable Name Call Report Items
Insured deposits insured_deposits rconf049 +rconf045

Uninsured deposits uninsured_deposits rcon2365 (brokered deposits)
Interest rate on large deposits ir_large_deposits rconf049 + rconf045

Unused commitment rcfd3814+rcfd3816+rcfd3817+rcfd3818+rcfd6550+rcfd3411
Credit Credit rcfd1400 + Unused_commitments

Unused commitments ratio Unused_commitments_ratio unused commitments/(unused commitments+rcfd1400)
Cash rcfd0010

Federal Funds Sold rcfd1350+rconb987
(rconb987+rcfdb989 if after 2002/03/30)

MBS rcfd1699+rcfd1705+rcfd1710+rcfd1715+rcfd1719+rcfd1734
+rcfd1702+rcfd1707+rcfd1713+rcfd1717+rcfd1732+rcfd1736

Securities (MBS excluded) rcfd1754+rcfd1773-(rcfd8500+rcfd8504+rcfdc026+rcfd8503+rcfd8507+rcfdc027)
Liquid assets Securities (MBS excluded)+ Federal Funds Sold+Cash

Liquidity ratio Liquidity_ratio Liquid Assets/rcfd2170
Wholesale funding rcon2604+rcfn2200+rcfd3200+rconb993+rcfdb995+rcfd3190

Wholesale funding ratio Wholesale funding/rcfd2170
Net Wholesale fund ratio Net_Wholesale_fund Wholesale funding -(Securities (MBS excluded)+Federal Funds Sold+Cash)

Non performing loan rcfd1407+rcfd1403
Non performing loan ratio NPL_ratio Non performing loan/rcfd1400

Capital ratio Capital_ratio (rcfd3210+rcfd3838)/rcfd2170
Real Estate Loan Share Real_Estate rcfd1410/rcfd1400
Residential Mortgages (rcfdf070+rcfdf071)/rcfd2170

Financial Assets rcfd0081+rcfd0071+rcfda570+rcfda571+rcona564+rcona565
+rcfd1350+rcfda549+rcfda550+rcfda556+rcfda248

Short Term Liabilities rcon2210+rcona579+rcona580+rcona584+rcona585+rcfd2800+rcfd2651+rcfdb571
Maturity Gap Mat_Gap (Financial Assets- Short Term Liabilities) / rcfd2170
Tag deposits Tag_deposits rcong167

Table 2: Variables definitions

Results are reported in Table 3. Variables ending in 2007q4 represent variable levels as of 2007q4.

Variables starting with "Change" are growth rates from 2007q4 to 2009q1, normalized by total assets as

of 2007q4. The dependent variable MBS_Purchases represents purchases of mortgage-backed securities

by traditional banks between 2007q4 and 2009q1, normalized by total assets as of 2007q4. As in He et al.

(2010) we test different scenarios in terms of MBS repayment rate and total losses on assets, to make sure

that what our dependent variables capture are actual purchases of MBS by traditional banks. We report

three of these scenarios, including the "naive" one. Under scenario 1 the repayment rate (net of new

issuances) used to construct the MBS_Purchases variable is 7% and total losses imputed to the financial

sector are $500 billion. Under scenario 2, the (net) repayment rate is 12% and total losses are $176 billion.

Under the "naive" scenario, we do not correct for the net repayment rate nor total losses. Standard errors

are clustered by insurer. Control variables are of three types. The first type are change variables: interest

rates on large deposits, capital ratio, net wholesale funds, real estate, non-performing loans, liquidity.

The second type are stock variables as of 2007q4: liquidity ratio, non-performing loans ratio, maturity

gap, interest rate on large desposits, net wholesale fund ratio, unused commitments ratio, real estate

ratio, capital ratio. The third type is a dummy variable for traditional banks’ use of the "tag deposit"

facility (equal to one if the bank used the facility).
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Scenario 1 Scenario 2 "Naive" Scenario

Change_uninsured_deposits 0.02 0.03 0.05
(0.05) (0.04) (0.04)

Change_insured_deposits 0.23*** 0.23*** 0.22***
(0.05) (0.04) (0.04)

Change_Liquidity -0.36*** -0.33*** -0.30***
(0.04) (0.03) (0.03)

Change_Credit -0.11*** -0.10*** -0.09***
(0.03) (0.03) (0.02)

Capital_ratio_2007q4 -0.06 -0.05 -0.03
(0.06) (0.05) (0.05)

Unused_commitments_ratio_2007q4 -0.00 -0.02 -0.04*
(0.03) (0.03) (0.02)

Controls yes yes yes
Adjusted R2 0.20 0.22 0.24
Observations 3954 3954 3954

Table 3: Traditional banks: determinants of MBS purchases in the crisis

Source: Call Reports and He et al. (2010)’s estimates. ***, **, and * mean statistically significant at the 1%, 5%, and
10% levels, respectively. We use White robust standard errors.

A.3.1 Fact 3: Asset fire sales

Figure 14: Interest rate spread: 5year AA-AAA Industrials
source: Gorton and Metrick (2012)
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B The model

B.1 Optimal financial contracts when households are infinitely risk averse

We show in this Section that when households are infinitely risk averse, short-term debt contract arise

endogenously in our model. We assume as in Gennaioli et al. (2013) that households have the following

utility function:

U = C0 + (β+ γ) (minC1 + minC2) (10)

where Ct is consumption at t = 0, 1, 2. Households value future stochastic consumption streams at their

worst-case scenario. This assumption that households value safe (money-like) claims only is aimed at

capturing the information-insensitivity properties of such claims (see e.g. Gorton and Pennacchi (1990),

Stein (2012) or DeAngelo and Stulz (2015), Dang et al. (2017)).

We assume that each i-bank contracts with a household at t = 0, 1, and perfect information between

the two parties. We consider all feasible contracts in which a bank borrows at t from a household, and

promises positive repayments in the following dates (i.e. we assume the household cannot credibly

promise to refinance the bank). We obtain the following Proposition.

Proposition 10. For both T- and S-banks, at each date t = 0, 1 and in the two state {B,G} the optimal financial

contract is a short-term debt contract.

Proof. The proof is made of three parts. First, we show that financial contracts are necessarily debt

contrats. Second, we show that S-banks optimally borrow short-term. Third, we show that T-banks

optimally borrow short-term. We can finally conclude that both T- and S-banks borrow using short-

term debt.

We denote Di0→1,G,Di0→1,B,Di0→2,BG,Di0→2,BB,Di0→2,GG) ∈ R5
+ the repayment schedule of i-banks

when borrowing an amount DS0 > 0 from a household at t = 0.

First, from household’s utility function (10), we know that households only value the contracts’

lowest possible payoff. UsingDS0→2,BB = DT0→2,BB = 0, we obtain min(Di0→2,BG,Di0→2,BB,Di0→2,GG) 6

0 where i = S, T . Therefore any i-bank sets

Di0→2,BG = Di0→2,BB = Di0→2,GG = 0,

such that all contracts are debt contracts.

Second, the financial contract between a S-bank and a household must satisfy the household’s par-

ticipation constraint, i.e. make the household at least indifferent between accepting and refusing the

terms of the contract:

DS0 6 min(DS0→1,G,DS0→1,B) + min(DS0→2,BG,DS0→2,BB,DS0→2,GG)

Now, remark that S-banks invest in risky assets whose payoff is 0 at t = 2 in state BB (see Figure 2).

Therefore S-bank cannot credibly commit to reimburse a positive amount of funds at t = 2 in state BB,

implying DS0→2,BB = 0 such that S-banks borrow short-term.
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Third, the only way for a T-bank to transfer funds to t = 2,BB is to use deposit insurance. Because

the deposit insurance fund only guarantees short-term claims, no long-term contract can be credibly set

up at t = 0 between a T-bank and a household, such that DT0→2,BB = 0 and T-banks borrow short-term.

To conclude, we find that any financial contract between an infinitely risk averse household and an

i-bank must be a short-term debt contract. QED.

B.2 Shadow banks’ program

B.2.1 S-banks: optimization program at t = 1 in state B (proof of lemma 2)

We rewrite lemma 2 more technically as follows.

Lemma 2 (S-banks at t = 1 in state B). At t = 1, in state B, S-banks do not default on their debt if and only if

DS0 6 (1 − ε)p1,BqrI
S
0 .

If p1,B > 0, their value function writes

VS1,B

(
IS0 ,DS0 ,p1,B

)
=


(
(1 − ε)p1,BqrI

S
0 −DS0

)
max

(
1

(1−ε)p1,B
; 1
)

if DS0 6 (1 − ε)p1,BqrI
S
0

−∞ otherwise

If p1,B = 0, their value function writes

VS1,B

(
IS0 ,DS0 ,p1,B

)
=

 qrIS0 if DS0 = 0

−∞ otherwise

Proof. No default occurs at t = 1 in state B if and only if the S-bank is able to obtain enough funds when

selling assets, to finance its debt level DS0 .

For any t = 0 investment level IS0 > 0, t = 1-state B asset purchases p1,Bqr > 0, there is an upper

level DS0
(
IS0 ,p1,B

)
of debt that can be reimbursed at t = 1 in state B:

D
S
0

(
IS0

)
= max
α1
S∈[0;1]

((
1 −αS1

)
(1 − ε)p1,BqrI

S
0

)
= (1 − ε)p1,BqrI

S
0

where (1−αS1 ) is the share of S-bank’s assets that is liquidated. at t = 1 in stateB. IfDS0 > (1 − ε)p1,BqrI0,S,

the S-bank must default on its debt issued at t = 0. In case of default, we set VS,D
1,B

(
IS0 ,DS0 ,p1,B

)
= −∞.

This ensures that the S-bank is not willing to default on its debt at t = 1 in state B.

In case of no-default, the program writes:

VS,ND
1,B

(
IS0 ,DS0 ,p1,B

)
= max
αS1,B∈[0;1]

αS1,BqrI
S
0 + (1 −αS1,B)(1 − ε)p1,BqrI

S
0 −DS0

s.t. (1 −αS1,B) (1 − ε)p1,BqrI
S
0 > DS0

Denoting ναS1,B>0 the Lagrange multiplier associated to the constraint αS1,B > 0, ναS1,B61 the Lagrange
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multiplier associated to the constraint αS1,B 6 1 and µS1,B the Lagrange multiplier associated to the fund-

ing constraint, the Lagrangian of the problem rewrites:

L = αS1,BqrI
S
0 + (1 −αS1,B)(1 − ε)p1,BqrI

S
0 −DS0

+ ναS1,B>0α
S
1,B + ναS1,B61

(
1 −αS1,B

)
+ µS1,B

(
(1 −αS1,B) (1 − ε)p1,BqrI

S
0 −DS0

)
and the first order condition writes as follows

dL

dαS1,B
= qrIS0

(
1 − (1 − ε)p1,B

)
+ ναS1,B>0 − ναS1,B61 − µ

S
1,B (1 − ε)p1,BqrI

S
0 = 0

And solves as follows:

1. If 1 − (1 − ε)p1,B < 0, ναS1,B>0 > 0 and αS1,B = 0, VS1,B
(
IS0 ,DS0 ,p1,B

)
= (1 − ε)p1,BqrI

S
0 −DS0

2. If 1 − (1 − ε)p1,B = 0, ναS1,B>0 − ναS1,B61 − µS1,B (1 − ε)p1,BqrI
S
0 = 0 and, either µS1,B > 0 and

ναS1,B>0 > 0 and αS1,B = 0, (1 − ε)p1,BqrI
S
0 = DS0 or any αS1,B ∈ [0; 1] such that

(1 −αS1,B) (1 − ε)p1,BqrI
S
0 > DS0 is an equilibrium solution, and VS1,B

(
IS0 ,DS0 ,p1,B

)
= qrIS0 −DS0

3. If 1 − (1 − ε)p1,B > 0,ναS1,B61 + µ
S
1,B (1 − ε)p1,BqrI

S
0 > 0. Hence, either αS1,B = 1, which can hold

if and only if DS0 = 0, or µS1,B > 0. In this case, αS1,B = 1 −
DS0

(1−ε)p1,BqrI
S
0

and VS1,B
(
IS0 ,DS0 ,p1,B

)
=

αS1,BqrI
S
0 =

(1−ε)p1,BqrI
S
0 −D

S
0

(1−ε)p1,B

To summarize, either p1,B > 0 and in any case,

VS,ND
1,B

(
IS0 ,DS0 ,p1,B

)
=
(
(1 − ε)p1,BqrI

S
0 −DS0

)
max

(
1

(1−ε)p1,B
; 1
)

, which holds true if DS0 = IS0 = 0.

Besides, if IS0 > 0 and p1,Bqr > 0, we have

αS1,B =


0 if p1,B <

1
1−ε

∈
[

0; 1 −
DS0

(1−ε)p1,BqrI
S
0

]
if p1,B = 1

1−ε

1 −
DS0

(1−ε)p1,BqrI
S
0

if p1,B >
1

1−ε

.

Or p1,B = 0, and D
S
0
(
IS0 ,p1,B

)
= 0. In this case, the value function in case of no-default, writes

VS,ND
1,B

(
IS0 ,DS0 ,p1,B

)
= qrIS0 . This proves lemma 2.
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B.2.2 S-banks: optimization progam at t = 0

For p1,B > 0, S-banks’ value function at t = 0 writes:

VS0
(
p1,B,nS

)
= max
DS0 ,IS0 >0

[(1 − p)
(
(1 − ε)p1,BqrI

S
0 −DS0

)
max

(
1

(1 − ε)p1,B
; 1
)

+ p
(
RIS0 −DS0

)
+ (DS0 +nS − I

S
0 )]

s.t. DS0 , IS0 > 0

DS0 6 (1 − ε)p1,BqrI
S
0

DS0 6 RIS0

For p1,B = 0, VS0 (0,n) = (1 − p)qrn+ pRn and IS0 = n, DS0 = 0.

Case p1,B <
1

1−ε . If 1
(1−ε) > p1,B, (1 − ε)p1,BqrI

S
0 < RI

S
0 . Therefore we ignore the last constraint and

the program rewrites:

VS0
(
p1,B,nS

)
= max
DS0 ,IS0 >0

(1 − p)

(
qrIS0 −

DS0
(1 − ε)p1,B

)
+ p

(
RIS0 −DS0

)
+
(
DS0 +n− IS0

)
s.t. DS0 +nS > IS0

DS0 6 (1 − ε)p1,BqrI
S
0

Denoting νDS0 >0 the Lagrange multiplier associated to the constraint DS0 > 0, νIS0 >0 the Lagrange

multiplier associated to the constraint IS0 > 0, µS0 the Lagrange multiplier associated to the funding

constraint and λS1,B the Lagrange multiplier associated to the debt constraint, the Lagrangian of the

problem rewrites:

L = (1 − p)

(
qrIS0 −

DS0
(1 − ε)p1,B

)
+ p

(
RIS0 −DS0

)
+
(
DS0 +n− IS0

)
+ νIS0 >0I

S
0 + νDS0 >0D

S
0 + µS0

(
DS0 +n− IS0

)
+ λS1,B

(
(1 − ε)p1,BqrI

S
0 −DS0

)
and the first order condition on IS0 yields:

dL

dIS0
= (1 − p)qr+ pR− 1 + νIS0 >0 + λ

S
1,B (1 − ε)p1,Bqr− µ

S
0 = 0

This implies µS0 > 0 and DS0 +n = IS0 .

One can replace IS0 and rewrite the problem as

VS0
(
p1,B,n

)
= max
DS0 >0

(1 − p)

(
qrIS0 −

DS0
(1 − ε)p1,B

)
+ p

(
RIS0 −DS0

)
s.t. DS0 +n = IS0

DS0 6 (1 − ε)p1,BqrI
S
0
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Or

VS0
(
p1,B,n

)
= max
DS0 >0

[
(1 − p)

(
qr−

1
(1 − ε)p1,B

)
+ p (R− 1)

]
DS0 + (pR+ (1 − p)qr)n

s.t. DS0 +n = IS0

DS0 6 (1 − ε)p1,Bqr
(
DS0 +n

)
.

We denote pS1 ≡
1

(1−ε)
(
qr+

p(R−1)
1−p

) . From 2 we have qr+ p(R−1)
1−p > 1 and therefore pS1 <

1
(1−ε) . In

this first case, the first order condition solves as follows.

1. If 0 < p1,B < pS1 ,
[
(1 − p)

(
qr− 1

(1−ε)p1,B

)
+ p (R− 1)

]
< 0 and DS0 = 0, IS0 = n, VS0

(
p1,B,n

)
=

(pR+ (1 − p)qr)n.

2. If p1,B = pS1 ,
[
(1 − p)

(
qr− 1

(1−ε)p1,B

)
+ p (R− 1)

]
= 0, and any DS0 ∈

[
0; (1−ε)pS1qr

1−(1−ε)pS1qr
n

]
is an

equilibrium value of DS0 , IS0 = n+DS0 and VS0
(
p1,B

)
= (pR+ (1 − p)qr)n.

3. If pS1 < p1,B < 1
1−ε , DS0 =

(1−ε)p1,Bqr

1−(1−ε)p1,Bqr
n, IS0 = n +DS0 = n

1−(1−ε)p1,Bqr
, and VS0

(
p1,B

)
=

p
(
RIS0 −DS0

)
= p

(
R−(1−ε)p1,Bqr

1−(1−ε)p1,Bqr

)
n

Case p1,B > 1
1−ε . If p1,B > 1

1−ε , the program rewrites

VS0
(
p1,B,nS

)
= max
DS0 ,IS0 >0

(1 − p)
(
(1 − ε)p1,BqrI

S
0 −DS0

)
+ p

(
RIS0 −DS0

)
+
(
DS0 +n− IS0

)
s.t. DS0 +nS > IS0

DS0 6 (1 − ε)p1,BqrI
S
0

DS0 6 RIS0

Denoting νDS0 >0 the Lagrange multiplier associated to the constraintDS0 > 0, νIS0 >0 the Lagrange multi-

plier associated to the constraint IS0 > 0, µS0 the Lagrange multiplier associated to the funding constraint,

λS1,B the Lagrange multiplier associated to the debt constraint DS0 6 (1 − ε)p1,BqrI
S
0 , and λS1,G the La-

grange multiplier associated to the debt constraint DS0 6 RIS0 , the Lagrangian of the problem writes:

L = (1 − p)
(
(1 − ε)p1,BqrI

S
0 −DS0

)
+ p

(
RIS0 −DS0

)
+
(
DS0 +n− IS0

)
+ νIS0 >0I

S
0 + νDS0 >0D

S
0 + µS0

(
DS0 +n− IS0

)
+ λS1,B

(
(1 − ε)p1,BqrI

S
0 −DS0

)
+ λS1,G

(
RIS0 −DS0

)
and first order condition on IS0 yields:

dL

dIS0
= (1 − p)(1 − ε)p1,Bqr+ pR− 1 + νIS0 >0 + λ

S
1,B (1 − ε)p1,Bqr+ λ

S
1,GR− µ

S
0 = 0
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This implies µS0 > 0 and DS0 + n = IS0 . Therefore the debt constraint DS0 6 RIS0 is always satisfied, so

that we can rewrite the problem as:

VS0
(
p1,B,nS

)
= max
DS0 >0

[
(1 − p)

(
(1 − ε)p1,Bqr− 1

)
+ p (R− 1)

]
DS0 + (1 − p)(1 − ε)p1,Bqrn+ pRn

s.t. DS0 +nS = IS0

DS0 6 (1 − ε)p1,BqrI
S
0

which implies :

1. If 1
1−ε 6 p1,B <

1
(1−ε)qr ,DS0 =

(1−ε)p1,Bqr

1−(1−ε)p1,Bqr
n, IS0 = n

1−(1−ε)p1,Bqr
, andVS0

(
p1,B

)
= p

(
RIS0 −DS0

)
=

p
(
R−(1−ε)p1,Bqr

1−(1−ε)p1,Bqr

)
n

2. If p1,B > 1
(1−ε)qr , DS0 = +∞, IS0 = +∞,and VS0

(
p1,B

)
= +∞

Putting together all the above cases, we summarize S-banks’ optimal choices in Proposition 1.

Proposition 11 (S-banks’ at t = 0). At t = 0, S-banks take the following decisions.

1. If 0 6 p1,B < p
S
1 , DS0 = 0, IS0 = nS, and VS0

(
p1,B,nS

)
= (1 − p)qrnS + pRnS. S-banks do not issue

short-term debt at t = 0

2. If p1,B = pS1 , any DS0 ∈
[

0; (1−ε)pS1qr
1−(1−ε)pS1qr

nS
]

is an equilibrium, IS0 = nS +DS0 and VS0
(
p1,B,nS

)
=

(1 − p)qrnS + pRnS. S-banks sell a fraction DS0
(1−ε)p1,Bqr(DS0 +nS)

of their assets at t = 1 in state B, to

repay their debt.

3. If pS1 < p1,B <
1

(1−ε)qr ,DS0 =
(1−ε)p1,Bqr

1−(1−ε)p1,Bqr
nS, IS0 = nS+DS0 andVS0

(
p1,B,nS

)
= p

(
R−(1−ε)p1,Bqr

1−(1−ε)p1,Bqr

)
nS.

S-banks sell all their assets at t = 1 in state B, to repay their debt.

4. If p1,B > 1
(1−ε)qr , DS0 = +∞, IS0 = +∞ and VS0

(
p1,B,nS

)
= +∞.

B.3 Traditional bank’s program

B.3.1 T-banks’ debt constraint

Lemma 3. For a given level of investment IT0 > 0 at t = 0, the maximum amount of short term debt that can be

reimbursed at t = 1 in state B is:

D
T
0,B

(
IT0 ,p1,B

)
=


k+ p1

δ

(
δqrIT0 − k

)
−
+
p1,B(1−ε)

δ

(
δqrIT0 − k

)
+

if 0 6 p1,B 6 δ

k+
(
δqrIT0 − k

)
−
+
p1,B(1−ε)

δ

(
δqrIT0 − k

)
+

if δ 6 p1,B 6 δ
1−ε

p1,BqrI
T
0 (1 − ε) if p1,B > δ

1−ε

Similarly, the maximum amount of short term debt that can be reimbursed at t = 1 in state G is:

D0,G (I0) = δRI
T
0 .
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Proof. At t = 1 in state B, T-banks can generate funds either by selling a share 1 − αT1,B of their assets,

or by newly raising funds DT1,B. They are subject to a (i) limited liability constraint at t = 2, and (ii) a

limit k on the amount of debt that can be guaranteed at t = 1 in state B. For a given level of investment

IT0 > 0 at t = 0 and asset purchases p1,Bqr > 0, the maximum amount of debt issued at t = 0 that can be

reimbursed at t = 1 in state B is:

D
T
0,B

(
IT0 ,p1,B

)
= max
αT1,B,IT1,B,DT1,B

(1 −αT1,B)p1,BqrI
T
0 (1 − ε) +DT1,B − p1,BqrI

T
1,B

s.t. DT1,B, IT1,B,αT1,B > 0,αT1,B 6 1

DT1,B 6 qδ
(
αT1,BrI

T
0 + rIT1,B

)
DT1,B 6 k

Denoting λT1,B > 0 the Lagrange multiplier associated to the funding constraintDT1,B 6 qδ
(
αT1,BrI

T
0 + rIT1,B

)
,

νDT1,B6k
the Lagrange multiplier associated to the constraint DT1,B 6 k, νDT1,B>0 the Lagrange multi-

plier associated to the constraint DT1,B > 0, νIT1,B>0 the Lagrange multiplier associated to the constraint

IT1,B > 0, ναT1,B>0 the Lagrange multiplier associated to the debt constraint αT1,B > 0, and ναT1,B61 the

Lagrange multiplier associated to the constraint 1 −αT1,B > 0, the Lagrangian of the problem writes:

L = (1 −αT1,B)p1,BqrI
T
0 (1 − ε) +DT1,B − p1,BqrI

T
1,B

+ λT1,B

[
qδ
(
αT1,BrI

T
0 + rIT1,B

)
−DT1,B

]
+ νDT1,B6k

(
k−DT1,B

)
+ νDT1,B>0D

T
1,B + νIT1,B>0I

T
1,B

+ ναT1,B>0α
T
1,B + ναT1,B61

(
1 −αT1,B

)
The first order conditions yield

dL

dαT1,B
= −p1,BqrI

T
0 (1 − ε) + λT1,BqδrI

T
0 + ναT1,B>0 − ναT1,B61 = 0

dL

dDT1,B
= 1 − λT1,B − νDT1,B6k

+ νDT1,B>0 = 0

dL

dIT1,B
= −p1,Bqr+ λ

T
1,Bqδr+ νIT1,B>0 = 0

Hence

(
λT1,Bδ− p1,B (1 − ε)

)
qrIT0 + ναT1,B>0 − ναT1,B61 = 0 (11)

1 + νDT1,B>0 = λT1,B + νDT1,B6k
(12)

λT1,Bqδr+ νIT1,B>0 = p1,Bqr (13)

First, we solve the problem for IT0 > 0.
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1. If p1,B = 0, λT1,B = νIT1,B>0 = 0, νDT1,B6k
> 0, ναT1,B61 = ναT1,B>0 = 0. We then haveDT0,B

(
IT0 ,p1,B

)
=

k.

2. If 0 < p1,B < δ, using (13) we have λT1,B < 1, and using (12) we have νDT1,B6k
> 0 and DT1,B = k.

Then, either λT1,B = 0 and qδ
(
αT1,BrI

T
0 + rIT1,B

)
> DT1,B, in which case νIT1,B>0 > 0, ναT1,B>0 > 0

which implies αT1,B = 0, IT1,B = 0. This is impossible because DT1,B = k > 0. We must then have

λT1,B > 0 and qδ
(
αT1,BrI

T
0 + rIT1,B

)
= DT1,B. In that case, (11) and (13) yield

(
λT1,Bδ− p1,B (1 − ε)

)
qrIT0 =

p1,BqrεI
T
0 − νIT1,B>0I

T
0 = ναT1,B61 − ναT1,B>0. Putting (11) and (13) together we obtain ναT1,B61 +

νIT1,B>0I
T
0 = ναT1,B>0 + p1,BqrεI

T
0 . Two subcases arise.

(a) Either ναT1,B61 > 0, and IT1,B =
k−qδrIT0
qδr , k = qδ

(
rIT0 + rIT1,B

)
. We then haveDT0,B

(
IT0 ,p1,B

)
=

DT1,B − p1,BqrI
T
1,B = k+

p1,B
δ

(
qδrIT0 − k

)
. This solution is an optimum if and only if δqrIT0 6

k.

(b) Or νIT1,B>0 > 0,DT1,B = qδαT1,BrI
T
0 = k. We then haveDT0,B

(
IT0 ,p1,B

)
= (qδrIT0 − k)

p1,B(1−ε)
δ +

k. This solution is an optimum if and only if δqrIT0 > k.

In a nutshell DT0,B
(
IT0 ,p1,B

)
= k+

p1,B
δ

(
δqrIT0 − k

)
−
+
p1,B(1−ε)

δ

(
δqrIT0 − k

)
+

.

3. If p1,B = δ, two subcases arise:

(a) Either λT1,B = 1, and νIT1,B>0 = νDT1,B>0 = νDT1,B6k
= 0,ναT1,B61 > 0. We then haveDT0,B

(
IT0 ,p1,B

)
=

qδrIT0 . This solution is an optimum if and only if δqrIT0 6 k.

(b) Or 0 < λT1,B < 1, νIT1,B>0 > 0,νDT1,B6k
> 0 and DT1,B = k, IT1,B = 0, qδαT1,BrI

T
0 = DT1,B = k. We

then have DT0,B
(
IT0 ,p1,B

)
= (1 − ε)

(
δqrIT0 − k

)
+ k. This solution is an optimum if and only

if δqrIT0 > k.

In a nutshell DT0,B
(
IT0 ,p1,B

)
= k+

(
δqrIT0 − k

)
−
+ (1 − ε)

(
δqrIT0 − k

)
+

.

4. If δ < p1,B <
δ

1−ε , by (13) we have either λT1,B > 1 or νIT1,B>0 > 0. If λT1,B > 1, νDT1,B>0 > 0 by

(12). This implies αT1,B = IT1,B = 0. However λT1,B > 1 also implies
(
λT1,Bδ− p1,B (1 − ε)

)
qrIT0 > 0,

which imposes ναT1,B61 > 0 by (11) and contradicts αT1,B = 0. Hence, in equilibrium νIT1,B>0 > 0

and 0 < λT1,B 6 1.

(a) If λT1,B = 1, νDT1,B>0 = νDT1,B6k
= 0, ναT1,B61 > 0, DT1,B = qδrIT0 6 k. We then have

D
T
0,B
(
IT0 ,p1,B

)
= qδrIT0 . This solution is an optimum if and only if δqrIT0 6 k.

(b) If λT1,B < 1,νDT1,B6k
> 0,DT1,B = αT1,BqδrI

T
0 = k. We then have

D
T
0,B
(
IT0 ,p1,B

)
=

(1−ε)p1,B
δ

(
δqrIT0 − k

)
+k. This solution is an optimum if and only if δqrIT0 >

k.

In a nutshell DT0,B
(
IT0 ,p1,B

)
= k+

(
δqrIT0 − k

)
−
+

(1−ε)p1,B
δ

(
δqrIT0 − k

)
+

.

5. If p1,B = δ
1−ε , by (13) we have either λT1,B > 1 or νIT1,B>0 > 0. If λT1,B > 1, νDT1,B>0 > 0 by (12).

This implies αT1,B = IT1,B = 0. However λT1,B > 1 also implies
(
λT1,Bδ− p1,B (1 − ε)

)
qrI > 0, which
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imposes ναT1,B61 > 0 by (11) and contradicts αT1,B = 0. Hence, in equilibrium νIT1,B>0 > 0 and

0 < λT1,B 6 1.

(a) If λT1,B = 1,νD1,BT>0 = νDT1,B6k
= 0,ναT1,B61 = 0,DT1,B = αT1,BqδrI

T
0 6 k. We then have

D0 = qδrIT0 . This solution is an optimum if and only if δqrIT0 6 k.

(b) If λT1,B < 1,νDT1,B6k
> 0,DT1,B = αT1,BqδrI = k. We then have DT0,B

(
IT0 ,p1,B

)
=
(
δqrIT0 − k

)
+

k. This solution is an optimum if and only if δqrIT0 > k.

In a nutshell DT0,B
(
IT0 ,p1,B

)
= δqrIT0 .

6. If p1,B >
δ

1−ε , by (11) either ναT1,B61 > 0, which implies
(
λT1,Bδ− p1,B (1 − ε)

)
> 0 and λT1,B >

1, therefore νDT1,B>0 > 0 by (12) which contradicts
(
λT1,Bδ− p1,B (1 − ε)

)
> 0 therefore this not

possible. We must then have ναT1,B61 = 0, and νIT1,B>0 > 0 by (13). If λT1,Bδ− p1,B (1 − ε) = 0, then

λT1,B > 1, νDT1,B>0 > 0 by (12) and DT1,B = IT1,B = αT1,B = 0. Otherwise λT1,Bδ− p1,B (1 − ε) < 0 and

ναT1,B>0 > 0. We then have DT0,B
(
IT0 ,p1,B

)
= p1,BqrI

T
0 (1 − ε).

Second, we solve the problem for IT0 = 0. In this case the program rewrites

D
T
0,B

(
IT0 ,p1,B

)
= max
IT1,B,DT1,B

DT1,B − p1,BqrI
T
1,B

DT1,B 6 qδ
(
rIT1,B

)
DT1,B 6 k

DT1,B, IT1,B > 0

It is easily shown that the previous optima also hold true when IT0 = 0. Lemma 3 obtains.

B.3.2 T-Banks: optimization program at t = 1 in state B

We focus on the case where T-banks do not default (hereafter "ND" for "no default"), i.e. when DT0,B ∈

[0;DT0,B
(
IT0 ,p1,B

)
] where DT0,B is defined in Lemma 3.

Proposition 12. For a given level of investment IT0 > 0 at t = 0, p1,B > 0 and DT0,B ∈ [0;DT0,B
(
IT0 ,p1,B

)
],

value functions at t = 1 in state B solve as follows:

1. If DT0 6 k then

(a) If 0 < p1,B < δ, then the equilibrium is αT1,B = 1,DT1,B = k, IT1,B =
k−DT0
p1,Bqr

, VT ,ND
1,B

(
IT0 ,DT0 ,p1,B

)
=

(δ−p1,B)
p1,B

(
k−DR0

)
+ δqrIT0 −DT0 .

(b) If p1,B = δ, then equilibria are such that 0 6 IT1,B 6
k−DT0
δqr ,DT1,B ∈ [DT0 + δqrIT1,B; δqrIT0 + δqrIT1 ],

αT1,B = 1, VT ,ND
1,B

(
IT0 ,DT0 ,p1,B

)
= δqrIT0 −DT0 .

(c) If δ < p1,B <
δ

1−ε , then equilibria are such that αT1,B = 1, IT1 = 0, DT1,B ∈ [DT0 ; min(δqrIT0 ;k)] and

VT ,ND
1,B

(
IT0 ,DT0 ,p1,B

)
= δqrIT0 −DT0 .
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(d) If p1,B = δ
1−ε , then equilibria are such that IT1,B = 0,αT1,B ∈ [0; 1], andDT1,B ∈ [0; min(k; δqαT1,BrI

T
0 )],

DT0 6 DT1,B + (1 −αT1,B)p1,BqrI
T
0 (1 − ε) and VT ,ND

1,B
(
IT0 ,DT0 ,p1,B

)
= δqrIT0 −DT0 .

(e) If p1,B >
δ

1−ε , then the equilibrium is such that DT1,B = α = IT1,B = 0 and VT ,ND
1,B

(
IT0 ,DT0 ,p1,B

)
=

(1 − ε)p1,BqrI
T
0 −DT0 .

2. If DT0 > k, then

(a) If 0 < pT1,B <
δ

1−ε , then the equilibrium is such that IT1,B = 0, DT1,B = k, α = 1 −
DT0 −k

p1,BqrI
T
0 (1−ε)

,

VT ,ND
1,B

(
IT0 ,DT0 ,p1,B

)
=

(
1 −

DT0 −k

p1,BqrI
T
0 (1−ε)

)
δqrIT0 − k.

(b) If p1,B = δ
1−ε , then equilibria are such that IT1,B = 0,αT1,B ∈ [0; 1], andDT1,B ∈ [0; min(k; δqαT1,BrI

T
0 )],

with DT0 6 DT1,B + (1 −αT1,B)p1,BqrI
T
0 (1 − ε) and VT ,ND

1,B
(
IT0 ,DT0 ,p1,B

)
= δqrIT0 −DT0 .

(c) If p1,B >
δ

1−ε , then the equilibrium is such thatDT1,B = αT1,B = IT1,B = 0 andVT ,ND
1,B

(
IT0 ,DT0 ,p1,B

)
=

p1,B (1 − ε)qrIT0 −DT0 .

Morevover, if p1,B = 0, then VT ,ND
1,B

(
IT0 ,DT0 ,p1,B

)
= +∞.

Proof. We first solve for T-banks’ program at t = 1 in state B, takingDT0 and IT0 as given, in the set which

ensures no-default at t = 1 in state B. In this no-default case, T-banks’ value function writes:

VT ,ND
1,B

(
IT0 ,DT0 ,p1,B

)
= max
αT1,B,DT1,B,IT1,B

(
δ− p1,B

)
qrIT1,B +αT1,BδrI

T
0 + (1 −αT1,B)p1,BqrI

T
0 (1 − ε) −DT0

s.t. DT1,B, IT1,B,αT1,B > 0,αT1,B 6 1

DT1,B 6 qδ
(
αT1,BrI

T
0 + rIT1,B

)
DT1,B 6 k

(1 −αT1,B)p1,BqrI
T
0 (1 − ε) +D1,B > DT0 + p1,BqrI

T
1,B

D1,B 6 qδ
(
rαT1,BI

T
0 + rIT1,B

)
The Lagrangian writes as follows:

LT1,B =
(
δ− p1,B

)
qrIT1,B +αT1,BδqrI

T
0 + (1 −αT1,B)p1,BqrI

T
0 (1 − ε) −DT0

+ λ1

(
(1 −αT1,B)p1,BqrI

T
0 (1 − ε) +DT1,B −DT0 − p1,BqrI

T
1,B

)
+ λ2

(
δq
(
αT1,BrI

T
0 + rIT1

)
−DT1,B

)
+ νDT1,B6k

(
k−DT1,B

)
+ νDT1,B>0D

T
1,B + ναT1,B>0α

T
1,B + ναT1,B61

(
1 −αT1,B

)
+ νIT1,B>0I

T
1,B
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The first-order conditions yield:

dLT1,B

dDT1,B
= λ1 − λ2 − νDT1,B6k

+ νDT1,B>0 = 0 (14)

dLT1,B

dαT1,B
= qrIT0

(
δ− p1,B (1 − ε)

)
− λ1p1,BqrI

T
0 (1 − ε) + λ2δqrI

T
0 + ναT1,B>0 − ναT1,B61 = 0 (15)

dLT1,B

dIT1,B
=
(
δ− p1,B

)
qr− λ1p1,Bqr+ λ2δqr+ νIT1,B>0 = 0 (16)

We focus on cases where k > 0. First, we solve for IT0 > 0.

We use (14) to replace λ1 in (16) and obtain:

(
δ− p1,B

)
qr (1 + λ2) + νIT1,B>0 + (νDT1,B>0 − νDT1,B6k

)p1,Bqr = 0 (17)

We use (14) to replace λ1 in (15) and obtain:

qrIT0
(
δ− p1,B (1 − ε)

)
(1 + λ2) + ναT1,B>0 − ναT1,B61 +

(
νDT1,B>0 − νDT1,B6k

)
p1,BqrI

T
0 (1 − ε) = 0 (18)

Finally, we multiply (17) by (1 − ε)IT0 and subtract (18) to obtain:

εqrIT0 δ (1 + λ2) + ναT1,B>0 = ναT1,B61 + νIT1,B>0I
T
0 (1 − ε) (19)

We treat different cases sequentially.

Case p1,B = 0 In this case, equations (14), (15) and (16) rewrite:

λ1 − λ2 − νD1,B6k + νD1,B>0 = 0

qrIT0 δ+ λ2δqrI
T
0 + ναT1,B>0 − ναT1,B61 = 0

δqr+ λ2δqr+ νIT1,B>0 = 0

Hence, IT1 = +∞, αT1,B = 1 and VT1,B = +∞.

Case 0 < p1,B < δ In this case, (16) obtains λ1 > 0 and (17) obtains νD1,B6k > 0.

Hence the constraint associated to the Lagrange multipliers λ1 and νD1,B6k bind, and respectively

(1 −αT1,B)p1,BqrI
T
0 (1 − ε) +DT1,B = DT0 + p1,BqrI

T
1,B and D1,B = k. It follows that νD1,B>0 = 0.

From (19), we have two possible cases:

1. Either ναT1,B61 > 0 and αT1,B = 1. It follows that D1,B = k, IT1,B =
k−DT0
p1,Bqr

. In this case VT1,B =

(δ−p1,B)
p1,B

(
k−DT0

)
+ δqrIT0 −DT0 . This solution is an equilibrium if and only if DT0 6 k.

2. Or νIT1,B>0 > 0, and IT1,B = 0. It follows that (1 − α)p1,BqrI
T
0,B (1 − ε) + k = DT0 , hence αT1,B = 1 −

DT0 −k

p1,BqrI
T
0 (1−ε)

. In this case, VT1,B =

(
1 −

DT0 −k

pT1,BqrI
T
0 (1−ε)

)
δqrIT0 − k. This solution is an equilibrium
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if and only if DT0 > k.

Case p1,B = δ In this case, again from (19) we have two possible cases:

1. Either ναT1,B61 > 0 and αT1,B = 1.

(a) In which case either λ1 = λ2, νDT1,B6k
= νDT1,B>0 = 0, νIT1,B>0 = 0. In this case any 0 6 IT1,B 6

k−DT0
δqr is an equilibrium value, any DT1,B such that δqrIT0 + δqrIT1,B > DT1,B > DT0 + δqrIT1,B,

VT1,B = δqrIT0,B −DT0 , and these solutions are equilibria if and only if DT0 6 k.

(b) Or λ1 > λ2,νIT1,B>0 > 0, νDT1,B6k
> 0 and IT1,B = 0, DT1,B = k, αT1,B = 1 −

DT0 −k

δqrIT0 (1−ε)
= 1. In

this case, VT1,B = δqrIT0 − k. This solution is an equilibrium if and only if DT0 = k.

2. Or νIT1,B>0 > 0 and IT1,B = 0.

(a) In this case, λ2 < λ1, λ1 > 0, νDT1,B6k
> 0, αT1,B = 1 −

DT0 −k

δqrIT0 (1−ε)
, and IT1,B = 0, DT1,B = k. In

this case, VT1,B =

(
1 −

DT0 −k

δqrIT0 (1−ε)

)
δqrIT0 − k. This solution is an equilibrium if and only if

k 6 DT0 .

Case δ < p1,B <
δ

1−ε We rewrite (17) and (18) as follows:

νDT1,B>0p1,Bqr+ νIT1,B>0 = −
(
δ− p1,B

)
qr (1 + λ2) + νDT1,B6k

p1,Bqr(
νDT1,B6k

− νDT1,B>0

)
p1,BqrI

T
0 (1 − ε) + ναT1,B61 = qrIT0

(
δ− p1,B (1 − ε)

)
(1 + λ2) + ναT1,B>0

We have qrIT0
(
δ− p1,B (1 − ε)

)
(1 + λ2) > 0, therefore −

(
δ− p1,B

)
qr (1 + λ2) > 0.

Hence, either νIT1,B>0 > 0 or νIT1,B>0 = 0. In the latter case, νDT1,B>0 > νDT1,B6k
= 0, ναT1,B61 > 0 and

λ2 > 0. This is impossible because IT0 > 0. We therefore have νIT1,B>0 > 0.

1. Then, either νDT1,B>0 > νDT1,B6k
= 0,ναT1,B61 > 0 and λ2 > 0 which is impossible because IT0 > 0.

2. Finally νDT1,B>0 = 0.

(a) Then, either νDT1,B6k
= 0,ναT1,B61 > 0, in which case αT1,B = 1, IT1,B = 0, qδrIT0 > DT1,B > DT0 ,

and DT1,B 6 k. In this case VT1,B = δqrIT0 −DT0 . This solution is an equilibrium if and only if

DT0 6 k.

(b) Or νDT1,B6k
> 0, λ1 > 0, in which case αT1,B = 1− DT0 −k

δqrIT0 (1−ε)
, IT1,B = 0,DT1,B = k and this solu-

tion is an equilibrium if and only if k 6 DT0 . In this case, VT1,B =

(
1 −

DT0 −k

δqrIT0 (1−ε)

)
δqrIT0 − k.

Case p1,B = δ
1−ε Again, νDT1,B>0 > 0 = νDT1,B6k

, λ2 > 0, and ναT1,B61 > 0 is impossible because IT0 > 0.

We then have νIT1,B>0 > 0 and νDT1,B>0 = 0. In this case,

ναT1,B>0 = ναT1,B61 + νDT1,B6k
δqrIT0
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and ναT1,B61 = 0.

Finally, IT1,B = 0, any αT1,B ∈ [0; 1], and any DT1,B ∈ [0; min(k; δqαT1,BrI
T
0 )] such that DT0 6 DT1,B + (1 −

αT1,B)p1,BqrI
T
0 (1 − ε) is an equilibrium, and VT1,B = δqrIT0 −DT0 .

Case p1,B >
δ

1−ε In this case, (17) yields

νIT1,B>0 + νDT1,B>0p1,Bqr = νDT1,B6k
p1,Bqr+

(
p1,B − δ

)
qr (1 + λ2) > 0

and (18) yields

ναT1,B>0 +νDT1,B>0p1,BqrI
T
0 (1 − ε) = ναT1,B61 +νDT1,B6k

p1,BqrI
T
0 (1 − ε)+qrIT0

(
p1,B (1 − ε) − δ

)
(1 + λ2) > 0

Two possible cases arise:

1. Either ναT1,B>0 > 0,ναT1,B61 = 0, in which case we have from (19) νIT1,B>0 > 0. Hence, IT1,B =

0,αT1,B = 0,DT1,B = 0,VT1,B = p1,B (1 − ε)qrIT0 −DT0 .

2. Otherwise ναT1,B>0 = 0, νDT1,B>0 > 0, λ2 > 0 and αT1,B = IT1,B = 0.

In both cases, DT1,B = αT1,B = IT1,B = 0 and VT1,B = p1,B (1 − ε)qrIT0 −DT0 .

Second, if IT0 = 0 the program rewrites

VT ,ND
1,B

(
0,DT0 ,p1,B

)
= max

(DT1,B,IT1,B)∈[0;k]×R+

(
δ− p1,B

)
qrIT1,B −DT0

s.t. DT1,B > DT0 + p1,BqrI
T
1,B

DT1,B 6 qδ
(
rIT1,B

)
and the same results about the value function hold true.

B.3.3 T-banks: optimization program at t = 0

We define k∗ ≡ δqrn
1−δqr , pT1,L ≡

δ

δqr+
p(δR−1)

1−p
,pTB1,H ≡

pT1,L
1−ε , and solve solve for T-bank’s optimization

program at t = 0, taking n and p1,B as given.

Proposition 13. The solution to T-bank’s optimization program is as follows:

1. If 0 < k 6 k∗

(a) If 0 < p1,B < p
T
1,L, DT0 = 0,IT0 = n, VT0 = p (δRn) + (1 − p)

(
δqrn− k+ δ

p1,B
k
)

(b) If p1,B = pT1,L, anyDT0 ∈ [0;k], IT0 = n+DT0 is an equilibrium solution andVT0 = p (δR(n+ k) − k)+

(1 − p) (δqr(n+ k) − k)

(c) If pT1,L < p1,B < p
T
1,H,DT0 = k, IT0 = k+n andVT0 = p (δR(n+ k) − k)+(1−p) (δqr(n+ k) − k)
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(d) If p1,B = pT1,H, any DT0 ∈ [k;
k

(
1−

p1,B(1−ε)
δ

)
+(1−ε)p1,Bqrn

1−p1,B(1−ε)qr ] is an equilibrium solution, IT0 = n+

DT0 and VT0 = p (δR(n+ k) − k) + (1 − p) (δqr(n+ k) − k)

(e) If pT1,H < p1,B 6 δ
1−ε ,DT0 =

k

(
1−
p1,B(1−ε)

δ

)
+(1−ε)p1,Bqrn

1−p1,B(1−ε)qr , IT0 = n+DT0 and VT0 = p (δR (D0 +n)−D0)

(f) If δ
1−ε 6 p1,B <

1
(1−ε)qr , DT0 =

p1,B(1−ε)qrn
(1−p1,B(1−ε)qr)

, IT0 = DT0 +n, and VT0 = p (δR (D0 +n) −D0)

(g) If p1,B > 1
(1−ε)qr , DT0 = +∞, IT0 = +∞ and VT0 = +∞

2. If k > k∗

(a) If 0 < p1,B 6 pT1,L, DT0 = 0,IT0 = n, VT0 = p (δRn) + (1 − p)
(
δqrn− k+ δ

p1,B
k
)

(b) If p1,B = pT1,L, any DT0 ∈ [0;
k
(

1−
p1,B
δ

)
+p1,Bqrn

1−p1,Bqr
] is an equilibrium solution, IT0 = DT0 + n and

VT0 = p (δR(n+ k) − k) + (1 − p) (δqr(n+ k) − k)

(c) If pT1,L < p1,B < δ, D0 =
k
(

1−
p1,B
δ

)
+p1,Bqrn

1−p1,Bqr
, IT0 = DT0 +n and VT0 = p

(
δR
(
DT0 +n

)
−DT0

)
(d) If δ 6 p1,B 6 δ

1−ε , DT0 = δqrn
1−δqr , IT0 = DT0 +n and VT0 = p (δRI−D0) + (1 − p)

(
δqrI−DR0

)
.

(e) If δ
1−ε 6 p1,B <

1
(1−ε)qr , DT0 =

p1,B(1−ε)qrn
(1−p1,B(1−ε)qr)

, IT0 = DT0 +n, and VT0 = p (δR (D0 +n) −D0)

(f) If p1,B > 1
(1−ε)qr , DT0 = +∞, IT0 = +∞ and VT0 = +∞

Moreover, if p1,B = 0, then VT0 = +∞.

Proof. As S-banks, T-banks can only raise funds in the form of riskless short term debt. They will choose

a debt level which ensures that all debt is reimbursed at t = 1, with certainty. T-banks’ program for a

given level n of own funds and a given price p1,B at t = 1 in state Bmarket writes

VT0 (p1,B,n) = max
IT0 ,DT0

(DT0 +n− IT0 ) + pV
T ,ND
1,G

(
IT0 ,DT0 ,p1,B

)
+ (1 − p)VT ,ND

1,B

(
IT0 ,DT0 ,p1,B

)
(20)

DT0 6 δRIT0 (21)

DT0 6 D
T
0

(
p1,B, IT0

)
(22)

DT0 +n > IT0 (23)

IT0 ,DT0 > 0 (24)

with

D
T
0

(
IT0 ,p1,B

)
=


k+

p1,B
δ

(
δqrIT0 − k

)
−
+
p1,B(1−ε)

δ

(
δqrIT0 − k

)
+

if 0 6 p1,B 6 δ

k+
(
δqrIT0 − k

)
−
+
p1,B(1−ε)

δ

(
δqrIT0 − k

)
+

. if δ 6 p1,B 6 δ
1−ε

p1,BqrI
T
0 (1 − ε) if p1,B > δ

1−ε

VT ,ND
1,G

(
IT0 ,DT0 ,p1,B

)
= δRIT0 −DT0
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and, as shown in Proposition 12,

VT ,ND
1,B

(
IT0 ,DT0 ,p1,B

)
=

((
δ− p1,B

)
+

p1,B

(
k−DT0

)
+
+
(
k−DT0

)
−

(
δ− p1,B (1 − ε)

)
+

p1,B (1 − ε)

)
+ (p1,B (1 − ε) − δ)+qrI

T
0 + δqrIT0 −DT0

The first thing to notice is that, as for S-banks, T-banks are always binding their date 0 funding

constraint (equation (23)): indeed, they always prefer investing one unit of funds in the assets available

at date 0, which yields at least an expected δ(pR+ (1− p)qr) > 1 than consume it at date 0 and obtain 1.

The program of the bank at date 0 can then be rewritten:

VT0 (p1,B,n) = max
DT0 >0

pVT ,ND
1,G

(
IT0 ,DT0 ,p1,B

)
+ (1 − p)VT ,ND

1,B

(
IT0 ,DT0 ,p1,B

)
DT0 6 D

T
0

(
p1,B, IT0

)
DT0 +n = IT0

We solve this program according to the values of p1,B, and split it into three subprograms to ease the

resolution. The solution to our program is then the maximum of the solution of the three subprograms.

Case p1,B = 0. If p1,B = 0, as VT ,ND
1,B

(
IT0 ,DT0 , 0

)
= +∞whatever DT0 and IT0 , we have VT0 (0,n) = +∞

Case 0 < p1,B < δ. If 0 < p1,B < δ, we getDT0
(
IT0 ,p1,B

)
= k+

p1,B
δ

(
δqrIT0 − k

)
−
+
p1,B(1−ε)

δ

(
δqrIT0 − k

)
+

and

VT ,ND
1,B

(
IT0 ,DT0 ,p1,B

)
=

((
δ− p1,B

)
+

p1,B

(
k−DT0

)
+
+
(
k−DT0

)
−

(
δ− p1,B (1 − ε)

)
+

p1,B (1 − ε)

)
+ δqrIT0 −DT0

First subprogram We first focus on the subprogram where we look for solutions IT0 such that

δqrIT0 6 k. In this case, DT0
(
p1,B, IT0

)
6 k+ p1,B

(
qrIT0 − k

δ

)
6 k and the program rewrites as:

VT0 (p1,B,n) = max
IT0 >0,DT0 >0

p
(
δRIT0 −DT0

)
+ (1 − p)

(
δqrIT0 − k+

δ

p1,B

(
k−DT0

))
DT0 6 k+ p1,B

(
qrIT0 −

k

δ

)
δqrIT0 6 k

DT0 +n = IT0
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and replacing for IT0 , we obtain:

VT0 (p1,B,n) = max
DT0 >0

(
pδR+(1 −p)δqr− 1 −(1 −p)

δ−p1,B

p1,B

)
DT0 +(pδR+(1 −p)δqr)n+(1 −p)

δ−p1,B

p1,B
k

DT0 6 k+p1,B

(
qrIT0 −

k

δ

)
δqrIT0 6 k

DT0 +n = IT0

This sub-program has a non-empty set of solutions if and only if δqrn 6 k, in which case:

1. pδR+ (1 − p)δqr− 1 − (1 − p)
δ−p1,B
p1,B

< 0, DT0 = 0 and VT0 (p1,B,n) = (pδR+ (1 − p)δqr)n+

(1 − p)
δ−p1,B
p1,B

k

2. pδR+(1−p)δqr−1−(1−p) δ−p1,B
p1,B

= 0 and anyDT0 such that 0 6DT0 6 min

(
k
(

1−
p1,B
δ

)
+p1,Bqrn

1−p1,Bqr
; k−δqrnδqr

)
is an optimum. In this case, VT0 (p1,B,n) = (pδR+ (1 − p)δqr)n+ (1 − p)

δ−p1,B
p1,B

k

3. pδR+ (1−p)δqr− 1− (1−p)δ−p1,B
p1,B

> 0 andDT0 =min

(
k
(

1−
p1,B
δ

)
+p1,Bqrn

1−p1,Bqr
; k−δqrnδqr

)
. In this

case, VT0 (p1,B,n) = p
(
δR(DT0 +n) −DT0

)
Notice that

k
(

1−
p1,B
δ

)
+p1,Bqrn

1−p1,Bqr
6 k−δqrn

δqr if and only if k > k

Second subprogram Let’s now turn to the subprogram where we look for solutions DT0 and IT0
such that δqrIT0 > k and DT0 6 k. In this case, the program writes

VT0 (p1,B,n) = max
DT0 >0

p
(
δRIT0 −DT0

)
+ (1 − p)

(
δqrIT0 − k+

δ

p1,B

(
k−DT0

))
DT0 6 k

δqrIT0 > k

DT0 +n = IT0

This program has a non-empty set of solutions if and only if k−δqrnδqr 6 k (which rewrites k 6 k?).

1. if pδR + (1 − p)δqr − 1 − (1 − p)
δ−p1,B
p1,B

< 0 then DT0 = max(0; k−δqrnδqr ) is the solution to

this program. We also have VT0 (p1,B,n) = (pδR+(1 −p)δqr)n+ (1 − p)
δ−p1,B
p1,B

k if k 6 δqrn and

VT0 (p1,B,n) = p
(
δR(k−δqrnδqr +n)− k−δqrn

δqr

)
+(1 −p)

(
δqr(k−δqrnδqr +n)−k+ δ

p1,B

(
k− k−δqrn

δqr

))
oth-

erwise.

2. if pδR+ (1− p)δqr− 1− (1− p)δ−p1,B
p1,B

= 0 then anyDT0 ∈ [max(0; k−δqrnδqr );k] is a solution to

this program. We also have VT0 (p1,B,n) = (pδR+ (1 − p)δqr)n+ (1 − p)
δ−p1,B
p1,B

k if k 6 δqrn

and VT0 (p1,B,n) = p
(
δR(k−δqrnδqr +n)− k−δqrn

δqr

)
+(1 −p)

(
δqr(k−δqrnδqr +n)−k+ δ

p1,B

(
k− k−δqrn

δqr

))
otherwise.

3. if pδR+ (1 − p)δqr− 1 − (1 − p)
δ−p1,B
p1,B

> 0 then DT0 = k is the solution to this program. We

also have VT0 (p1,B,n) = δ(pR+ (1 − p)qr)(n+ k) − k.
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Third subprogram Finally, in the last subprogram we look for solutions DT0 and IT0 such that

δqrIT0 > k and DT0 > k. In this case, the program writes

VT0 (p1,B,n) = max
DT0 >0

p
(
δRIT0 −DT0

)
+ (1 − p)

(
δqrIT0 − k+

δ

p1,B (1 − ε)

(
k−DT0

))
k 6 DT0 6 p1,B (1 − ε)

(
qrIT0 −

k

δ

)
+ k

δqrIT0 > k

DT0 +n = IT0

It has a non-empty set of solutions if and only if k−δqrnδqr 6
k

(
1−

p1,B(1−ε)
δ

)
+(1−ε)p1,Bqrn

1−p1,B(1−ε)qr (which

rewrites k 6 k?). Then in this case,

1. if pδR + (1 − p)δqr − 1 − (1 − p)
δ−(1−ε)p1,B
p1,B(1−ε)

< 0, then DT0 = max(k; k−δqrnδqr ) = k, and

VT0 (p1,B,n) = δ(pR+ (1 − p)qr)(n+ k) − k.

2. if pδR+ (1 − p)δqr− 1 − (1 − p)
δ−(1−ε)p1,B
(1−ε)p1,B

= 0 then any

D0 ∈

max(k; k−δqrnδqr );
k

(
1−

p1,B(1−ε)
δ

)
+(1−ε)p1,Bqrn

1−p1,B(1−ε)qr

 =

k;
k

(
1−

p1,B(1−ε)
δ

)
+(1−ε)p1,Bqrn

1−p1,B(1−ε)qr

 is

an equilibrium, and VT0 (p1,B,n) = δ(pR+ (1 − p)qr)(n+ k) − k.

3. if pδR+ (1 − p)δqr− 1 − (1 − p)
δ−(1−ε)p1,B
(1−ε)p1,B

> 0 then DT0 =
k

(
1−

p1,B(1−ε)
δ

)
+(1−ε)p1,Bqrn

1−p1,B(1−ε)qr . In

this case, VT0 (p1,B,n) = p
(
δR(DT0 +n) −DT0

)
.

We now distinguish between three cases according to the value of δ.

Case δqrn > k In this case, the first program delivers an empty set of solutions. The overall

maximum is therefore the maximum of the two other subprograms.

1. If pδR+(1−p)δqr−1−(1−p) δ−p1,B
p1,B

< 0 ,DT0 = 0, and VT0 (p1,B,n) = p (δRn)+(1−p)
(
δqrn−k+ δ

p1,B
k
)

2. If pδR+ (1 − p)δqr− 1 − (1 − p)
δ−p1,B
p1,B

= 0, any DT0 ∈ [0;k] is an optimum debt level and

VT0 (p1,B,n) = p (δR(n+ k) − k) + (1 − p) (δqr(n+ k) − k)

3. If pδR+ (1 − p)δqr− 1 − (1 − p)
δ−p1,B
p1,B

> 0, and p1,B < δ, and pδR+ (1 − p)δqr− 1 − (1 −

p)
δ−(1−ε)p1,B
p1,B(1−ε)

< 0, DT0 = k,and VT0 (p1,B,n) = p (δR(n+ k) − k) + (1 − p) (δqr(n+ k) − k)

4. If pδR+ (1 − p)δqr− 1 − (1 − p)
δ−p1,B
p1,B

> 0, and p1,B < δ, and pδR+ (1 − p)δqr− 1 − (1 −

p)
δ−(1−ε)p1,B
(1−ε)p1,B

= 0, any DT0 ∈ [k;
k

(
1−

p1,B(1−ε)
δ

)
+(1−ε)p1,Bqrn

1−p1,B(1−ε)qr ] is an optimum debt level and

VT0 (p1,B,n) = p (δR(n+ k) − k) + (1 − p) (δqr(n+ k) − k)

5. If pδR+ (1 − p)δqr− 1 − (1 − p)
δ−(1−ε)p1,B
(1−ε)p1,B

> 0 , p1,B < δ, and DT0 =
k

(
1−
p1,B(1−ε)

δ

)
+(1−ε)p1,Bqrn

1−p1,B(1−ε)qr ,

VT0 (p1,B,n) = p
(
δR
(
DT0 +n

)
−DT0

)
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Case δqrn < k 6 δqrn
1−δqr In this case the three sub-programs admit a non-empty set of solutions.

The solution to the program is identical to the case above.

Case k > δqrn
1−δqr In this case, the last two programs always admit empty set of solutions. Indeed

(k > δqr (n+ k)). We end up in the first program, and:

1. If pδR+(1−p)δqr−1−(1−p) δ−p1,B
p1,B

< 0 ,DT0 = 0, and VT0 (p1,B,n) = p (δRn)+(1−p)
(
δqrn−k+ δ

p1,B
k
)

2. If pδR+ (1 − p)δqr− 1 − (1 − p)
δ−p1,B
p1,B

= 0, any DT0 ∈ [0;
k
(

1−
p1,B
δ

)
+p1,Bqrn

1−p1,Bqr
] is optimal and

VT0 (p1,B,n) = p (δR(n+ k) − k) + (1 − p) (δqr(n+ k) − k)

3. If pδR + (1 − p)δqr − 1 − (1 − p)
δ−p1,B
p1,B

> 0, and p1,B < δ, DT0 =
k
(

1−
p1,B
δ

)
+p1,Bqrn

1−p1,Bqr
,and

VT0 (p1,B,n) = p
(
δR
(
DT0 +n

)
−DT0

)
Case δ 6 p1,B 6 δ

(1−ε) . Let’s now focus on the case where δ 6 p1,B 6 δ
(1−ε) .

In this case,DT0
(
IT0 ,p1,B

)
= k+

(
δqrIT0 − k

)
−
+
p1,B(1−ε)

δ

(
δqrIT0 − k

)
+

VT ,ND
1,B

(
IT0 ,DT0 ,p1,B

)
=

((
k−DT0

)
−

(
δ− p1,B (1 − ε)

)
+

p1,B (1 − ε)

)
+ δqrIT0 −DT0

The program rewrites again in three subprograms.

First subprogram We first focus on the subprogram where we additionally constrain IT0 to evolve

in the set where δqrIT0 6 k. In this case

VT0 (p1,B,n) = max
DT0 >0

p
(
δRIT0 −DT0

)
+ (1 − p)

(
δqrIT0 −DT0

)
DT0 6 δqrIT0

δqrIT0 6 k

DT0 +n = IT0

This program has a non-empty set of solution when qδrn 6 k, in which case DT0 = min
(
k−qδrn
qδr ; δqrn1−δqr

)
.

Second subprogram Let’s now turn to the subprogram where we additionally constrainDT0 and

IT0 to evolve in the set where δqrIT0 > k and DT0 6 k.

In this case, the program writes

VT0 (p1,B,n) = max
DT0 >0

p
(
δRIT0 −DT0

)
+ (1 − p)

(
δqrIT0 −DT0

)
DT0 6 k

δqrIT0 > k

DT0 +n = IT0
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This program has a non-empty set of solutions if and only if k−qδrnqδr 6 k, in which case DT0 = k.

Third subprogram Finally, in the last subprogram we additionally constrainDT0 and IT0 to evolve

in the set where δqrIT0 > k and DT0 > k.

In this case,

VT0 (p1,B,n) = max
DT0 >0

p
(
δRIT0 −DT0

)
+ (1 − p)

(
δqrIT0 − k+

δ

p1,B (1 − ε)

(
k−DT0

))
k 6 DT0 6 p1,B (1 − ε)

(
qrIT0 −

k

δ

)
+ k

δqrIT0 > k

DT0 +n = IT0

Again, this program has a non-empty set of solutions if and only if k 6 k. In this range,

1. Either pδR + (1 − p)δqr − 1 − (1 − p)
δ−(1−ε)p1,B
p1,B(1−ε)

< 0, DT0 = max(k; k−δqrnδqr ) = k, and

VT0 (p1,B,n) = δ(pR+ (1 − p)qr)(n+ k) − k.

2. Or pδR+ (1 − p)δqr− 1 − (1 − p)
δ−(1−ε)p1,B
(1−ε)p1,B

= 0 and any

D0 ∈ [max(k; k−δqrnδqr );
k

(
1−

p1,B(1−ε)
δ

)
+(1−ε)p1,Bqrn

1−p1,B(1−ε)qr ] = [k;
k

(
1−

p1,B(1−ε)
δ

)
+(1−ε)p1,Bqrn

1−p1,B(1−ε)qr ] is an

equilibrium, and VT0 (p1,B,n) = δ(pR+ (1 − p)qr)(n+ k) − k.

3. Or pδR+ (1 − p)δqr− 1 − (1 − p)
δ−(1−ε)p1,B
(1−ε)p1,B

> 0 and DT0 =
k

(
1−

p1,B(1−ε)
δ

)
+(1−ε)p1,Bqrn

1−p1,B(1−ε)qr . In

this case, VT0 (p1,B,n) = p
(
δR(DT0 +n) −DT0

)
.

We can now solve for the time 0 bank program.

Case δqrn > k. In this case, as before, we necessarily end up in the last two programs. Hence,

1. If pδR+(1−p)δqr−1−(1−p)δ−(1−ε)p1,B
p1,B(1−ε)

< 0,DT0 = k,andVT0 (p1,B,n) = p (δR(n+ k) − k)+

(1 − p) (δqr(n+ k) − k)

2. If pδR+ (1− p)δqr− 1− (1− p)δ−(1−ε)p1,B
p1,B(1−ε)

= 0, anyDT0 ∈ [k;
k

(
1−

p1,B(1−ε)
δ

)
+(1−ε)p1,Bqrn

1−p1,B(1−ε)qr ] is

an optimum and VT0 (p1,B,n) = p (δR(n+ k) − k) + (1 − p) (δqr(n+ k) − k)

3. If pδR + (1 − p)δqr − 1 − (1 − p)
δ−(1−ε)p1,B
(1−ε)p1,B

> 0, DT0 =
k

(
1−

p1,B(1−ε)
δ

)
+(1−ε)p1,Bqrn

1−p1,B(1−ε)qr , and

VT0 (p1,B,n) = p (δR (D0 +n) −D0)

Case δqrn < k 6 δqrn
1−δqr The three subprograms have a non-empty set of solutions, and the

equilibria of the T-bank at time 0 are the same as in the case above. Indeed, on this range, the

value function of the first subprogram is weakly dominated by the one of the second subprogram

(strictly if k < k), and we can disregard it and perform the same analysis as in the case above.
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Case k > δqrn
1−δqr Here, the only subprogram with non-empty solution set is the first one. In this

case the optimum is such that DT0 = δqrn
1−δqr , VT0 (p1,B,n) = p (δRI−D0) + (1 − p)

(
δqrI−DR0

)
.

Case δ
(1−ε) 6 p1,B <

1
(1−ε)qr . Here, the program rewrites

VT0 (p1,B,n) = max
DT0 >0

p
(
δRIT0 −DT0

)
+ (1 − p)

(
p1,B (1 − ε)qrIT0 −DT0

)
DT0 6 p1,B (1 − ε)qrIT0

DT0 +n = IT0

And DT0 =
p1,B(1−ε)qrn

1−p1,B((1−ε)qr) and VT0 (p1,B,n) = p
(
δRIT0 −DT0

)
Case p1,B > 1

(1−ε)qr . Finally, if p1,B > 1
(1−ε)qr , DT0 = +∞ and VT0 (p1,B,n) = +∞.

B.4 Asset demand and supply schedules: Proof of Proposition 4

Proof. Using lemmas B.2.1 and 3, Propositions 12 and 13, and Condition 4, we summarize the optimal

choices of T- and S-banks.

1. If p1,B = 0, VT0 (p1,B,n) = +∞,

2. If 0 < p1,B < p
T
1,L ,DT0 = 0,VT0 (p1,B,n) = p (δRn)+(1−p)

(
δqrn− k+ δ

p1,B
k
)

, IT1,B = k
p1,Bqr

,αT1,B =

1

3. If p1,B = pT1,L, any DT0 ∈ [0;k] is an equilibrium debt level, and VT0 (p1,B,n) = p (δR(n+ k) − k) +

(1 − p) (δqr(n+ k) − k),IT1,B =
k−DT0
p1,Bqr

∈ [0; k
p1,Bqr

],αT1,B = 1

4. If pT1,L < p1,B < p
T
1,H,DT0 = k,andVT0 (p1,B,n) = p (δR(n+ k) − k)+(1−p) (δqr(n+ k) − k) , IT1,B =

0,αT1,B = 1

5. If p1,B = pT1,H, any DT0 ∈ [k;
k

(
1−

p1,B(1−ε)
δ

)
+(1−ε)p1,Bqrn

1−p1,B(1−ε)qr ] is an optimal debt level, VT0 (p1,B,n) =

p (δR(n+ k) − k) + (1 − p) (δqr(n+ k) − k), IT1,B = 0, (1 − αT1,B) =
DT0 −k

p1,BqrI
T
0 (1−ε)

hence αT1,B ∈ [1 −

qr(n+k)−k
δ

qr

(
k

(
1−

p1,B(1−ε)
δ

)
+n

) ; 1],

6. If pT1,H < p1,B <
δ

1−ε , DT0 =
k

(
1−

p1,B(1−ε)
δ

)
+(1−ε)p1,Bqrn

1−p1,B(1−ε)qr , VT0 (p1,B,n) = p (δR (D0 +n) −D0) ,

IT1,B = 0, αT1,B = 1 −
qr(n+k)−k

δ

qr

(
k

(
1−

p1,B(1−ε)
δ

)
+n

)

7. If p1,B = δ
1−ε ,DT0 =

(1−ε)p1,Bqrn

1−p1,B(1−ε)qr ,VT0 (p1,B,n) = p (δR (D0 +n) −D0) , IT1,B = 0,αT1,B ∈
[
0; k(1−δqr)

qrn

]
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8. If p1,B >
δ

1−ε , DT0 =
p1,B(1−ε)qrn

(1−p1,B(1−ε)qr)+
,VT0 (p1,B,n) = p

(
δR
(
DT0 +n

)
−DT0

)
, IT1,B = 0, αT1,B = 0

The net aggregate demand of assets by T-banks at t = 1 in state G asset market is

DTB(p1,B) =
k−DT0 (p1,B,n)

p1,Bqr
× (1 − χS). (25)

This is strictly negative when p1,B > p
T
1,H. As S-banks net supply is always positive, no market clearing

can occur for such price levels.

For 0 6 p1,B 6 pT1,H, the aggregate demand for assets is

D(p1,B) =


k

p1,Bqr
(1 − χS) if 0 6 p1,B < p

T
1,L

∈
[
0; k
p1,Bqr

(1 − χS)
]

if p1,B = pT1,L

0 if p1,B > p
T
1,L

while the aggregate supply of assets is:

S(p1,B) =



0 if 0 6 p1,B < p
S
1

∈
[
0; n(1−ε)

1−(1−ε)p1,Bqr
χS
]

if p1,B = pS1
n(1−ε)

1−(1−ε)p1,Bqr
χS if pS1 < p1,B < p

T
1,H

∈
[

n(1−ε)
1−(1−ε)p1,Bqr

χS; n(1−ε)
1−(1−ε)p1,Bqr

χS +
(1−ε)
qr

(−k
δ )+qr(n+k)

1−p1,B(1−ε)qr

(
1 − χS

)]
if p1,B = pT1,H

Proposition 4 obtains.

Depending on the value of χS, the asset market clears at prices, as detailed in Proposition 5 and

Appendix B.5.
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B.5 Asset market equilibria: Proof of Proposition 5

Proof. Using Proposition 4, we obtain that in equilibrium:

1. If χS = 0, then D(p1,B) = S(p1,B) = 0, and pT1,L 6 p1,B 6 pT1,H. No assets are traded.

2. If χS ∈ (0; 1), D(p1,B) = S(p1,B), and

(a) either χS >

k

pS1 qr
n(1−ε)

1−(1−ε)pS1 qr
+ k

pS1 qr

and D(p1,B) = S(p1,B) =
k

pS1qr
(1 − χS), and p1,B = pS1 .

(b) Or χS ∈

 k

pT1,Lqr

k

pT1,Lqr
+

n(1−ε)
1−(1−ε)pT1,Lqr

;
k

pS1 qr
n(1−ε)

1−(1−ε)pS1 qr
+ k

pS1 qr

, D(p1,B) = S(p1,B) = k
p1,Bqr

(1 − χS) =

n(1−ε)
1−(1−ε)p1,Bqr

χS, and p1,B = 1
χSn

k(1−χS)
+1

1
qr(1−ε) ∈ [pS1,;p

T
1,L].

(c) Or χS 6

k

pT1,Lqr

k

pT1,Lqr
+

n(1−ε)
1−(1−ε)pT1,Lqr

and D(p1,B) = S(p1,B) =
n(1−ε)

1−(1−ε)pT1,Lqr
χS,p1,B = pT1,L.

3. If χS = 1, D(p1,B) = S(p1,B) = 0, and 0 6 p1,B 6 pS1 . No assets are traded.

Defining χS =

k

pS1 qr
n(1−ε)

1−(1−ε)pS1 qr
+ k

pS1 qr

and χS =

k

pT1,Lqr

k

pT1,Lqr
+

n(1−ε)
1−(1−ε)pT1,Lqr

, Proposition 5 obtains.

B.6 The complete allocation program

We now endogenize bankers’ choice to initially set up a T- or a S-bank. Bankers compare expected

profits for each i-bank (i = {T ,S}), i.e. value functions at t = 0, and choose a probability χS ((1 − χS)) to

set up a S-bank (T-bank) such as to solve

max
χS∈[0;1]

χSVS0
(
p1,B

)
+ (1 − χS)VT0

(
p1,B

)
where p1,B is the asset price at t = 1 in state B. We define:

∆
(
p1,B

)
≡ VT0

(
p1,B

)
− VS0

(
p1,B

)
Recall that equilibrium asset prices at t = 1 in state B belong to the interval [0;pT1,H]. It is therefore suffi-

cient to study ∆
(
p1,B

)
on this interval. ∆

(
p1,B

)
is a continuous, strictly decreasing function on [0;pT1,H].

Since ∆(0) = +∞, it can cancel at most once on this interval. We obtain the following Proposition:

Proposition 14 (Allocation program). Defining S = ∆−1(0) ∩ [0;pT1,H], the allocation program solves as

follows

1. If S = �, χS = 0.

2. Otherwise, denoting p∗1,B ≡ ∆
−1(0)∩ [0;pT1,H], we have:

χS =


0 if p1,B ∈ [0;p∗1,B)

∈ [0; 1] if p1,B = p∗1,B

1 if p1,B ∈ (p∗1,B;pT1,H].
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B.7 Bankers’ equilibrium choices between T- and S-banks: Proof of Proposition 6

Proof. We have detailed the different parts of our equilibrium, which we can now characterize. In all

equilibria, bankers invest all their initial endowment in their bank at t = 0, which becomes the bank’s

equity and is entirely invested in assets. At t = 1 in state G no assets are traded and banks repay their

creditors by issuing debt (p1,G ∈ [1; δ
1−ε ]). At each date in all states, all riskless short-term debt (if any) is

sold at par to households. Finally, bankers’ equilibrium allocation between the T- and S-banking sectors

depends on p1,B. It can be of 5 types as follows:

1. Either ∆(pS1 ) < 0. In this case, there is a unique p∗1,B ∈ (0;pS1 ) such that ∆
(
p∗1,B

)
= 0. Then χS = 1

is the unique equilibrium allocation, and any p1,B ∈ [p∗1,B;pS1 ] is an equilibrium asset price at t = 1

in state B. No assets are traded in these equilibria, and only S banks exist. They don’t issue any

form of risk-free debt.

2. Or ∆(pS1 ) = 0. In this case, any χS such that
k

pS1 qr
n(1−ε)

1−(1−ε)pS1 qr
+ k

pS1 qr

6 χS is an equilibrium allocation,

and p1,B = pS1 . Either only S-banks exist, which don’t issue debt and invest all their endowment

in assets, or T- and S-banks coexist, and T-banks issue debt both at t = 0 to invest in assets, and at

t = 1 in state B to purchase assets from S-banks.

3. Or ∆(pS1 ) > 0 and ∆(pT1 ) < 0. Then, there is a unique p∗1,B ∈ (pS1 ;pT1 ) such that ∆
(
p∗1,B

)
= 0.

In this case χS = 1

1+
p∗1,Bqr

1−(1−ε)p∗1,Bqr
n(1−ε)
k

is the unique equilibrium allocation, and p1,B = p∗1,B is the

unique equilibrium market price at t = 1 in state B. T- and S-banks coexist, and T-banks do not

issue debt at t = 0, but issue debt at t = 1 in state B to purchase assets from S-banks. S-banks issue

debt at t = 0, and sell assets at t = 1 in state B to repay their creditors.

4. Or ∆(pT1 ) = 0. In this case, any χS such that
k

pT1 qr
n(1−ε)

1−(1−ε)pT1 qr
+ k

pT1 qr

> χS is an equilibrium allocation,

and p1,B = pT1 . Either T-banks only exist, in which case they issue an amount k of debt at t = 0. Or

T- and S-banks coexist, in which case T-banks issue less debt at t = 0, to keep slack and issue debt

at t = 1 in state B to purchase assets from S-banks.

5. Or ∆(pT1 ) > 0. In this case χS = 0 and any p1,B ∈
[
pT1,L;pT1,H

]
such that ∆(p1,B) > 0 is an equilib-

rium market price. No assets are traded in equilibrium. Only T-banks exist, and they issue k units

of debt at t = 0, which they repay by issuing debt at t = 1, both in state B and in state G.

Proposition 6 describes the above equilibrium of type 3, i.e. the coexistence equilibrium.
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B.8 Parametric conditions for T- and S-banks to coexist

For T- and S-banks to coexist in equilibrium, the parameter set needs to satisfy two conditions to reach

an equilibrium of type 3 (see Appendix B.7 above): ∆(pS1 ) > 0 and ∆(pT1 ) < 0. Recall first that

∆ : p1,B → VT ,B
0

(
p1,B

)
− VS,B

0
(
p1,B

)
.

Now, recall that:

VS0

(
pS1

)
= (1 − p)qrn+ pRn from Proposition 11

VS0

(
pT1,L

)
= pn

(
R− (1 − ε)pT1,Lqr

1 − (1 − ε)pT1,Lqr

)
from Proposition 11

VT0

(
pS1

)
= p (δRn) + (1 − p)

(
δqrn− k+

δ

pS1
k

)
from Proposition 13

VT0

(
pT1,L

)
= p (δR(n+ k) − k) + (1 − p) (δqr(n+ k) − k) from Proposition 13

where

pS1 ≡
1

(1 − ε)(qr+
p(R−1)

1−p )

pT1,L ≡
δ

δqr+
p(δR−1)

1−p

The first parametric restriction ∆(pS1 ) > 0 yields

k >
n(1 − δ) (pR+ (1 − p)qr)

(p(R− 1) + (1 − p)qr) δ(1 − ε) − (1 − p)
,

and the second parametric restriction ∆(pT1,L) < 0 yields

k <

[
p
R [δ (pR+ (1 − p)qr) − p ] − δ(1 − p)qr(1 − ε)

δ (pR+ (1 − p)qr) − p− δ(1 − p)qr(1 − ε)
− δ (pR+ (1 − p)qr)

]
n

δ (pR+ (1 − p)qr) − 1
.

B.9 Changes in the deposit insurance limit: Proof of Proposition 7

Proof. In the coexistence equilibrium, VS0 = VT0 with VS0 =

[
p(R−(1−ε)p∗1,Bqr)

1−(1−ε)p∗1,Bqr

]
n,

VT0 =
[
p (δR) + (1 − p)

(
δqr+

δ−p∗1,B
p∗1,B

k
n

)]
n, and p∗1,B ==

k
n

(1−ε)qr

(
χS∗

(1−χS∗)
+ k
n

) is the market equilib-

rium price for assets at t = 1 in state B. Recall that for parameter values such that this equilibrium

exists, it is uniquely defined (see Appendix B.8). We obtain:

VS0 = npR+ pk(R− 1)
1 − χS∗

χS∗

VT0 = npδR+ (1 − p)

(
δqrn+ (δ (1 − ε)qr− 1) k+ δ (1 − ε)qr

χS∗(
1 − χS∗

)n)
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Increases in k changes banks’ value function: ∂V
T
0

∂k = (1−p) (δ(1 − ε)qr− 1), and ∂V
S
0

∂k = p (R− 1) χS∗

(1−χS∗)
.

Condition 5 is a sufficient, though not necessary, condition for ∂V
S
0

∂k >
∂VS0
∂k , i.e.

qr < 1
δ(1−ε)

[
1 + p

1−p
1−χS

χS
(R− 1)

]
. QED.

B.10 Changes in capital requirements: Proof of Proposition 8

Proof. We replace T-banks’ deposit insurance limit (Assumption 1) by capital requirements as given

in (9). We assume that the capital constraint is stringent enough (rhs) for this constraint to bind in

equilibrium, and that T-banks do not sell assets to repay their creditors (lhs): δ(1− ε)qr 6 (1− c) 6 δqr.

We obtain that in equilibrium, T-banks do not default at t = 1 in state B. As in Appendix B.3.1, this

implies that

DT0 6 (1 − c)IT0 ,

and T-banks’ value function at t = 1 in state B obtains (as in Appendix B.3.2):

VT1,B = δqrIT0 −DT0 +

(
δ− p1,B

cp1,B

)(
(1 − c)IT0 −DT0

)
+

.

Now, at t = 0, T-banks’ budget constraint is binding, i.e. IT0 = DT0 + n, such that capital requirements

at t = 1 imply D0 6 1−c
c n, and for asset prices such that T- and S-banks coexist (p1,B < p

T
1,L), T-banks’

value function at t = 0 writes:

VT0 = pδRn+ (1 − p)

(
δqrn+ (1 − c)

δ− p1,B

cp1,B

)
.

For asset prices such that T- and S-banks trade assets at t = 1 in state B (as in Appendix B.5), we have

that the equilibrium asset price is:

p∗1,B =
1

(1 − ε) + c
1−c

χS

1−χS

,

and in the coexistence equilibrium (see Appendix B.8), ∆(pS1 ) > 0 and ∆(pT1 ) < 0. We then have VT0 =

VS0 , which rewrites:

[
pαR+ (1 − p)δ+ (1 − p)

(1 − c)

c
(δ (1 − ε) − 1) + (1 − p)α

χS

1 − χS

]
= pR+ p (R− 1) (1 − ε)

1 − χS

χS
1 − c

c
.

We make the following change of variables: u =
(1−c)
c and v = 1−χS

χS
. The implicit function theorem

yields
dv

du
=

(1 − p) (α (1 − ε) − 1) − p (R− 1) (1 − ε) v

p (R− 1) (1 − ε) +
(1−p)δ
v2

< 0,

Therefore the relative size of T-banks (1 − χS) is increasing in capital requirements (c). QED.
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B.11 Normative Approach: Proof of Proposition 9

Proof. Using Propositions 1 and 3 together with the conclusions from Appendix B.6, we rewrite the

objective function of the central planner W(χS) = χSVS,B
0

(
p1,B

)
+ (1 − χS)VT ,B

0
(
p1,B

)
as a piecewise

linear function of χS:

W(χS) =


χSVS,B

0 (pT1,L) + (1 − χS)VT ,B
0 (pT1,L) if χS ∈ [0;χS]

β+ γχS if χS ∈ [χS;χS]

χSVS,B
0 (pS1 ) + (1 − χS)VT ,B

0 (pS1 ) if χS ∈ [χS; 1]

where β = p (R− 1) k+npδR+(1−p) [δqrn+ (δ(1 − ε)qr− 1)k], γ = n[pR− δ[pR+(1−p)εqr]] +k[1−

[pR+ (1 − p)δ(1 − ε)qr]], χS =

k

pS1 qr
n(1−ε)

1−(1−ε)pS1 qr
+ k

pS1 qr

, and χS =

k

pT1,Lqr

k

pT1,Lqr
+

n(1−ε)
1−(1−ε)pT1,Lqr

.

We focus on parametric conditions in which the decentralized equilibrium is such that T- and S-

banks coexist (see Appendix B.6), i.e. χS∗ ∈ [0, 1]. Under these parametric conditions, W(.) is strictly

increasing on [0;χS] and strictly decreasing on [χS; 1]. Moreover, VT ,B
0 (pS1 ) > V

S,B
0 (pS1 ) which rewrites

[pR+ (1−p)qr][1− δ]n < k[(1− ε)δ[p(R− 1) + (1−p)qr] − (1−p)], implying that γ < 0. ThereforeW(.)

is strictly decreasing on [χS;χS] and the constrained optimum allocation (χS∗∗) is uniquely obtained for

χS∗∗ = χS < χS∗. QED.
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