
Risk Sharing and the Term Structure of Interest Rates∗

Andrés Schneider (UCLA)§

JOB MARKET PAPER

(click for latest version)

November 24, 2017

Abstract

I propose a general equilibrium model with heterogeneous investors to explain the key properties of

the U.S. real and nominal term structure of interest rates. I find that differences in investors’ willingness

to substitute consumption across time are critical to account for nominal and real yields dynamics. When

the endogenous amount of credit supplied by risk-tolerant investors is low, the aggregate price of risk and

the real interest rate are high. Thus, real bonds are risky. I study nominal bonds under both exogenous

and endogenous (Taylor rule) inflation. I find that when the Taylor loading on inflation is greater than

one, the nominal term structure is upward sloping regardless of the correlation between nominal and

real shocks. I use the model to shed light on two salient interest rate puzzles: (1) the secular decline of

long-term real and nominal rates since the 1980s, and (2) the sudden spike in real yields at the height of

the Great Recession.
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1 Introduction

Long-term nominal yields on U.S. government bonds display a higher mean and lower volatility than

short-term yields. Data from inflation-protected bonds (TIPS) show that the real yield curve exhibits sim-

ilar patterns, which suggests that real risks are important for understanding the nominal term structure.

Characterizing the macroeconomic fundamentals that drive these common features in the real and nom-

inal yield curve, in a unified framework, has been a long-standing challenge for macroeconomists and

financial economists (Gürkaynak and Wright, 2012). The main contribution of this paper is to propose a

model in which the credit market plays a key role in understanding these salient properties of U.S. real

and nominal yield curves.

Indeed, in theory and practice, interest rates are determined in the credit market, which renders it a

natural starting point for the study of term structure dynamics. The basic feature of the credit market is

that heterogeneous investors lend to and borrow from each other with the purpose of sharing risks; het-

erogeneity creates gains from trade. I incorporate this idea in a general equilibrium term structure model

and find that the difference in investors’ willingness to substitute consumption across time is critical in

capturing the properties of the nominal and real yield curves we observe in the data.

In this economy, the quantity of credit generates endogenous fluctuations in asset prices. In particular,

term premia and yields are endogenously time-varying due to fluctuations in a single state variable that

summarizes the credit conditions in the economy: the market value of leveraged investors’ net worth over

the total market value of net worth. This state variable has been underscored by many macro models

that feature a credit market (with and without frictions), but this paper is the first to explicitly examine its

influence on the term structure of interest rates.

The economic mechanism hinges on two assumptions. First, I motivate a credit market by assum-

ing that investors have different attitudes toward risks (Dumas, 1989; Wang, 1996; Chan and Kogan, 2002;

Bhamra and Uppal, 2009; Longstaff and Wang, 2012; Gârleanu and Panageas, 2015; Barro, Fernández-

Villaverde, Levintal and Mollerus, 2017; Hall, 2017). Thus, in equilibrium, risk-tolerant investors issue

short-term debt to finance leveraged positions in risky assets, which implies that their net worth is rela-

tively more exposed to aggregate shocks. As a consequence, the effect of exogenous i.i.d. shocks on asset

prices is persistently amplified by risk-tolerant investors’ net worth, which generates endogenous fluc-

tuations in the term structure. Second, I assume that investors with a high risk aversion (RA) coefficient

exhibit a smaller elasticity of intertemporal substitution (EIS) than that implied by time-additive constant

relative risk-aversion preferences. This assumption is key in capturing the quantitative properties of the

term structure, because agents with relatively low EIS must be compensated with higher interest rates in

equilibrium. Recursive preferences are essential to accommodate this feature.

The main mechanism is as follows. A negative aggregate shock generates a contraction in leveraged

risk-tolerant investors’ net worth, reducing their aggregate ability to supply credit. The contraction in

aggregate credit produces an increase in the price of credit—i.e., the spot real rate. This is because a

more risk-averse investor, who has a low EIS, must be incentivized to reallocate his portfolio and smooth

consumption over time. In addition, the price of risk rises endogenously, because a more risk-averse
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investor is at the margin in the market for risky assets. The increase in the real rate implies that real bond

prices become low in bad states: The marginal investor requires a positive premium to hold real bonds.

This relationship between interest rates and the credit market delivers an average upward-sloping real

term structure. On average, fixing investors’ expectations about future short-term rates, long-term yields

are higher than short-term yields. This is because long-term bonds command a higher term premium;

the larger the horizon of a bond, the more likely it will drop in value during bad states, because they have

higher exposure to variations in interest rates. Put differently, long-term bonds have a higher elasticity

with respect to endogenous changes in the share of net worth held by risk-tolerant investors (the model’s

endogenous state variable, which summarizes the amount of credit in the economy). I evaluate this elas-

ticity in the empirical section of the paper.

A further implication of the mechanism is that it takes time for the credit market to recompose after

a negative shock. Simply put, a contraction in aggregate credit implies lower asset prices, which further

implies that risk-tolerant investors can supply less credit. This persistence shows up in equilibrium asset

prices, and in particular in long-term bonds: The longer the horizon of the bond, the larger the effect of

the credit market’s persistence. This translates into a higher volatility of long-term bond prices relative to

short-term bonds. However, since long-term bonds are stationary, this volatility grows at a slower pace

than the horizon of bonds.1 As a result, since yields are (log) bond prices divided by the horizon of the

bond, long-term yields are always less volatile than short-term yields.

After reviewing the main theoretical underpinnings of the mechanism described above, I study the

nominal term structure of interest rates. For this, I consider two alternative inflation processes: exogenous

and endogenous (derived via a Taylor rule).

The purpose of introducing exogenous inflation is to study a decomposition between the real and

nominal components of the nominal term premium. In this analysis, the nominal component is driven by

the exogenous negative correlation between cash flow and inflation shocks (e.g., Cox, Ingersoll and Ross,

1985; Wachter, 2006; Piazzesi and Schneider, 2006; Bansal and Shaliastovich, 2013). That is, if inflation oc-

curs in bad states, the marginal investor requires a premium to hold nominal bonds. The real component

is driven by the endogenous risk generated in the credit market. In this decomposition, I find that even

with a large negative correlation between inflation and real shocks, the real component explains 80% of

the average nominal term premium observed in the data. This result is in line with recent studies show-

ing the importance of the real component in the nominal term structure (e.g., Abrahams, Adrian, Crump,

Moench and Yu, 2016).

Motivated by this result, I derive a nominal term structure that is purely driven by the real component.

Using a Taylor rule, I derive an endogenous inflation process that is consistent with both the policy rule

and the marginal investor’s nominal pricing kernel (e.g., Gallmeyer, Hollifield, Palomino and Zin, 2007).

As a result, inflation does not introduce new shocks, as in the exogenous case—i.e., the nominal term

premium is not driven by nominal risk. I obtain an average slope of the nominal term structure that is

in line with the data, driven by the fact that the Taylor loading on the policy rule is greater than one.

1I obtain an invariant distribution in the economy by using a simple OLG framework based on Blanchard (1985) and Gârleanu
and Panageas (2015). I review this in detail in Section 3.
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Sensitivity analysis shows that the larger (smaller) the Taylor loading, the smaller (larger) the mean and

volatility of inflation, and the flatter (steeper) the nominal yield curve.

I next evaluate the central theoretical predictions of the model. For this, I first extract aggregate shocks

from macroeconomic data. I exploit the fact that I consider an aggregate endowment with i.i.d. growth

rates, and therefore aggregate shocks are straightforward to identify (under the null of my model). Second,

I feed the shocks into the model to study the predictions for the endogenous state variables. In this step, I

compare fluctuations in the amount of credit in the model against fluctuations in the data (total credit to

private sector over GDP), and I find the model captures these fluctuations relatively well. After checking

the predictions for credit, I compute the implied series for the endogenous state variable in the model,

and use those series to check whether the model’s key predictions are verified in the term structure data.

In particular, I regress yields from the data onto the model’s endogenous state variable (derived after

feeding the macro shocks). The purpose of this is to test the main model’s predictions: the sensitivity

of both yields and slope (difference in yields) with respect to the endogenous state variable. The model

predicts that long-term yields are less sensitive to the endogenous state variable than short-term yields

(i.e., they are less volatile), and that the slope is positive and nonlinearly related to the endogenous state

variable. Regressions using actual data for yields and the model’s implied series for the state variable

confirm these two central predictions.

I then study whether the endogenous state variable can capture the fluctuations in the short-term

nominal interest rate. This is the key prediction of the endogenous inflation case. I find that the endoge-

nous state variable can account for a significant portion of short-term nominal interest rate variability,

even after controlling for other well-studied macro factors since Ang and Piazzesi (2003).

After validating the theoretical predictions, I provide an application of the model’s mechanism to shed

light on two puzzles regarding yields (Campbell, Shiller and Viceira, 2009). These are: (1) the sudden spike

in the level and the reversion of the slope of the real term structure at the height of the Great Recession;

and (2) the secular decline of nominal and real rates over the last 30 years. The objective is not only to

provide further evidence on the mechanism I propose, but also to show that the connection between

the credit market and the term structure provides a coherent perspective for important macroeconomic

phenomena.

Specifically, in both applications I stress the role of the aggregate EIS. The sudden spike in real rates

during the Great Recession can be rationalized as a sudden collapse in credit that produced a drastic

reduction in aggregate willingness to substitute consumption into the future. The secular decline in nom-

inal and real rates can be rationalized by the observed contemporaneous increase in the amount of credit

in the economy, which in the model translates into a decrease in the price of credit (i.e., the spot risk-free

rate). Due to the single factor structure of the model, the decrease in short-term rates is also reflected in

long-term rates. In addition, the model implies a secular decrease in inflation expectations pinned down

by the Taylor policy rule—which is consistent with survey data, as shown by Chernov and Mueller (2012),

among others.

I conclude by comparing the model’s prediction for the state variable with an alternative interpre-

tation. Prior literature has interpreted risk-tolerant investors as the owners of financial institutions, or
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“credit suppliers” (e.g., Longstaff and Wang, 2012; Silva, 2016; Santos and Veronesi, 2016; Drechsler, Savov

and Schnabl, 2017). In this view, the net worth of financial firms should be useful in capturing the credit

conditions in the economy, and therefore yield dynamics. Following this alternative view, I construct the

ratio of the market value of financial firms over the total market value of firms. I report the time series

of this measure and compare it with those of the endogenous state variable in the model. In find the

correlation of these two variables is significantly positive.

Literature. My paper fits into three strands of literature: heterogeneous agents and the credit market,

macro-finance models of the term structure, and empirical literature studies that show the importance of

credit measures in capturing yields dynamics.

First, my paper is related to recent papers in macroeconomics and finance that stress the role of the

credit market in determining the behavior of equilibrium asset prices. A common theme in these papers is

that agents exhibit heterogeneous exposure to aggregate risks (i.e., a group of agents operates with lever-

age in equilibrium), driven by differences in a technological feature (preferences, productivity, menu of

assets, beliefs, information, etc.). Within this strand, my work is in line with many studies that focus on

the positive implications for asset prices and macroeconomic quantities with a frictionless credit market

(e.g., Dumas, 1989; Wang, 1996; Chan and Kogan, 2002; Bhamra and Uppal, 2009; Longstaff and Wang,

2012; Gârleanu and Panageas, 2015; Barro et al., 2017; Hall, 2017; Schneider, 2017).

Specifically, Longstaff and Wang (2012) study an endowment economy in which agents feature het-

erogeneous constant relative risk-aversion preferences and analyze the role of the credit market on asset

prices. In particular, they find that real yields on perpetual bonds are smaller than the short-term real

yield (i.e., a downward-sloping real yield curve). Following this line, Hall (2017) studies an economy with

differences in risk aversion and argues that the secular decline in the average real rates can be explained

by an increase in the wealth share of risk-averse agents. An implicit result in this analysis is that real

bonds are hedges, and therefore the yields on long-term real bonds have a lower mean than short-term

yields. Gârleanu and Panageas (2015), extend the analysis to heterogeneous agents with recursive prefer-

ences, in which the economy has a simple OLG structure to obtain a stationary wealth distribution, and

underscore the importance of heterogeneous preferences in determining the equity premium; Barro et

al. (2017) studies an economy in which heterogeneous agents share aggregate risk in an economy subject

to disasters and focus on the implications for the supply of safe assets; Wang (1996) considers an econ-

omy with heterogeneous agents with constant relative risk aversion and studies the theoretical properties

of real yields; Schneider (2017) studies an economy in which fluctuations in premiums are driven by the

interaction between endogenous changes in balance sheets and exogenous changes in macro volatility.

Relative to this first strand of literature, in this paper I show that the credit market is a key macroe-

conomic fundamental to understand the real and nominal term structure in a unified framework. In my

results, I highlight the role of differences in EIS. In fact, when investors exhibit the same EIS—but different

RA—the economy exhibits a downward-sloping real term structure with only 10% of the yields’ volatility

we observe in the data.

A second strand this paper is related to is the macro-finance models of the term structure with a repre-

sentative agent. This literature is extensive, but leading examples are Piazzesi and Schneider (2006), who
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study a Long Run Risk economy, where the representative agent exhibits very high risk aversion, and dis-

likes exogenous inflation such that more than compensates the downward sloping real yield curve; Bansal

and Shaliastovich (2013), who study a Long Run Risk economy with stochastic volatility and analyze the

implications for interest rates and currencies; Relative to this second strand of literature, in this paper I

focus on the role of the credit market in determining the properties of the real and nominal term structure.

This connection cannot be made in a representative agent setup.

Within the representative agent literature, Wachter (2006) introduces an exogenous time variation in

the habits framework of Campbell and Cochrane (1999) and finds an upward-sloping nominal and real

term structure of yields but also of their corresponding volatilities (the 5-year yield is more volatile than

the 1-year). In the data, however, the longer the maturity of the bond (either nominal or real), the smaller

the volatility of the yield. Also, Wachter’s model predicts a slope of the nominal and real yield curves that

are very similar. In the data I report below, also documented by Backus, Boyarchenko and Chernov (2017),

the slope of the nominal term structure is at least twice the slope of the real term structure—the nominal

term structure is steeper than the real. In my paper, in addition to providing an economic mechanism

that links the term structure to credit market activity, I show that my model can also capture the fact that

long-term yields are less volatile than short-term, and also that the nominal term structure is steeper than

the real. Indeed, I show that the slope of the nominal term structure vis-à-vis the real can be rationalized

by the reaction of monetary policy to the endogenous risks generated in the credit market.

Several papers have introduced further structure to the representative agent framework, and they study

the term structure in a large scale dynamic stochastic general equilibrium model (DSGE) with production.

Prominent examples are Rudebusch and Swanson (2008, 2012). The mechanism I propose in this paper,

which generates endogenous time variation in the aggregate RA and EIS, can be introduced in a reduced

form in such large scale DSGE models.

Lastly, my paper is related to empirical papers that stress the role of macro variables associated with

the credit market in driving term premia over the business cycle. Haddad and Sraer (2015) use a measure

of banks’ exposure to interest rates (“income gap”) to capture the key properties of term premia, using a

partial equilibrium model to illustrate the mechanism. Greenwood and Vayanos (2014) show empirically

how the supply and the maturity structure of government bonds affect bond yields and expected returns.

Relative to these papers, the state variable in my paper can be interpreted as a macro factor that is helpful

in capturing the yield’s dynamics.

2 Preliminary Evidence: U.S. Nominal and Real Yield Curves

This section documents the salient properties of the U.S. real and nominal yield curves described above.2

In the quantitative part of the model, I seek to match this evidence. I elaborate on the evidence for both

nominal and real yields, for different maturities, in three different samples. I report this data, at quarterly

2In the appendix I report evidence for the U.K. Although that evidence is not the empirical objective of this paper, I report that
both the nominal and real yield curves in the U.K. have similar properties: In the full sample, they are inversely U-shaped (yield
curves are upward sloping but revert after 10-year maturity), and the volatility of long-term yields is slightly smaller than the volatility
of short-term yields.
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frequency, in Table 1. The source for nominal rates is Gürkaynak, Sack and Wright (2007). For real rates, I

consider TIPS from Gürkaynak, Sack and Wright (2010) for the period 2003:Q1 onward, and I incorporate

real rates from Chernov and Mueller (2012) for the period 1971:Q3-2002:Q4.

The full sample (reported in Panel A) is from 1971:Q3 to 2016:Q4. This is the same sample documented

in Backus et al. (2017), but includes 2015 and 2016. I then consider two subsamples. The first (Short

sample I, in Panel B) includes only the period reported by Gürkaynak et al. (2010), 2003:Q3-2016:Q4, so it

excludes the data from Chernov and Mueller (2012). The second, (Short sample II, in Panel C), excludes

the period of the Great Recession (1971:Q1 to 2008:Q2). That is, I exclude a time with massive policy

interventions. In particular, the short-term nominal rate was set up to zero.

The main conclusion from the evidence, in all subsamples, is that both the real and the nominal term

structure share similar properties: Long-term yields have higher means and smaller volatilities than short-

term yields. Indeed, in Short sample I, the volatility levels of both real and nominal term structures are

almost the same. It is worth emphasizing that the average slope of the nominal term structure is approxi-

mately twice the slope of the real term structure, which raises a question about additional sources of risks

captured by the nominal yield curve.

3 Model

In this section I study an endowment economy populated by heterogeneous investors, and I assume that

the sole source of heterogeneity among investors is in their preferences. In particular, investors differ in

their RA and EIS. I provide a sensitivity analysis regarding this assumption, and highlight the importance

of heterogeneous EISs for capturing the term structure dynamics.

Setup. I consider an exchange economy in which time is continuous, denoted by t > 0. Uncertainty in

the economy is characterized in a probability space (Ω,F , P) with a standard filtration. There is a single

perishable good, the numeraire. Aggregate endowment of this good follows a Geometric Brownian Motion

(GBM)
dyt

yt
= µdt + σdW1,t, y0 > 0 , (1)

where W1 = {W1,t ∈ R;Ft, t ≥ 0} is a Brownian motion on (Ω, P,F ) representing aggregate uncertainty,

and parameters µ > 0, σ > 0 are real numbers.

The economy is populated by two classes of investors, A and B. The aggregate population remains

constant and normalized to one. To obtain a stationary solution in the model, I follow Gârleanu and

Panageas (2015) and I consider a simple OLG framework in line with Blanchard (1985). Investors face an

exogenous death risk ϕ > 0, and a fraction ϕ of new investors are born. The probability ϕ is the same

for all investors regardless of age, preference, or wealth. Of the newly born investors, a constant fraction

x ∈ (0, 1) is of type A, while 1 − x is of B-type. Newly born investors receive a “start-up” endowment,

perfectly tradable, in order to begin their operations in financial and goods markets.

Intuitively, since risk-tolerant investors operate with leverage in equilibrium, their net worth grow
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faster when there is a sequence of positive returns. This implies that they can end up dominating the

economy (or disappearing, if the sequence of shocks is sufficiently negative). The OLG setup prevents this

outcome without changing the fundamental risk-sharing properties driven by preference heterogeneity.3

To insure against exogenous death risk, investors can write contracts with perfectly competitive insur-

ance companies. The possibility of insuring against death risk, together with the financial instruments

specified below, implies that this economy has complete markets. The contract specifies that the investor

receives a flow of resources ϕ, proportional to his net worth, per unit of time. For this, he agrees to pay

his entire net worth to the insurance company upon his death. Investors find it optimal to sign this con-

tract, provided they have no bequest motives (Blanchard, 1985). As I show below, this device is useful to

introduce stationarity in the model. I next introduce investors’ preferences and balance sheets.

Preferences and balance sheets. Investors feature recursive preferences, as in Duffie and Epstein (1992).

For each investor i, his utility function Ui,t is given by

Ui,t = EP
t

[∫ ∞

t
f (ci,u,Ui,u) du

]
,

where

f (ci,Ui) =
1

1− 1/ψi
(1− γi)Ui

{
c1−1/ψi

i ((1− γi)Ui)
1/ψi−1

1−γi − (ρ + ϕ)

}
. (2)

In this notation, ψi represents the EIS and γi the RA, for this investor. Also, ci represents the flow of con-

sumption and ρ the time preference, which is adjusted by ϕ (Gârleanu and Panageas, 2015). These prefer-

ences are useful because they disentangle the RA coefficient from the EIS—a crucial aspect of the model

that allows me to focus on the following assumption.

Assumption 1. In the remainder of the paper, I assume

i) γA < γB ,

ii) ψA > ψB.

This assumption means that A-type investors are relatively more risk tolerant and are relatively more willing

to substitute consumption across time. Qualitatively, this feature is implicitly assumed under time-additive

constant relative risk aversion (CRRA) preferences.

Each investor continuously trades two classes of financial assets: shares on a risky claim and positions

in risk-free money market account. I denote by qt the price of the risky asset. This asset pays, each period,

a unit of the endowment minus the amount of resources allocated to the “start-up” wealth of the newly

born. I denote si,t the number of shares a given investor holds in this asset. The price of the risky asset

follows an Itô process
dqt

qt
+

(
yt − ϕet

qt

)
dt = µq,tdt + σq1,tdW1,t , (3)

3There are several ways to obtain stationarity, and some papers have already used a similar OLG device I use in this paper (Drech-
sler et al. (2017), Dou (2017), Silva (2016), and Barro et al. (2017)). Also, Di Tella (2017) assumes that leveraged agents (“experts”)
face a probability of becoming unleveraged agents (“households” ). Di Tella and Kurlat (2017) introduce an exogenous tax that
redistributes wealth from leveraged agents to unleveraged.
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where the drift µq,t and the diffusion σq1,t are determined in equilibrium, and et is represents the resources

for the newly born investors—which I describe below. Thus, qt accounts for the total wealth in the econ-

omy.4

Let t̃i be the investor’s i birth time. Since investor’s optimal decisions will not depend on their age,

I simplify the notation and remove explicit dependence of variables to t̃i. The total net worth ni,t of an

operating investor in period t > t̃i is given by the following accounting identity

ni,t = qtsi,t − bi,t , (4)

where bi,t is the value of the short-term money market account held by investor i. Positions in this account

receive a return of rtdt—i.e., the spot real risk-free rate.

Using (3) and (4), I can write the law of motion for the net worth of an operating investor

dni,t

ni,t
=

[
rt −

ci,t

ni,t
+

si,tqt

ni,t

(
µq,t − rt

)
+ ϕ

]
dt +

si,tqt

ni,t
σq,tdW1,t, t > t̃i, (5)

and I define αi,t =
si,tqt
ni,t

as investor’s i portfolio share. Notice that investors receive ϕ from the insurance

company that collects his wealth upon his death.

Newly born investors receive an initial level of wealth and can immediately start operating in finan-

cial and goods markets . These resources are perfectly tradable. I follow Gârleanu and Panageas (2015)

and assume that any investor, of any type, born in t̃ < t receives an endowment process given by yt,̃t =

ωytG
(
t− t̃

)
, with ω ∈ (0, 1) and G a deterministic function that controls the investor’s life-earning pro-

file, specified below. Thus, in period t the present value of initial earnings (i.e., initial endowment) for an

investor born today in t is

et = ytE
Q
t

[∫ +∞

t
exp

(
−
∫ h

t
rudu

)
ω

yh
yt

G (h− t) dh
]

. (6)

The expectation is computed under the equivalent martingale measure on (Ω,F , Q), which is guaranteed

to exist since markets are complete and there are no arbitrage opportunities. At an aggregate level, in a

given period t, the resources associated with initial earnings account for a total of êt (as a share of yt),

denoted by

êt =
1
yt

∫ t

−∞
ϕ exp (−ϕ (t− u)) eudu

= EQ
t

[∫ +∞

t
exp

(
−
∫ h

t
rudu

)
ω

yh
yt

dh
]

. (7)

The last step follows by normalizing the function
∫ t
−∞ ϕ exp(ϕ (u− t))G (t− u) du = 1, and by a simple

application of Fubini’s theorem. Notice that I can write êt = ω(qt/yt). Thus, the endowment claim (total

wealth) is basically the replication of two assets: aggregate earnings êt and an asset q̂t that pays a dividend

4I show this in the appendix.
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equal to (1−ω) yt per unit of time. That is

q̂t = EQ
t

[∫ ∞

t
exp

(
−
∫ h

t
rudu

)
(1−ω)

yh
yt

dh
]

. (8)

I can now write the dynamic problem of investor i, whose birth was in t̃i, as

max
{si ,ci}

Ui,t

subject to

(5), (6),

where the control variables are the number of shares on the endowment claim, si, and the consumption

flow, ci. I next define a competitive equilibrium.

Definition 1 (Competitive equilibrium) A competitive equilibrium is a set of adapted stochastic processes

for the investor’s problem cA, cB, αA, αB, and a set of prices r, q such that: (1) Given prices, policy functions

solve investors’ problem; (2) and the goods and asset market clears (money market clears by Walras’ Law)∫
At

ci,tdi +
∫

Bt
ci,tdi = yt ,∫

At
si,tdi +

∫
Bt

si,tdi = 1 ,

where At and Bt are the sets of investors A and B in period t, respectively.

4 Solving for the Equilibrium

The purpose of this section is to represent the model in a recursive fashion. The equilibrium is charac-

terized by the endogenous distribution of net worth across investors. However, the state space can be

simplified by using the fact that investor’s optimal choices are linear in their net worth and that investor’s

death risk is independent of their age. This implies investor’s within a preference type undertake the same

actions. Thus, I can derive the equilibrium conditions as a function of the following endogenous state

variable

xt =
nA

nA + nB
, (9)

where nA,t =
∫

At
ni,tdi and nB,t =

∫
Bt

ni,tdi. The variable xt ∈ (0, 1) is the relative market value investor

A’s net worth, and it captures aggregate conditions in the credit market. Intuitively, when xt is low, the

aggregate ability of risk-tolerant investors to supply credit decreases. As shown below in Proposition 3,

this type of investor choose an equilibrium portfolio share that is greater than one (i.e., they are leveraged).

The law of motion of x follows from applying Itô’s lemma to ratio (9). This is important for pinning

down the dynamics of the endogenous variables in a Markov equilibrium. In what follows, I express all

aggregate endogenous state variables as a function of x. That is, I seek to solve investors’ control variables
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(their consumption-wealth ratios and portfolio shares), the price of the endowment claim (q/y) and the

interest rate (r), as a function of x. The system of ordinary differential equations that characterize the

equilibrium consists of investors’ value function (Hamilton-Jacobi-Bellman equations), the no-arbitrage

conditions for total wealth and initial wealth, together with the market clearing conditions for consump-

tion and shares (the money market account clears by Walras’ Law).

Proposition 1 (Law of motion for x). The endogenous state variable x follows an Itô process

dxt = µx,tdt + σx,tdW1,t , (10)

where

µx,t = xt (1− xt)

(
cB,t

nB,t
− cA,t

nA,t
+ (αA,t − αB,t)

(
µq,t − rt − σ2

q1,t

))
+

ϕêt

pdt
(x− xt) ,

σx,t = xt (1− xt) (αA,t − αB,t) σq1,t,

x0 ∈ (0, 1) ,

with functions αA,t = αA (xt) ; αB,t = αB (xt) ; cA,t
nA,t

= cA
nA

(xt) ; cB,t
nB,t

= cB
nB

(xt) ; rt = r (xt) ; µq,t = µq (xt) ; σq1,t =

σq1 (xt) ; q/y = pd (xt) . The initial x0 is a number in (0, 1). Provided µx,t and σx,t satisfy the usual uniform

Lipschitz and linear growth condition in x, then the stochastic differential equation (10) is strong Markov

and has a unique solution.

Proof. See appendix.

Notice that the second term in the drift function µx,t is due to the demographic structure assumed

above. This term is key for obtaining an invariant distribution of x. Informally, notice that for very small

values of x, the diffusion tends to zero and the drift becomes larger and positive. Thus, the process never

reaches zero. Similar logic implies an upper boundary at one.5

The diffusion term, σx,t, depends on the differences in investors’ portfolio shares. If αi,t’s were the

same for both investors, then dW1,t shocks would not affect x. As a result, when the economy reaches the

stochastic steady state (i.e., when µx,t = 0), it remains there. This implies that differences in investors’

exposure to aggregate risk are critical for obtaining fluctuations in the wealth distribution in this setup.

Hamilton-Jacobi-Bellman Equation and investors’ first order conditions. The investor’s problem can be

written recursively

0 = max
ci ,si

f (ci,t,Ui,t) + EP [dUi,t, ] (11)

subject to his budget constraint (5) and his initial wealth (6). To solve the recursive problem, I appeal to the

homotheticity properties of the value function and the constraints. This implies that the value function

5Technically, the second term changes the speed of the process at the boundary. See Karlin and Taylor (1981), chapter 15, for a
discussion of the boundary behavior of Itô processes.
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can be written in the following power form:

Ui,t (xt, ni,t) =

(
ξ

1
1−ψi
i,t ni,t

)1−γi

1− γi
, (12)

where the known function ξi (xt) captures the investor’s valuation of the future investment opportunities.

This function can be expressed as an Itô process,

dξi,t

ξi,t
= µξi,tdt + σξi,tdW1,t , (13)

with adapted processes µξi,t = µξi (xt) and σξi,t = σξi (xt) determined in equilibrium. Using (12) and (13)

in (11), the problem can be written with ci
ni

(i.e., the consumption-wealth ratio) and αi =
siqt
ni

(the portfolio

share) as control variables

0 = max{
ci
ni

,αi

} ψi
ψi − 1

((
ci
ni

)1− 1
ψi
(ξi)

1
ψi − (ρ + ϕ)

)
+ EP

[
dni
ni

]
− γi

2
EP

[(
dni
ni

)2
]

(14)

+
1

1− ψi

[
µξi +

1
2

(
1− γi
1− ψi

− 1
)

σ2
ξi,t

]
+

(
1− γi
1− ψi

)
EP

[
dξi
ξi

dni
ni

]
,

subject to

(5), (6).

The first-order conditions (FOC) of this problem, for investor i, are given by

ci
ni

= ξi , (15)

αi =
µq − r
γiσ2

q
+

(
1− γi
1− ψi

)
σξi

γiσq
. (16)

Investors’ demand for the risky asset consists of a “myopic” term,
µq−r
γiσ

2
q

, and a “hedging” term,
(

1−γi
1−ψi

)
σξi

γiσq
.

In the representative agent economy, α = 1 by market clearing. However, this is not the case in heterogeneous-

investor economies in which different classes of investors can participate in the market for the risky asset.

In the next proposition, I characterize the A-type investor’s demand for the risky asset, and show that

A-type investors operate with leverage in equilibrium if and only if γA < γB.

Proposition 2 (Leverage and Risk Sharing) (1) A-type investor’s demand for risky assets is given by

αA (x) =
1− (1− x) x R(x)

γB

x + (1− x)
[

γA
γB
− xR(x)

γB

] ,

with

R (x) =
(

1− γA
1− ψA

)
ξx,A

ξA
−
(

1− γB
1− ψB

)
ξx,B

ξB
.
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(2) Aggregate risk is concentrated in A-type investors (i.e., αA > 1), and thus positive aggregate endowment

shocks increase x if and only if γA < γB.

Proof. See appendix.

The variable R (x) above captures the risk-sharing mechanism. Mechanically, R (x) can be written as

the difference in the sensitivity of the value functions with respect to x. That is,

R (x) =
d logUA

dx
− d logUB

dx
. (17)

A negative (positive) R implies that a marginal increase in x improves the utility of B (A) relatively more.

Notice that R would be zero if there were no motive to share aggregate risk (and α = 1).

Discussion of assumption 1. There is a large literature documenting heterogeneity in EIS among indi-

viduals (see Guvenen (2006) for a summary). In general, the evidence in the literature shows that people

who choose to be more exposed to aggregate risk (for example by holding stocks) exhibit a larger EIS. My

assumption follows this line: in the model presented above, low-RA investors choose to be more exposed

to aggregate risk and I assume they have a larger EIS. In my setup, heterogeneity in risk aversion is im-

portant because aggregate risk is concentrated in risk-tolerant agents, and therefore x increases after a

positive endowment shock (i.e., σx > 0). Put differently, x would not react to macro shocks if γA = γB. In

contrasts, Guvenen (2009), who also studies an economy with heterogeneous EISs, finds that differences

in RA are not relevant in his results. This is because he studies an economy in which there is limited mar-

ket participation. This last assumption immediately implies that stockholders (i.e., those who are allowed

to trade the risky asset) concentrate aggregate risk.

The assumption is qualitatively in line with time-additive preferences featuring CRRA preferences.

Under CRRA preferences, the EIS is set to be the inverse of the RA coefficient. Thus, the assumption of

γA < γB would immediately lead to ψB < ψA, as stated in assumption 1. This is consistent with Longstaff

and Wang (2012), Wang (1996), and Hall (2017), among others. In the context of time-additive preferences,

heterogeneous EISs can be rationalized as differences in an agent’s willingness to substitute across goods

(see, for example, Atkeson and Ogaki (1996)). One interpretation of ψB < ψA is that type-A investors’ ex-

pected consumption is more sensitive to fluctuations in spot interest rates, but less than one-to-one.6 As

I show below, the distinction between RA and EIS is crucial in capturing the quantitative properties of the

yield curve.

5 Term Structure of Interest Rates

Equipped with the equilibrium definition and the model’s solution, I can now characterize the term struc-

ture of interest rates in the economy. Since the economy features complete markets and there are no

6Suppose consumption follows an Itô process with constant drift µci and diffusion σci for investor i, then

µci = ψi (r− ρ) + (1 + ψi) γiσ
2
ci ,

so the greater ψi, the more sensitive is expected consumption to movements in r. If ψi < 1, movements are less than one-to-one.

13



arbitrage opportunities, I can obtain a stochastic discount factor “as if” there were a representative agent

(Constantinides and Duffie (1996)). The properties of the discount factor, characterized below in propo-

sition 4, depend on the risk-sharing dynamics of the economy.

After deriving the discount factor, I value zero-coupon bonds. I start by analyzing the properties of

real bonds, (i.e., assets that pay a unit of consumption in the future), and then extend to value nominal

bonds (i.e., assets whose cash flow is in monetary units). In this analysis, money is solely a unit of account,

and I assume the marginal investor can transform money into goods (and vice versa) without any friction

whatsoever.

I next derive the real stochastic discount factor.

Proposition 3 The state-price process m (xt) > 0 satisfies

dmt

mt
= −r (xt) dt− κ (xt) dW1,t ,

with

κ (xt) =
σq1 (xt)− xt

(
1−γA

(1−ψA)γA

)
σξA (xt)− (1− xt)

(
1−γB

(1−ψB)γB

)
σξB (xt)

x
γA

+ 1−x
γB

, (18)

r (xt) = µq +
1

pd (xt)
− κ (xt) σq1 −

ê (xt)

pd (xt)
ϕ , (19)

where r (xt) and κ (xt) are adapted and bounded processes. The process for x is given by (10).

Proof. See appendix.

Then, I can define the process ζt as

ζt = exp
(∫ t

0
κ (xu) dW1,u −

1
2

∫ t

0
κ (xu)

2 du
)

, (20)

which is a martingale in P and represents the Radon-Nikodym derivative dQ = ξTdP, provided regular

conditions are verified. 7 With a standard application of Girsanov’s theorem, I can define a Brownian

motion in the equivalent martingale measure Q.

To derive the real yield curve, I calculate the price of real zero-coupon bonds. Let P(T)
t represent the

price of an asset that pays a unit of consumption in T periods from now (t) (i.e., a zero-coupon bond). So

P(0)
t = 1. Then

P(T)
t = EP

t

[
mt+T

mt

]
≡ EQ

t

[
exp

(∫ t+T

t
r (xu) du

)]
≡ P (xt, T) . (21)

The real yield can be computed from prices as y(T)t = − log P(T)
t

T , while forward rates from T to T + j,
y(T→T+j)

f ,t , follow immediately by no-arbitrage. I next characterize the value of the real bond (21).

7 In particular, Novikov’s condition, EP
[
exp

(∫ T
0 κt (xs)

2 ds
)]

< ∞, which holds since κ(x) is a bounded function and x is Markov.
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Problem 1 (Valuing real bonds). The price of the real bond P (x, T) (a T-real bond) solves the following

Cauchy problem:

−P′T (x, T) + LP (x, T)− r (x) P (x, T)− κ (x) P′x (x, T) σx (x) = 0 , (22)

P (x, 0) = 1, ∀x,

where L is the differential operator in x.

From (22), the term premium of a T-quarter real zero-coupon bond is given by

EP

[
dP(T)

t

P(T)
t

]
− rtdt = −covP

t

(
dmt

mt
,

dP(T)
t

P(T)
t

)
︸ ︷︷ ︸

T-real term premium

, (23)

=
P′(T)x

P(T)︸ ︷︷ ︸
>0

κ (xt) σx (xt)︸ ︷︷ ︸
>0

.

The sign of the T-real term premium is characterized by the derivative P′(T)x , since κ (xt) σx (xt) > 0 ∀t by

definition. Mechanically, bond prices are higher in states of nature in which the real rate is lower (i.e.,

there is an inverse relationship between zero-coupon bond prices and rates). In the model, r is high in

states in which x is low. This implies that P′(T)x > 0. If those states correspond to high prices of risk, the

market will compensate the marginal investor with a positive premium to hold a T-real bond. Below, I

elaborate this intuition further, when I present the model solution and the term structure of interest rates.

In particular, when I show numerical results for the covariance term (23).

Nominal Term Structure: Exogenous Inflation. I first consider the case in which inflation is exogenous,

as in other papers in the macro-finance term structure literature (e.g., Piazzesi and Schneider (2006),

Bansal and Shaliastovich (2013), among others). That is, I compute the nominal stochastic discount fac-

tor—which is used to discount future cash flows denominated in dollars—by introducing exogenous fluc-

tuations in the purchasing power of a dollar (i.e., exogenous fluctuations in the price level).

The objective is to study the role of inflation risk, since in this case the nominal term premium is

driven by the assumption that inflation and real shocks are negatively correlated: inflation occurs in high

marginal utility states. In other words, this assumption implies that the purchasing power of nominal

payments decreases precisely when the marginal investor require those resources the most. Therefore, the

market has to compensate the marginal investor with a premium to hold such an asset. In the quantitative

analysis below, I provide a decomposition of the nominal term premium in order to quantify the role of

this negative correlation vis-à-vis the real component.
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I introduce an exogenous price process pt (CPI), as in Cox et al. (1985). That is,

dpt

pt
= πtdt + σpσ (πt) dW2,t, p0 > 0 ,

dπt = λπ (π − πt) dt + σ (πt) dW3,t, π0 > πL, (24)

with

σ (πt) = σπ
√

πt − πL ,

where W2 = {W2,t ∈ R;Ft, t ≥ 0} and W3 = {W3,t ∈ R;Ft, t ≥ 0} are aggregate Brownian motions in the

probability space (Ω, P,F ) representing shocks to inflation and shocks to expected inflation, respectively.

The parameters (λπ , π, πL) are real numbers, and are associated with the persistence, mean, and the lower

bound on inflation. Importantly, the exogenous process πt is stationary (see appendix).

I assume that processes W1 and W3 are correlated; that is, 〈dW1dW3〉t = φ13dt. In particular, I as-

sume that φ13 < 0, so shocks to pi and shocks to aggregate endowment are negatively correlated (Pi-

azzesi and Schneider, 2006). This implies that a nominal asset is expected to produce lower real pay-

ments (i.e., inflation erodes the purchasing power of nominal payments) in periods of low growth, which

creates persistent inflation risk. I assume that contemporaneous shocks to the CPI process are uncorre-

lated with W1 and W3. Similarly, I assume that W2 and W3 are uncorrelated. It is worth emphasizing that

〈dW2dW3〉t = 〈dW1dW2〉t = 0 is without loss of any generality, either from a quantitative or a qualitative

perspective. This is because these shocks are i.i.d., so they have a minor role (whereas dW3 are persistent).

I assume this to focus on the role of persistent inflation risk.

Then, I can define a nominal pricing kernel, m$
t = mt/pt. Using Itô’s lemma

dm$
t

m$
t

=
dmt

mt
− dpt

pt
+

(
dpt

pt

)2
− dpt

pt

dmt

mt
,

= −itdt− κtdW1,t − σpdW2,t ,

where it represents the nominal interest rate

i (xt, πt) = r (xt) + πt − σ2
pσ (πt)

2 . (25)

Notice that (25) is the Fisher equation, plus an “Itô adjustment”, σ2
pσ (πt)

2, that is quantitatively small.

With these elements, I next value zero-coupon nominal bonds. Let P$,(T)
t be the price of a nominal zero-

coupon bond paying one dollar T periods from now. Thus

P$,(T)
t = EP

t

[
m$

t+T

m$
t

]
≡ EQ

t

[
exp

(∫ t+T

t
i (xu, πu) du

)]
≡ P$ (x, π, T) .

Problem 2 (Valuing nominal bonds: Exogenous inflation). The price of the nominal bond P$ (x, π, T), a
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T-nominal bond when inflation is exogenous, solves the following Cauchy problem:

−P′$T (x, π, T) + LP$ (x, π, T)− i (x, π) P$ (x, π, T) = κ (x)
(

P′$x (x, π, T) σx + P′$π (x, π, T) σ (π) φ13

)
,(26)

P$ (x, π, 0) = 1, ∀ (x, π) ,

where L is the differential operator in x and π.

Equation (26) shows that the nominal term premium can be decomposed into a real component and a

nominal component. That is,

T − nominal term premium = −covP
t

(
dm$

t

m$
t

,
dP$,(T)

t

P$,(T)
t

)
(27)

=

real︷ ︸︸ ︷
P$,(T)

x

P$︸ ︷︷ ︸
>0

σx (xt) κ (xt)︸ ︷︷ ︸
>0

+

nominal︷ ︸︸ ︷
P$,(T)

π

P$︸ ︷︷ ︸
<0

φ13︸︷︷︸
<0

σ (πt) κ (xt)︸ ︷︷ ︸
>0

Both terms in (27), the real and the nominal, are positive. The real component is positive primarily

because P′$,(T)
x > 0 ∀ (x, π, T) , and the intuition is the same as the one described above for the real bond.

The sign of the nominal component, however, depends on the sign of the correlation between endowment

shocks and inflation expectation shocks, φ13. This is because P′$,(T)
π < 0 ∀ (x, π, T): An increase in inflation

expectation increases the spot nominal rate (via the Fisher identity established in (25)). Thus, the price

of the nominal bond price, for any finite maturity, decreases when inflation expectations increases—i.e.,

the derivative with respect to π is negative across the state space. But since φ13 < 0, then positive endow-

ment, or “supply,” shocks are associated with negative shocks to inflation expectations. Economically, this

means that nominal payments are expected to be eroded by inflation during periods in which investors

value those resources the most. So the sign of the φ13P′$,(T)
π determines the sign of nominal component of

the nominal term premium.

The Nominal Term Structure: Endogenous Inflation. Instead of extending the state space by adding

an exogenous inflation process, another alternative is to derive a process for πt via a simple monetary

policy rule, conducted by a monetary authority. Thus, I consider a monetary authority that determines

the inflation rate dpt
pt

in a way that is consistent with the marginal investor’s stochastic discount factor

(e.g., Gallmeyer et al. (2007)). For this, I consider a standard specification of such a rule in the form of a

so-called Taylor rule

iMP
t dt = δ0dt + δπ

(
dpt

pt
− πdt

)
, (28)

where iMP
t represents the monetary policy rate, δ0 is a constant (“intercept”), and δπ is the “Taylor loading,”

π the inflation target, and dpt
pt

= πtdt is the instantaneous change in the CPI.8 Since I consider a fully

flexible-prices endowment economy, there is no output gap in this rule.

8The monetary authority implements the rule such that, in equilibrium, the stochastic process for the price level pt is locally
“smooth,” i.e., σp,t = 0. That is, the monetary policy is consistent with the conditional expectation of the stochastic discount factor.
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The nominal interest rate iMP
t has to clear the nominal bond market, and for this it must be consistent

with the nominal pricing kernel. This implies

iMP
t dt = −EP

t

[
dm$

t

m$
t

]
,

δ0 + δπ (πt − π) = r (xt) + πt , (29)

which is the standard Fisher equation. Thus, I can solve for the endogenous π (xt) by solving (29). That is,

π (xt) =
δ0 − δππ

(1− δπ)
+

r (xt)

δπ − 1
. (30)

Equation (30) shows that under δπ = 1, inflation expectations are not well defined (i.e., a version of the

Taylor principle is violated). Then, using (30), the nominal interest rate takes the form of

it = iMP
t ≡ δ0 + δπ

δ0 − δππ

(1− δπ)
+

δπ

δπ − 1
r (xt) .

This means that when δπ > 1 (which is commonly used in the literature) the loading on the real compo-

nent, δπ
δπ−1 , is greater than one. In other words, the nominal interest rate magnifies fluctuations in the real

risk-free rate.

With the derived πt = π (xt) , I can value nominal bonds. It is worth emphasizing that inflation is not

a state variable to value nominal bonds, as opposed to (26). Instead, the sole state variable (other than

time to maturity) is xt. That is, P$,(T)
t = P$ (x, T) . This implies that the problem of valuing nominal bonds

is similar to (22).

Problem 3 (Valuing nominal bonds: Endogenous inflation) The price of the nominal bond P$ (x, T), a

T-nominal bond when inflation is endogenous, solves the following Cauchy problem:

P′$T (x, t) + LP$ (x, T)− iMP (x) P$ (x, T) = κ (x) P′$x (x, T) σx (31)

P$ (x, 0) = 1, ∀x ,

where L is the differential operator in x.

Before concluding this section and proceeding to the quantitative analysis, I provide a proposition for

the representative agent benchmark. In that case, all prices and quantities can be solved in closed form.

Under this benchmark, real yields are constant and exhibit zero volatility.

Proposition 4 (Infinitely lived investor). If preferences are the same (i.e., γA = γB and ψA = ψB) and there

is no mortality risk (i.e., ϕ→ 0), then

(i) the real risk-free rate is constant rt = r, with

r = ρ +
µ

ψ
−
(

1 +
1
ψ

)
γσ2

2
;
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(ii) the real term structure is flat and the volatility of yields is zero at all maturities

y(T)t = rt = r, ∀ (t, T) ,

var
(

y(T)t

)
= 0, ∀ (t, T) ;

(iii) the price-dividend ratio is constant, pdt = pd ;

(iv) under exogenous inflation, the nominal term structure depends on inflation expectations only. Nominal

bond prices can be solved in closed form and equal to

P$,(T) (π, t) = A (t) exp
(

B (t)π + C (t)
√

π − πL
)

,

where coefficients A (t) , B (t), and C (t) solve the system reported in the appendix; and 9

(v) under endogenous inflation, the nominal term structure is flat and the volatility of nominal yields is zero

at all maturities.

Proof. See appendix.

6 Quantitative analysis

In this section I explore the quantitative properties of the model. To that end, I solve the model—and the

corresponding partial differential equations for bond prices—numerically. I use a global solution tech-

nique based on spectral methods (Trefethen, 2000; Boyd (2001)). I start by describing the calibration pro-

cedure and then discuss the model’s solution. I continue with an analysis of the real term structure, and

conclude by studying the nominal term structure (with both exogenous and endogenous inflation).

Calibration. I report the calibration in Table 2, in which I divide parameters into groups: preferences,

endowment and demography, and inflation. I calibrate parameters at a quarterly frequency.

Regarding preferences, there are mainly four parameters: γA, γB, ψA, and ψB. I set γB = 10 > γA = 1.5,

which implies, on average, an aggregate γ of 5.1.10 These values for risk aversion are within the range that

have been used in the asset-pricing literature. Regarding the EIS, I set values for the ψA and ψB as free

parameters, and explore different alternative specifications below. Intuitively, the larger the difference

between ψA and ψB (ceteris paribus), the larger the increase of the spot real rate after an endogenous

reduction in aggregate credit. In the baseline calibration, I use a ψA, ψB very similar to those in Gârleanu

and Panageas (2015).

I calibrate the endowment parameters, the drift µ and diffusion σ, to match the mean and volatil-

ity of time-integrated U.S. consumption data. Regarding demographic parameters, I set a value of ϕ

such that investors have an expected time operating in the financial market of 30 years, and lastly I

9The resulting partial differential equation for the nominal bond price is similar to the one resulting from the “double squared
root process” for the interest rate. I thank Francis Longstaff for bringing this point to me.

10Aggregate γ is displayed in the denominator (18), which is the inverse of x
γA

+ 1−x
γB

.
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set x = 0.11 which stabilizes the share of risk-tolerant agents net worth around 0.15 (I report the in-

variant distribution below). Lastly, I specify a function G (t) = G1e−g1t + G2e−g2t (i.e., a double expo-

nential) to be consistent with the hump-shaped income pattern over the life cycle of the investor. I set

(G1; G2) = (30.72/4;−30.29/4), which implies a similar pattern to that of Gârleanu and Panageas (2015),

but at a quarterly frequency.

To derive the endogenous inflation expectations, I calibrate the Taylor coefficient δπ=1.5 as a baseline

(see Taylor (1993), and many others). I set the inflation target π=0.005, which implies a 2% annual target.

For the exogenous inflation expectation process, I set parameters σπ , θπ , πL, π such that the mean of in-

flation expectations is 0.9% per quarter to match the level of the nominal yield curve, and inflation spends

99% of time in the range [-0.5%, 2%] in quarterly terms. This captures the dynamics of observed inflation.

I plot the invariant distribution for π in the appendix. Lastly, I set the correlations between inflation, en-

dowment, and inflation expectation shocks as free parameters to illustrate their role in the decomposition

between nominal and real term premium. In particular, I set φ12 = φ23 = 0, and I focus on the correlation

between shocks to inflation expectations and shocks to the real economy. I set φ13 = −0.5 as a plausible

lower bound on this correlation, as many previous studies have found a greater number in the data (for

example, Piazzesi and Schneider (2006) find -0.2).11

The Economic Mechanism in the Model. Figure 1 shows the solution of the relevant objects in the model

that summarize the economic mechanism. First, notice that both the real risk-free rate and the price of

risk move in tandem across the state space: Real interest rates are high (bond prices are low) when the

aggregate price of risk is high. This occurs when the relative market value of risk-tolerant equity is low,

which implies that the total amount of credit in the economy is low.

As shown in Proposition 3, negative aggregate shocks affect risk-tolerant investor’s net worth relatively

more. When risk-tolerant investors lose net worth, their ability to supply credit at an aggregate level is

reduced. Thus, total credit as a fraction of total equity in the economy goes down. This produces an

increase in the price of credit—the real rate —because the market has to compensate agents with a lower

EIS to smooth consumption over time. On the other hand, since relatively more risk-averse investors are

clearing the market, the price of the risky asset goes down and the aggregate price of risk increases, as

shown in the Figure.

From a risk-sharing perspective, R (x) represents how changes in x affect investors’ utility, as shown in

(17). In Figure 1, R (x) < 0 across the state space, which means

R (x) =

(
1− γA
1− ψA

)
ξx,A

ξA
−
(

1− γB
1− ψB

)
ξx,B

ξB
< 0

⇒
d logUA

dx
<

d logUB
dx

Thus, changes in x improve B-type investor’s utility relatively more: An increase in x implies that they have

to bear less aggregate risk, and since they dislike risk relatively more, their utility increases relatively more

11The closer φ13 is to zero, the smaller the nominal component of the nominal term premium. Even with φ13 = −0.5, as discussed
below, the nominal component is already relatively small in my model.
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than that of an A-type. If there were no gains from sharing risk, R would be zero.

The Real Yield Curve. Figure 2 shows the results for the term structure up to 80 quarters. On average, the

slope of the real yield curve is upward sloping: Real bonds are risky assets, since bond prices go down in

states in which the price of risk increases. I report the term premium (i.e., the covariance in expression

(22)) below. Interestingly, the yield curve features endogenous fluctuations across the business cycle. In

particular, when there is a contraction in risk-tolerant investors’ net worth (i.e., low x), the level of the

real yield curve increases and its slope becomes negative. That is, x is negatively correlated with the level

factor, and positively correlated with the slope of the curve.

A useful way to further understand the implications of the model is to study the interest rate dynamics.

That is, r (xt), where the state variable xt follows the law of motion in (10). Then, using Itô’s lemma, the

interest rate dynamics are given by

drt = µr,t + σr,tdW1,t, (32)

with

µr,t = r′xµx,tdt +
1
2

r′′xxσ2
x,t,

σr,t = r′xσx,t .

Panel (b) of Figure 2 shows the drift and diffusion associated with r. In particular, notice that the ex-

pected change of r, µr,t, becomes more negative when x decreases; because real rates are mean reverting,

they expected to fall. The expectation that the short-term rate will decrease in the futures is strong enough

to imply the reversion of the slope in panel (a).

I next study the term premium. Long-term rates consists of two components: the expectations of

short rate dynamics and the term premium. More precisely, the premium a long-term bond commands is

represented in equation (23),

EP

[
dP(T)

t

P(T)
t

]
− rtdt = −covP

t

(
dmt

mt
,

dP(T)
t

P(T)
t

)
.

In Figure 3 I show the model’s prediction for this covariance. The left-hand panel shows the covariance

across the state space, for three different maturities (4, 20, and 80 quarters). The larger the horizon, the

larger the premium the bond carries. Intuitively, the longer the horizon of the bond, the more likely it will

lose value in a bad state at some point of its lifetime. The right-hand panel of the figure shows the mean

term premium across horizons. This panel conveys the idea that long-term bonds are riskier than that of

short-term, and therefore should pay a higher return on average.

I next study the very long end of the yield curve, which may have several practical purposes (from

social security to government budget projections). To that end, I first solve the real term structure that

matches the short part (up to 40 quarters), but up to a horizon where the yield curve becomes almost

flat.12 Then, I compute the volatility of 10-year forward contracts, which can be easily derived from bond

12I show the properties of a perpetual consol bond in the appendix.
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prices. Figure 4 shows the real term structure up to 800 quarters (i.e., 200 years), and the volatility of

10-year forward rates. The figure shows that the average real term structure becomes flat at nearly 700

quarters, and forward rates have substantial volatility up to 10-year contracts between 280 quarters to 320

quarters (i.e., 70 years to 80 years).

Lastly, Table 3 displays the theoretical moments and illustrates the role of EIS heterogeneity in the

model. As shown in Figure 2, the model matches the slope and volatility of the real term structure. Qual-

itatively, the model captures the fact that the volatility of real yields is downward sloping, although the

volatility of the 40-quarters yield is higher than in the data (42 basis points versus 30 basis points at a

quarterly frequency, respectively). The table also illustrates the risk-sharing mechanism that drives this

result. Indeed, under the baseline calibration, A-type investors consume 0.0108 of their net worth (rep-

resented by ξA), whereas B-type consume a higher fraction, 0.0156. This is basically due to the fact that

A-type investors are operating with leverage, so they consume a smaller fraction of their net worth on av-

erage. Also, as expected, the volatility of the consumption-wealth ratio of B-type investors is larger (they

are less willing to smooth consumption intertemporally). This implies that investors are sharing aggregate

risk, a measure denoted by R in the Table.

When B-type investors feature CRRA preferences, i.e., ψB = 1/γB, the gains from sharing risk are lower:

Fluctuations in x have a relatively similar impact on investors’ utility (R is close to zero). Table 3 shows that

the consumption-wealth of both agents is relatively similar and less volatile than in the baseline calibra-

tion. This implies that leveraged investors are borrowing against investors who have a similar willingness

to smooth consumption intertemporally, and therefore the equilibrium spot rate does not fluctuate much.

As a consequence, the volatility of yields is roughly 3 times lower than in the data, and the slope of the yield

curve is significantly smaller: Long-term bonds are less risky, since interest rates (and real bond prices)

are not expected to fluctuate much.

In the case of ψB = ψA, investors are heterogeneous along the RA dimension only. This implies that the

volatility of real yields is virtually zero, and the slope of the real yield curve is almost flat (indeed, slightly

downward sloping).

The Nominal Yield Curve with Exogenous Inflation. Figure 5 shows the results for the nominal yield

curve when inflation follows an exogenous stochastic process. The left panel fixes x at the steady-state

value and displays the nominal yield curve for different values of inflation expectations in the bivariate

stationary density (shown in Figure 7). On average, the yield curve is upward sloping, because both the

real component and the nominal components render nominal bonds risky assets, as shown in equation

(27). I discuss the decomposition between these two sources below. The real source of risk is explained

above. The nominal source of risk comes from φ13 < 0: An exogenous sequence of positive inflation

expectation shocks is associated with negative shocks to the real economy. This means that inflation

is expected to erode the purchasing power of nominal payments precisely when the marginal investor

values those resources the most.13 Therefore, nominal bonds are risky.

Over the business cycle, the left panel of Figure 5 shows that when is π high, the nominal term structure

is downward sloping. This is denoted by the gray line. Intuitively, when current inflation is high, nominal

13This is clear from Figure 7, where low x states (blue line on panel (b)) are associated with higher inflation states.
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rates are expected to go down in the future (i.e., π is mean reverting). A similar logic applies when π is low,

since in such states of nature the nominal interest rate is expected to increase. Thus, as shown by the blue

line, the nominal curve is even more upward sloping than on average.

On the right-hand side of Figure 5, I show the nominal term structure when π is a steady state. The

red line fixes the steady state of both x and π, which means it is the same as on the left-hand side. In this

case, when π is fixed to the steady state, the properties of the nominal term structure are driven by x, so

the intuition is very similar to that one developed for the real term structure.

To understand the role of inflation risk, driven by φ13, I next study the decomposition of the nominal

and real components of (27). This is a useful analysis, because in models in which the real term structure

is flat, 100% of the nominal term premium is driven by inflation risk. Even more, in models in which the

real term structure is downward sloping (such as the long-run risk models, e.g., Bansal and Yaron (2004)),

inflation risk has to more than compensate for the negative real term premium to obtain an upward-

sloping nominal curve consistent with the data.

Figure 6 illustrates this decomposition for an 80-quarter nominal bond.14 On the left-hand side, the

figure depicts the real and nominal components across the x dimension (i.e., fixing π at different values);

on the right-hand side I shows the real and nominal component across the π dimension (i.e., fixing x at

different values).

On average, the real component explains about 80% of the nominal term premia. As shown in the

upper-left panel, an increase in x reduces the real component. This is because effective risk aversion

decreases as x increases and risk-tolerant investors rebuild their balance sheets. This is scaled by the level

of π: The greater π is (gray line), the smaller the real component. The upper-right panel shows this from

a different perspective: It fixes x and shows the real component for different levels of π. The intuition for

the dynamics over the state space is similar to the one above: An increase in π means a reduction in the

real components, and this effect is scaled by the level of x.

The Nominal Yield Curve with Endogenous Inflation. Motivated by the previous decomposition, in

which the real component drives the nominal term premium, I next study the nominal term structure

with endogenous inflation expectations. As shown in equation (30), endogenous inflation expectations

depend on policy parameters, δ0 and δπ, and also on the real interest rate r(x). In particular, when δπ > 1,

the nominal interest rate moves in the same direction as the real interest rate, by a factor δπ
δπ−1 > 1.

The difference in the magnitudes implies that the monetary authority anchors inflation expectations

by adjusting the policy instrument more than one-to-one to fluctuations in the real economy (represented

by r(x)); and this will be captured by fluctuations in nominal bond prices. In other words, the sensitivity of

nominal bond prices to fluctuations in x will be higher than that of real bond prices. That is the derivative

with respect to x is higher in a nominal bond than in a real bond

P′$x (x, T) > P′x (x, T) ∀ (x, T) . (33)

Expression (33) implies that the Taylor coefficient magnifies the positive real term premium. In Figure

14Results in this decomposition are very similar for different maturities other than 80 quarters.
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8, panel (a), I show the results for the nominal term structure under endogenous inflation. The average

nominal yield curve, with δπ = 1.5, is upward sloping and in line with the evidence. Indeed, the slope

of the nominal term structure in the figure is higher than that of Figure 2 (almost twice, as in the data),

precisely because of the effect of δπ
δπ−1 and its impact in the derivative of bond prices. Interestingly, the

nominal term structure inherits the properties of the real economy, and thus exhibits endogenous fluctu-

ations across the business cycle.

In panel (b) of Figure 8, I show the properties of endogenous inflation expectations and the corre-

sponding nominal yield curves. The lower the Taylor coefficient δπ (which can be interpreted as a rel-

atively “loose” monetary rule), the greater the unconditional mean and standard deviation of inflation

expectations. A lower coefficient then translates into a steeper nominal yield curve, because monetary

policy reacts relatively more to changes in the real economy, which implies a more volatile nominal rate

and thus a greater derivative P
′$,(T)
x (x, t). This can be seen on the right-hand side of panel (b) in Figure 8,

where I show the normalized yield curves. (I normalize yields to 0 at maturity 0.)

7 Empirical Analysis

In this section I evaluate the empirical predictions of the model. I begin by extracting macro shocks from

the data, using the fact that the aggregate endowment is i.i.d. in the model. I then introduce the realized

sequence of shocks into the model and compute the time series of the endogenous state variable x.

The first exercise consists of regressing yields from the data onto the implied series of x. In particular,

I consider two regressions that intend to capture the main theoretical prediction of the model: Yields are

persistently negatively exposed to x (i.e., P
′
x (x, T) is positive, and thus yields are negatively exposed to x).

I regress yields onto x precisely to capture this sensitivity at different maturities. I then regress the slope

of the term structure onto x. I compare the regressions results with the model’s prediction for both the

sensitivity of yields and slope.

The second exercise is to regress the short-term (1 quarter) nominal interest rates against the model’s

implied x, but controlling for several macroeconomic variables. In this analysis, I follow (Ang and Piazzesi

(2003)), and investigate whether x contains information to explain fluctuations in the short-term nominal

interest rate beyond other well-studied macroeconomic factors (GDP growth, inflation, and unemploy-

ment). In this exercise I evaluate the predictions in the endogenous inflation case, where the short-term

nominal rate depends on x.

The third exercise is an application of the model to shed light on two salient interest-rates puzzles

(Campbell et al., 2009): (1) the sudden spike of real rates in the Great Recession; (2) the secular decline

of real and nominal long-term rates since the 80s. The purpose is to provide further evidence on the

mechanism I propose, which relates the credit market with the term structure of interest rates. In these

exercises, I use the time series implied by the model.

I conclude this section by comparing x with an alternative interpretation of the model. Previous liter-

ature (cited below) interprets risk-tolerant investors as financiers. According to this view, the relative net
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worth of financial firms should be indicative of credit conditions in the economy, and should be related

to yields. I construct a “credit factor” that intends to capture this view and compare it with x.

Business Cycle: Preliminaries. I begin by feeding the model with macro shocks. To that end, I take

advantage of the assumption that aggregate endowment is a geometric Brownian motion, which means

that log growth rates are i.i.d. at an aggregate level. Then, shocks can be easily identified (under the null

of the model):

d log yt −
(

µ− 1
2

σ2
)

dt = σdW1,t,

∆ log yt −
(

µ− 1
2

σ2
)

∆ = σ [W1,t+∆ −W1,t] . (34)

I discretize ∆ to make it equal to one quarter and use NIPA data for real personal consumption expendi-

tures at quarterly frequency. Figure 11 displays the series of the index and the shocks. I then feed these

shocks into the model, starting from the stochastic steady state in 1971:Q2, to obtain predictions for the

endogenous state variables. I start in 1971:Q2 to be consistent the sample periods for which yields data

are available (reported in Table 1).

Business Cycle, Credit, and Yields. I start by analyzing the model prediction for credit. Figure 12 shows

results for credit over total equity in the model and credit over GDP in the data. The figure indicates

the model captures the fluctuations in credit well. Motivated by this, I compute the time series for the

endogenous state variable x to compare it with yields data. As described in the previous section, the

model predicts that low x implies a high level of rates and lower slope. In the next figure I show that the

data show a similar pattern.

Figure 13 compares fluctuations in the endogenous state variable in the model with yields data. The

implied series for x shows a negative correlation of -0.35 with the first principal component of the real

term structure, and -0.54 with the first principal component of the nominal term structure. As has been

shown by many previous studies (e.g., Litterman and Sheinkman (1991)), the first principal component

—the level of the curve—explains the vast majority of yield curve fluctuations (more than 90% in any

sample). The figure also shows a positive correlation of 0.25 between the slope of the real term structure

and the implied series for x. This correlation is weaker in the case of the nominal term structure (0.14).

Elasticities. I next study the sensitivity of yields, at different maturities, with respect to x. This is a useful

first step to verify the key theoretical prediction of the model, which is that the derivative of bond prices

with respect to x is positive. That is,
P′x (x, T)
P (x, T)

> 0.

More precisely, the idea is to use yields from data to capture the sensitivity of bonds to x

EP

[
∂ log P (x, T)

∂x

]
= EP

[
P′x (x, T)
P (x, T)

]
≡ EP

[
T.y′(T)x

]
,

where the last equivalence follows from the relationship between yields and prices of zero-coupon bonds.

To capture this relationship, I use data on real yields described in section 2, with maturities N = (4, 8, 12, 20, 28, 40)
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quarters. I specify the following linear regression:

y(N)
t = α

(N)
1 + β

(N)
1 xt + ε

(N)
1,t . (35)

I use the model’s implied series for x and yields from the data to estimate (35). Panel (A) of Table 4 shows

estimates for real yields. Results indicate that coefficients are all negative and statistically significant, and

they display the following pattern:

−β
(10)
1 > −β

(7)
1 > ... > −β

(1)
1 .

In other words, long-term real yields are less sensitive to x (in absolute value). A similar pattern holds, but

is mechanically opposite, for bond prices: longer-term bond prices are more sensitive to x. Intuitively, this

indicates that bond prices are persistent (but stationary) processes. Yields inherit this property, but since

they are proportional to maturity (we divide by N), the persistence of bonds is offset by N. The longer the

maturity, the stronger this effect.

The model can capture this very well. Figure 9 shows the model’s prediction for the sensitivity of yields

with respect to x. The figure shows the unconditional derivative for yields EP
[
y′(T)x

]
. The left-hand panel

shows the derivative of yields with respect to x, over the state space, for three different maturities. On

the right-hand side, I show the unconditional mean across maturities. Both are in line with the estima-

tions reported in Table 4. In other words, short-term yields are unconditionally more volatile (i.e., more

sensitive to x) than long-term yields, both in the data and in the model.

Panel (B) contrasts the results for nominal yields. The coefficients are larger than those for real yields,

which is consistent with the prediction in the endogenous inflation case (nominal bonds are more sen-

sitive to x, because Taylor loading is greater than 1). Although the R2 are higher, the coefficients are not

statistically different from each other as, they were for the real yields.

Slope. I now evaluate whether the model’s predictions for the slope of the term structure are consistent

with the data. Figure 10 shows that the model predicts an average positive slope, but with a nonlinear

relationship against x. The intuition comes from the mechanism elaborated on above: When x is low and

real rates are high, rates are expected to fall in the future; they are mean reverting. This effect is strong

enough to imply that during low-x states, long-term rates are lower than short-term short. When x is at

its mean, the effect of x on the slope is close to zero (i.e., the derivative of the slope against x, at the steady

state, is close to zero).

To evaluate this prediction, I compute the slope of real yields at different horizons in the data—that is,

the difference in yields (i.e., the slope) as

slope (N) = y(N)
t − y(4)t , for N = (8, 12, 20, 28, 40) .

To capture the nonlinear aspect of the relationship predicted by the model, I specify the following regres-

sion

y(N)
t − y(4)t = α

(N)
3 + β

(N)
3 xt + β

(N)
4 x2

t + ε
(N)
t , (36)
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where the left-hand side represents the slope at different horizons and the quadratic term intends to cap-

ture the nonlinearity predicted by the model, and is reported in Figure 10, panel (a). In Figure 10, panels

(b) and (c), I fit a kernel regression that indicates that the quadratic specification in (36) is enough to

capture the nonlinearities in the data.

In Table 5, I report the estimates of (36). The coefficient associated with x is positive, but the coefficient

associated with x2 is negative and larger (in absolute value). This implies that changes in the model’s

endogenous state variable produce significant nonlinear changes in the slope of the real term structure.

A marginal deviation of x from its mean, however, does not create a significant change in the slope. This

is what the row “Net effect” reports: It evaluates whether the derivative of (36) is different from zero on

average. This is consistent with the model prediction, indicating that a marginal change in x, starting

from the steady state, is very small. But when x is small, an increase in x produces an increase in the slope.

When x is large, a decrease in x produces an increase in the slope.

Model’s x as a Macro Factor. In this subsection I evaluate the key theoretical prediction of the endoge-

nous inflation case: I study how the short-term nominal rate changes with the endogenous state variable

x. For this, I follow Ang and Piazzesi (2003) and regress the short-term nominal rate against several macro

factors, in which I include x (the endogenous state variable implied by the model). The macro factors I

include have been widely documented in the macro-finance term structure literature (proxies for infla-

tion, GDP growth, and unemployment). Since Ang and Piazzesi (2003), many papers have incorporated

macroeconomic variables into affine term structure models to provide an interpretation of the previous

latent factor models (e.g., Litterman and Sheinkman (1991)).

Table 6 shows the correlations between short-horizon nominal yields, x, x2, and x3. The purpose of

incorporating x2 and x3 in the analysis is to capture the nonlinear dynamics implied by the model. As can

be seen in the table, the yields’ dynamics are negatively correlated with x. This negative correlation was

implicitly described in Figure 13, where I showed only the first principal component of nominal yields.

Notice higher order terms are also relevant.

I then regress the one-quarter nominal rate y$,(1)
t onto different macro factors ft. The regression is

specified as in Ang and Piazzesi (2003):

y$,(1)
t = α4 + β′4 ft + vt, (37)

where ft is a vector of macroeconomic factors and vt is a shock that captures orthogonal information to

macro variables (e.g., policy shocks). The factors I consider, in addition to x, are: an inflation factor, a

real activity factor, the CPI core, and the unemployment gap.15 I construct the inflation and real activity

macro factors in the same way as Ang and Piazzesi (2003). This consists of computing the first principal

component of various inflation and real activity indexes. The CPI core and unemployment gap are repre-

sentative of the “policy factors” typically used by the Monetary Authority when considering adjusting the

short-term rate (Bauer and Rudebusch, 2017), so they are also useful controls for x.

Table 7 report regressions’ results. The first two columns are the specifications in which x is not in-

15The unemployment gap is the difference between actual unemployment and the natural rate of unemployment reported by the
Congressional Budget Office.
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cluded. This is a useful benchmark to compare with. Notice that in column (1) and (2), the only signifi-

cant component is the one associated with inflation. This is consistent with Ang and Piazzesi (2003), who

report that real activity is sensitive to the sample period considered. Also, column (1) indicates that the

CPI core delivers a higher goodness of fit than that of column (2); R2 is 0.54 with the CPI core and 0.18 with

the inflation factor.

Column (3) shows the result of regressing the one-quarter nominal yield y$,(1)
t onto x. As expected,

based on the correlation structure reported in Table 6, the coefficient is negative and significant. The R2 is

almost the same as the regression including inflation and the real activity factor (0.17 versus 0.18, respec-

tively). Indeed, as shown in column (5), when x is included in the regression of y$,(1)
t against the inflation

and real activity factors, the goodness of fit is more than twice (0.40 versus 0.18, respectively). Impor-

tantly, x remains negative and statistically significant. Also, notice that in column (5), the coefficients for

inflation and real activity are 1.50 and 0.55, very close to those typically used in calibrations of the Taylor

rule since Taylor (1993).16 Column (4) shows similar results but with unemployment gap and CPI core: x
remains negative and statistically significant and improves the goodness of fit (although not as much as

column (4) against (2)).

In column (6) I evaluate the effect of x, x2 and x3. The result indicates that x and x2 are significant,

although the goodness of fit of does not increase much (it increases only 0.01). Then, in columns (7) and

(8), I report the same specification as (4) and (5), but include the higher-order terms x2 and x3. In both (7)

and (8), the introduction of x, x2, and x3 increasea the goodness of fit vis-à-vis (1) and (2). Importantly, x
remains negative and statistically significant.

These results are in line with the theory predicted above: They imply that when short-term nominal

interest rate is high in the data, the market value of leveraged risk-tolerant investors is low in the model.

Even more, these results indicates that x contains information that is beyond the standard macroeco-

nomic factors commonly studied in the literature.

Puzzle I: Sudden spike in real rates in the Great Recession. Early in Fall 2008, real rates (measured by

TIPS) showed a sudden spike, and the real term structure was reversed (i.e., the short-term rate was above

the long-term rates). As noted by Campbell et al. (2009), there were several institutional and liquidity

influences on TIPS yields during this episode. These may have distorted, at least partially, their prices.

However, from a macroeconomic perspective, using the standard Fisher equation logic, it was evident

that real rates, on impact, increased. More precisely, on December 15, 2008, the Federal Reserve set the

short-term interest rate at 0%-0.25%. Also, according to the Survey of Professional Forecasters (SPF), dur-

ing the first and second quarters of 2009 the one-quarter-ahead median inflation expectation was -9.5%

and -2.4%, respectively (in annual terms). Through the lens of the Fisher equation, this implies a very

large spot real rate. For example, in 2009:Q1,

rt = it︸︷︷︸
=0

− EP

[
dp
p

]
︸ ︷︷ ︸
−9.5%

(38)

16This does not indicate the coefficients are identified (Backus, Chernov and Zin, 2016).
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Thus, even though certain distortions may have contributed to the sudden spike in TIPS, the Fisher equa-

tion’s logic also indicates that real rates actually increased.

In Figure 14, I show the model’s time series predictions using the real macro shocks reported in Figure

11. The left-hand side shows the business cycle fluctuations of the 10-year real rate and the 1-year real

rate. As it is evident from the plot, on average the real term structure is upward sloping (black line is above

red line). The model predicts that during the Great Recession, the level of real rates increased pari passu

with the drastic decrease in credit—a reduction in x which implies the aggregate willingness to substitute

consumption intertemporally. Even more, it predicts an inversion of the real yield curve (red line crosses

the black line). Qualitatively, this is consistent with the evidence.

During 2009, the monetary authority started to intervene in a variety of markets, and its balance sheet

was multiplied by five. These interventions are not captured in the model, but several studies have ar-

gued they have affected the behavior of yields (e.g., Krishnamurthy and Vissing-Jorgensen (2011)). In the

right-hand panel, I show the result of subtracting the one-year real rate produced by the model from the

nominal real rate in the data. This is a proxy of inflation expectations. As shown in the figure, during the

crisis the model predicts an expected deflation in line with the SPF. However, the model predict a more

persistent dynamics: it takes longer for the credit market to be rebuilt.

An intuitive interpretation of the Fed’s interventions during the Great Recession is that they introduced

willingness to substitute consumption intertemporally into the markets. At the height of the financial

crash (2008:Q4-2009:Q2), the marginal investor required a large compensation to postpone his current

consumption into the future. Thus, the market would have to compensate him by providing a higher

incentive (i.e., a high real rate) to perform such delay in his consumption. Since the nominal rate was set

to zero, the adjusting economic force was deflation expectation (as shown in the SPF and predicted by

the model). Thus, when the Fed started to intervene, those policies prevented the scenario predicted by

the model, by “introducing” willingness to smooth consumption, thus reducing real interest rates—even

though the credit market remained impaired.

Puzzle II: Secular decline in real and nominal long-term rates. Several papers have documented the fact

that long-term nominal and real rates have been declining in the last 30 years (Caballero, Farhi and Gour-

inchas (2008), Bernanke, Bertaut, Demarco and Kamin (2011), Hall (2017), among others). This period

also witnessed a significant increase in the size of the credit market. For example, Philippon (2015) shows

that the amount of assets intermediated in the financial sector rose from approximately 2.5% of GDP in

1980 to 4% of GDP in 2008.

The theoretical mechanism in the model predicts that an increase in the amount of credit is associated

with a reduction in the price of credit—i.e., the spot real rate. Put differently, a credit expansion produces

an increase in aggregate EIS, and this implies that the market has to compensate the marginal investor

with a lower interest rate to incentivize him to smooth consumption over time. Due to the single-factor

structure of the model and the endogenous persistence in the credit market fluctuations, this reduction

in the level of rates translates into a decrease in long-term real rates.

To capture these dynamics, I study a transitional dynamics exercise (e.g., King and Rebelo (1993)) by

starting the economy 2 standard deviations below the stochastic steady state of the endogenous state

29



variable x. Then, introduce the same macro shocks reported in the previous subsection and shown in

Figure 11 and I compute long-term real rates in the model at each period of time. I pin down nominal

rates with the same Taylor rule reported in the endogenous inflation term structure. That is, I keep the

same calibration already shown above.

Figure 15 reports the results and compares them with the evidence for long-term rates. Panel (a) shows

the model’s prediction for credit/total equity. In particular, notice that the figure shows that the amount of

credit as a fraction of total wealth in the model is approximately multiplied by two. In the same period, the

data on domestic credit to private sector over GDP went from 92.4% to 188.0%17, which indicates that the

increase in credit predicted by the model is on the order of magnitude of that in the data. The red bars in

panels (b) and (c) show the average dynamics of the 10-year real rate in the model and in the data. Nominal

rates display a similar pattern, because they are pinned down by the same Taylor rule (with δπ > 1) as

shown in (30). That is, the monetary authority anchors inflation expectations by moving the nominal

rate in tandem with the real rate. Thus, inflation expectations are also trending downwards—which is

consistent with the evidence reported in Chernov and Mueller (2012).

An Alternative Interpretation for x. Prior studies in the heterogeneous-agents literature that interpret

risk-tolerant investors as financiers (see Silva (2016), Drechsler et al. (2017), Longstaff and Wang (2012),

Santos and Veronesi (2016), among others). According to this interpretation, the equity of financial firms

should be important to capture credit conditions in the economy; in theory, therefore, it should be useful

to understand the behavior of yields. In this line, I compute the market value of the financial sector equity
18 over the total market value of equity in CRSP, and I define this as c f (credit factor):

c ft =
market value of financial sector equity

market value of total equity
.

Under this alternative interpretation, a higher c ft implies that a larger quantity of credit is being supplied,

which translates to lower real and nominal rates. In Figure 16, I compare c f against other related measures.

Panels (a) and (b) compare against the proposed measure by He, Kelly and Manela (2016), in levels and in

shocks. Panel (c) constructs c ft using the market value of equity in financial firms over the total market

value of equity reported by the Flow of Funds. Panel (d) compares, at an annual frequency, with the flow

of intermediated assets in the financial sector in Philippon (2015).

To understand how sensible this proposed factor is, I compare c f with the endogenous state variable

in the model. For this, I proceed as before and feed the model with the macro shocks reported in Figure

11. Figure 17 compares the fluctuations in c f with the implied series for the endogenous state variable in

the model, x. As shown in the figure, x and c f exhibit a high correlation (0.8). Put differently, c f in the

data is high in periods in which risk-tolerant investors’ balance sheets are relatively well capitalized in the

model.

Thus, in this interpretation, c f could be used in term-structure empirical analysis to further under-

stand yields’ properties (with some guidance from the theory elaborated on this paper).

17Source: World Development Indicators http://databank.worldbank.org/wdi
18I consider SIC codes 60-64, which include a broad range of financial institutions.
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8 Conclusion

In this paper, I propose a model where the credit market is a key macroeconomic fundamental for un-

derstanding the salient properties of the U.S. real and nominal term structure. In this, I depart from the

representative agent framework and propose a general equilibrium term structure model with heteroge-

neous investors in which the amount of credit in the economy is key in characterizing the equilibrium.

I find that differences in investors’ willingness to substitute consumption across time is critical to

match the salient properties of both the nominal and real term structure. Endogenous contractions in the

amount of credit lead to increases in the real interest rate and the aggregate price of risk, to incentivize in-

vestors with high risk aversion and low willingness to substitute consumption to clear the markets. Thus,

real bonds are risky and they are negatively exposed to the endogenous risk created by the credit market.

This implies that the marginal investor must be compensated with a premium to hold real bonds. At an

aggregate level, this mechanism generates dynamics for the real rate and aggregate price of risk that can

be interpreted as a representative agent with time-varying, and negatively correlated, risk aversion and

elasticity of intertemporal substitution.

I provide a decomposition of the nominal term premium, between the endogenous source of risk cre-

ated by the credit market and exogenous inflation shocks. I find that, consistent with recent studies, the

model’s real term premium explains a significant portion of the nominal term premium. Motivated by

this, I derive a nominal term structure by introducing a Taylor rule. I show that when the monetary au-

thority adjusts the nominal rate more than one-to-one to deviations of inflation from its target, this makes

nominal bonds more sensitive to real risks. Thus, the nominal term structure is steeper than the real term

structure for any correlation between inflation and real shocks. Put differently, the economy exhibits a

significant nominal term premium, even when inflation shocks play no role.

To validate the model’s key theoretical prediction, I introduce macro shocks to the model and obtain

the series of the endogenous state variable. I find that fluctuations in credit in the model capture well

the fluctuations in credit in the data. I use the implied series for the endogenous state variable and data

for yields to evaluate the model’s main theoretical predictions: the relationship of yields and slope of

the term structure with respect to the endogenous state variable. I find that the data validate the model’s

predictions. In addition, I find that the implied series of the model’s endogenous state variable contain in-

formation to explain short-term nominal interest rate variability that extends beyond well-studied macro

variables (GDP, inflation, and unemployment).

I then use the model to study two interest rate puzzles: the secular decline in long term real and nomi-

nal bonds since the 1980s; and the sudden spike in real rates during the Great Recession. I show that these

puzzles can be rationalized by the connection between the credit market and yields. In particular, the

sudden spike in real rates during the Great Recession can be attributed to an endogenous collapse in the

aggregate of credit (i.e., a drastic reduction in the aggregate elasticity of intertemporal substitution). The

secular decline in real rates can be attributed to the contemporaneous increase in the amount of credit

during since the 1980s. Using the Taylor rule, nominal yields inherit the properties of real yields, as dis-

cussed in Section 5. Thus, the model implies—also consistent with the evidence—a decline in inflation
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expectations.

This work provides several avenues for future research. For example, it provides a framework to study

how unconventional monetary policies generated a reduction in real rates together with an increase in

inflation expectations after Spring 2009. In the model’s prediction, in which policy interventions are not

incorporated, the spike in real yields would have been more persistent (the credit market takes time to

rebuild). Also, incorporating the credit factor into the empirical macro-finance term structure model can

improve our understanding of how monetary policy affect long-term rates through the credit channel.

Lastly, the mechanism that generates time variation in the aggregate risk aversion and elasticity of in-

tertemporal substitution can be introduced, in a reduced form, into larger scale models.
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TABLE 1. Evidence

Maturity (quarters)

Panel A. Full Sample 4 8 12 20 28 40 80 diff(40-4)

Mean Nominal 0.0133 0.0139 0.0144 0.0152 0.0158 0.0165 0.0174 0.0033

TIPS 0.0043 0.0044 0.0046 0.0051 0.0055 0.0058 0.0015

St. Dev Nominal 0.0090 0.0088 0.0085 0.0080 0.0076 0.0072 0.0068 -0.0018

TIPS 0.0050 0.0046 0.0043 0.0038 0.0034 0.0030 -0.0020

Panel B. Short Sample I

Mean Nominal 0.0037 0.0042 0.0048 0.0061 0.0072 0.0083 0.0099 0.0047

TIPS 0.0002 0.0003 0.0005 0.0013 0.0021 0.0029 0.0027

St. Dev Nominal 0.0043 0.0040 0.0037 0.0032 0.0030 0.0028 0.0025 -0.0018

TIPS 0.0041 0.0036 0.0033 0.0029 0.0027 0.0024 -0.0017

Panel C. Short Sample II

Mean Nominal 0.0161 0.0167 0.0171 0.0177 0.0182 0.0187 0.0194 0.0026

TIPS 0.0053 0.0055 0.0057 0.0062 0.0065 0.0068 0.0015

St. Dev Nominal 0.0075 0.0072 0.0069 0.0066 0.0064 0.0061 0.0058 -0.0013

TIPS 0.0045 0.0039 0.0035 0.0030 0.0027 0.0024 -0.0021

NOTES: Full sample is 1971:Q3-2016:Q4. Short sample I is 2003:Q1-2016:Q4. Short sample II is 1971:Q3-2008:Q2. Numbers are in

decimals, at quarterly frequency. Source: Chernov and Mueller (2012), Gürkaynak et al. (2007), and Gürkaynak et al. (2010).
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TABLE 2. Baseline Calibration

PARAMETERS (QUARTERLY )

1. Preferences Value Description

γA 1.5 risk aversion investor A

γB 10 risk aversion investor B

ψA 0.7 EIS investor A

ψB 0.02 EIS investor B

ρ 0.001/4 time preference

2. Endowment and demography

µ 0.0055 drift growth

σ 0.019 diffusion growth

ϕ 0.008 birth/death rate

x 0.11 fraction of new investors A

3. Inflation

δπ 1.5 Taylor coefficient

λπ 0.08 persistence inflation expec.

σπ 0.012 diffusion inflation expec.

πL -0.01 inflation expec. lower bound

π 0.009 mean inflation expec.

φ12 0 cov(dW1, dW2)

φ13 -0.5 cov(dW1, dW3)

φ23 0 cov(dW2, dW3)

NOTES: I describe the calibration in the main text.
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TABLE 3. Theoretical Moments in the Model

ψB = baseline ψB = 1/γB ψB = ψA

Variable Description Mean St.dev Mean St.dev Mean St.dev

Model

ξA consumption/wealth investor A 0.0108 0.0006 0.0103 0.0002 0.0101 0.0001

ξB consumption/wealth investor B 0.0156 0.0022 0.0131 0.0005 0.0091 0.0001

R risk sharing -2.4514 1.2677 -0.0932 0.0277 -1.6006 0.1924

µq − r expected excess return 0.0146 0.009 0.0058 0.0019 0.001 0.002

σq vol. returns 0.1311 0.0503 0.0572 0.0101 0.007 0.002

r real risk free rate 0.0043 0.0046 0.0047 0.0016 0.0044 0.0004

y(4) real yield 4 quarter 0.0044 0.0046 0.0047 0.0016 0.0044 0.0004

y(40) real yield 40 quarter 0.0058 0.0042 0.0050 0.0015 0.0043 0.0004

y(80)
t real yield 80 quarter 0.0066 0.0037 0.0052 0.0014 0.0042 0.0003

Data

y(4) 0.0043 0.0050

y(40) 0.0058 0.0030

NOTES: This table reports theoretical moments from the model and in yield’s data. Numbers are in decimal, at a

quarterly frequency. The first column, ψB = baseline, corresponds to the parametrization in Table 2. The second

column, ψB = 1/γB, corresponds to the case in which B-type investors have CRRA preferences (i.e., ψB = 1/γB = 0.1).

The third column, ψB = ψA, corresponds to the case in which both types of investors have the same EIS. Data for real

yields are as in Table 1. Risk sharing R is as in equation (17), R (x) =
(

1−γA
1−ψA

)
ξx,A
ξA
−
(

1−γB
1−ψB

)
ξx,B
ξB

.
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TABLE 4. Regression: Elasticities

A. Estimates of the price elasticity,real : y(N)
t = α

(N)
1 + β

(N)
1 xt + ε

(N)
1,t

β
(4)
1 β

(8)
1 β

(12)
1 β

(20)
1 β

(28)
1 β

(40)
1

OLS estimates -0.042*** -0.041*** -0.039*** -0.037*** -0.035*** -0.033***

Conf. Int. [-0.076;-0.007] [-0.070;-0.011] [-0.066;-0.014] [-0.059; -0.015] [-0.054; -0.016] [-0.049; -0.016]

R2 0.054 0.068 0.079 0.096 0.107 0.119

B. Estimates of the price elasticity, nominal: y$,(N)
t = α

(N)
2 + β

(N)
2 xt + ε

(N)
2,t

β
(4)
2 β

(8)
2 β

(12)
2 β

(20)
2 β

(28)
2 β

(40)
2

OLS estimates -0.125** -0133*** -0.136*** -0.138*** -0.136*** -0.134***

Conf. Int. [-0.174;-0.075] [-0.177;-0.086] [-0.178;-0.093] [-0.176;-0.099] [-0.172;-0.101] [-0.166;-0.101]

R2 0.174 0.212 0.239 0.272 0.292 0.310

NOTES: Significance at 1%, 5%, and 10% is indicated with ***, ** and *. Hubert-White standard errors. Sample period is

1971:Q3-2008:Q2 (i.e., Short sample II in Table 1), and the source of the data for yields is Chernov and Mueller (2012),

Gürkaynak et al. (2007), and Gürkaynak et al. (2010). x is the implied endogenous state variable after feeding the

model with the shocks described in Section 7.

TABLE 5. Regression: Term Structure Slope

y(N)
t − y(4)t = α

(N)
3 + β

(N)
3 xt + β

(N)
4 x2

t + ε
(N)
t

y(8) − y(4) y(12) − y(4) y(20) − y(4) y(28) − y(4) y(40) − y(4)

Constant -0.001*** -0.010*** -0.016*** -0.020*** -0.024***

β
(N)
3 0.071*** 0.123*** 0.19*** 0.239*** 0.290***

β
(N)
4 -0.197*** -0.336*** -0.52*** -0.654*** -0.788***

Net effect [-0.005, 0.003] [ -0.009; .0.006] [-0.013;0.01] [-0.016;0.014] [-0.016;0.017]

R2 0.050 0.051 0.054 0.059 0.066

NOTES: Significance at 1%, 5%, and 10% is indicated by ***, ** and *. Hubert-White robust standard errors. Net effect is

the confidence interval for the marginal effect
d
(

y(N)
t −y(4)t

)
dx = β

(N)
3 + 2β

(N)
4 xt. Sample period is 1971:Q3-2008:Q2 (i.e.,

Short sample II in Table 1). Source of data is Chernov and Mueller (2012), Gürkaynak et al. (2007), and Gürkaynak et

al. (2010). x is the implied endogenous state variable after feeding the model with the shocks described in Section 7.
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TABLE 6. Correlation x and Nominal Yields

y$,(1) y$,(4) y$,(20) x x2

y$,(4) 0.985***

y$,(20) 0.925*** 0.954***

x -0.413*** -0.441*** -0.564***

x2 -0.105*** -0.116 -0.199** 0.571***

x3 -0.333*** -0.369*** -0.474*** 0.842*** 0.721***

NOTES: Significance at 1%, 5%, and 10% is indicated by ***, ** and *. Sample period is 1971:Q3-2008:Q2 (i.e., Short

sample II in Table 1). One quarter (3 months) nominal yield y$,(1)
t is from Fama CRSP Treasury Bill files. Four-quarter

and (y$,(4)
t ) and 20-quarter (y$,(20)

t ) Fama CRSP zero-coupon files . x is the endogenous state variable in the model,

after feeding the shocks reported in Figure 11. .

TABLE 7. Short-Term Nominal Rate Regressions, y$,(1)
t = α0 + α′1 ft + vt

(1) (2) (3) (4) (5) (6) (7) (8)
Constant 5.58*** 5.55*** 6.81*** 5.52*** 6.71*** 5.78** 5.45*** 5.94***

CPI core 2.22*** 1.98*** 1.94***

Unemp.gap -0.18 -1.02*** -1.42***

Inflation 1.43*** 1.50*** 1.49***

Real activity 0.02 0.55*** 0.86***

x –2.04*** -1.67*** -2.50*** -2.11*** -2.31*** -2.53***

x2 1.49** 1.90*** 2.31***

x3 -0.65 -0.62 -1.23***

adj-R2 0.54 0.18 0.17 0.60 0.40 0.18 0.63 0.46

NOTES: Sample period is 1971:Q3-2008:Q2 (i.e., Short Sample II in table 1). Significance at 1%, 5%, and 10% is indi-

cated by ***, ** and *. y$,(1)
t is the 1-quarter nominal interest rate from Fama CRSP Treasury Bill files. ft is a vector

of different macroeconomic variables considered in each of the table’s columns. Inflation and real activity are con-

structed as in Ang and Piazzesi (2003). Inflation is the first principal component of the CPI, PPI, and spot commodity

prices. Real activity is the first principal component of the growth rate of employment and growth rate of industrial

production. The unemployment gap is the difference between actual unemployment and the natural rate of unem-

ployment from the Congressional Budget Office, as considered by Bauer and Rudebusch (2017). c f is described at the

end of Section 7.
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FIGURE 1. Model Solution
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NOTES: This figure shows the model solution, with the calibrated parameters from Table 2 (quarterly frequency).
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FIGURE 2. Real Yield Curve
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NOTES: Panel (a) displays the real yield curve in the model for three different levels of x. The blue (gray) line represents

the real yield curve when x is 2 standard deviations below (above) its mean. The red line represents the real yield

curve when x is at its unconditional mean. Panel (b) displays the expected change in the short-term rate, µr, and the

diffusion for the short-term rate, σr, reported in (32). Data is from Table 1, full sample.
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FIGURE 3. Term Premia in the Model: covP
t

(
dmt
mt

, dP(T)
t

P(T)
t

)

0 0.1 0.2 0.3 0.4 0.5

x

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

co
v(

SD
F,

 b
on

d 
re

tu
rn

s)

4 quarters
20 quarters
80 quarters

0 20 40 60 80

maturity (quarters)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

in
 a

nn
ua

l %

Mean premium

NOTES: The left-hand panel shows the conditional covariance between the stochastic discount factor and real bond

returns, across the state space (red, blue, and gray lines correspond to 80, 20, and 4 quarters, respectively). The right-

hand panel shows the unconditional covariance across maturities.
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FIGURE 4. The Long-Term Real Yield Curve and Volatility of Forward Contracts
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NOTES: The left panel shows the real yield curve conditional on different values of the endogenous state variable x.

The blue (gray) line represents the real yield curve when x is 2 standard deviations below (above) its mean. The red

line represents the real yield curve when x is at its stochastic steady state. The right panel is the standard deviation of

10 forward contracts, starting with the contract for 1q → 40q, continuing with 40q → 80q, 80 → 120, 120 → 160, and

so on, until 280→ 320 in the last bar.
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FIGURE 5. The Nominal Term Structure: Exogenous Inflation Case

0 20 40 60 80
0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

maturity (quarters)

yi
el

d 
(q

ua
rt

er
ly

)

 

 

π=−2sd

π=ss

π=+2sd

Data

0 20 40 60 80
0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

maturity (quarters)

yi
el

d 
(q

ua
rt

er
ly

)

 

 

x=−2sd

x=ss

x=+2sd

Data

NOTES: This figure shows the nominal term structure of interest rates in the exogenous inflation case. In the left-hand

panel, I set x to its unconditional mean, and I show the yield curve for three different values of π . The red line is

the nominal term structure when π is at its unconditional mean level; the gray (blue) line is when π is two standard

deviations above (below) its unconditional mean level. In the right-hand panel, I set π to its unconditional mean,

and I show the yield curve for three different values of x . The red line is the mean x; the gray (blue) line is for x two

standard deviations above (below) x′s mean. By definition, the red line is the same in both panels. Data from nominal

yields are from Table 1, full sample.
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FIGURE 6. Decomposition of 80-Quarters’ Nominal Yield
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NOTES: This figure shows a decomposition of a 20-year nominal bond term premia. Details of the term premia are

in equation (27). The left-hand panel (both upper and lower) display the real and nominal components over the x
state space. The three lines represent difference levels for the other state variable, π. The red line is when π is at its

unconditional mean; the blue (gray) line is when π is two standard deviations below (above) the steady state. The

right-hand panel (both upper and lower) display the real and nominal components over the π state pace. The three

lines represent difference levels for the other state variable, x. The red line is when x is at its unconditional mean; the

blue (gray) line is when x is two standard deviations below (above) the steady-state level.
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FIGURE 7. Invariant Distribution (x, π): Exogenous Inflation
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NOTES: (a) shows the invariant bi-distribution in (x, π). (b) depicts the marginal distributions. In (b), the left-hand

panel shows the marginal invariant distribution for π, for different levels of x: when x is 2 standard deviations below

the mean (blue), when it is at its mean (red), and when it is 2 standard deviations above the mean (gray). Similarly,

the right-hand panel in (b) illustrates the marginal invariant distributions for x, for different values of π. Marginal

distributions are computed by integrating the bivariate mass accordingly.
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FIGURE 8. The Nominal Term Structure: Endogenous Inflation Case
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FIGURE 9. Average Sensitivity Real Bond Yields in the Model: E
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FIGURE 10. Term Structure Slope
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is the spread of an 8-quarter yield minus a 4-quarter yield. The gray line is the invariant distribution. (b) and (c)
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FIGURE 11. Personal Consumption Expenditure Shocks and Series
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∆ = σ [W1,t+∆ −W1,t].
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FIGURE 12. Business Cycle Analysis: Credit/GDP Data vs Credit/Y model
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NOTES: The red line shows the implications for credit over total equity in the model after introducing the macro shocks

in Figure 11. I start the economy from the stochastic steady state in 1971:Q3 . The black line is the fluctuations in total

credit to the private sector over GDP in the U.S. (source: The World Bank).
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FIGURE 13. Model Implied x and Yield Curve Data
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NOTES: Variable x is the endogenous state variable in the model, after feeding the sequence of macro shocks reported

in Figure 11, and explained in Section 7. The first principal component of nominal and real yields is computed over

the yields considered in Table 1. The slope is the 10-year minus 1-year yield (i.e. ,40 quarters minus 4 quarters), and I

compute the annual average of this spread each quarter.
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FIGURE 14. Puzzle I: Spike in Real Rates in the Great Recession
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NOTES: The left panel shows the 40-quarter (10-year) yield in black, and the 4-quarter (1-year) in red, predicted by

the model when I feed the series of macroeconomic shocks reported in Figure 11. The right panel shows the result of

subtracting the model-implied 4-quarter real rate from the - quarter nominal rate in the data. That is, this implies a

proxy for implied inflation expectations.
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FIGURE 15. Puzzle II: Secular Decline in Long-Term Rates
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NOTES: Panels (a) and (b) show the model’s predictions after feeding the macro shocks reported in Figure 11, when

analyzing the transitional dynamics from 2 standard deviations below the mean of x. Panel (a) shows total credit/total

equity in the model. Panel (b) shows the implications for 10-year nominal and real rate in the model. Panel (c) shows

10-year nominal and real rates in the data.
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FIGURE 16. Comparing the Credit Factor
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NOTES: Variable Credit Factor (c f ), displayed in all panels, is the market value of net worth of SIC codes 60-64 over

total net worth (source: CRSP). I do a rolling linear detrending each quarter to remove the persistent component. The

availability of c f in CRSP is from 1926, although the figure shows since 1971:Q3 to be consistent with the yields. Panels

(a) and (b) compare with the factor used in He et al. (2016). Panel (c) compares with the data in the Flow of Funds,

Table L.223. Panel (d) compares, at annual frequency, with the flow of intermediated assets in the financial sector

(source: Philippon (2015)).
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FIGURE 17. Credit Factor vs x in Model
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NOTES: This figure shows the implications for x in the model, after introducing the macro shocks in Figure 11 . The

black line is c f defined in Section 7, and displayed in Figure 16.
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10 Appendix

Proof proposition (law of motion for x). The law of motion follows by applying Ito’s lemma in (9).

dxt
xt

=
dnA,t
nA,t

− dqt
qt

+

(
dqt
qt

)2
−
(

dqt
qt

)(
dnA,t
nA,t

)
, (39)

where the aggregate wealth for A-type investors can be computed as nA,t = x
∫ t
−∞ ϕe−ϕ(t−ũ)nA,ũdũ, and qt = nA,t +

nB,t. Then
dqt
qt

= xt
dnA,t
nA,t

+ (1− xt)
dnB,t
nB,t

,

so, the terms in (39) are

dnA,t
nA,t

− dqt
qt

= (1− xt)

(
dnA,t
nA,t

− dnB,t
nB,t

)
,(

dqt
qt

)(
dqt
qt
−
(

dnA,t
nA,t

))
=

(
dqt
qt

)(
(1− x)

(
dnB,t
nB,t

−
dnA,t
nA,t

))
,

= σ2
q1 (xtαA,t + (1− xt) αB,t) (1− x) (αB,t − αA,t)

= σ2
q1 (1− x) (αB,t − αA,t)

where the last step follows for market clearing for shares. Using Itô’s lemma in nA,t and nB,t

dnA,t
nA,t

=

[
rt + ϕ−

cA,t
nA,t

+ αA,t
(
µq,t − rt

)]
dt + αA,tσq,tdW1,t + ϕ

(
x
xt

êt
pdt
− 1
)

dt ,

dnB,t
nB,t

=

[
rt + ϕ− cB,t

nB,t
+ αB,t

(
µq,t − rt

)]
dt + αB,tσq,tdW1,t + ϕ

((
1− x
1− xt

)
êt

pdt
− 1
)

dt,

Then

σx = x (1− xt)

(
dnA,t
nA,t

− dnB,t
nB,t

)
= x (1− xt) (αA,t − αB,t) ,

µx,t = xt (1− xt)

(
cB,t
nB,t
−

cA,t
nA,t

+ (αA,t − αB,t)
(

µq,t − rt − σ2
q1,t

))
+ xt (1− xt)

ϕêt
pdt

(
x
xt
− 1− x

1− xt

)
,

and then xt (1− xt)
(

x
xt
− 1−x

1−xt

)
= (x (1− xt)− (1− x) xt) = (x− xxt − xt + xxt) = (x− xt).

�

Proof proposition (leverage and risk sharing). As stated in FOC, the portfolio share of A-type agents is

αA =
µq − r
γAσ2

q
+

(
1− γA
1− ψi

)
σξA

γAσq
,

where, notice,

σξA =
ξx,A
ξA

x (1− x) (αB − αA) σq
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which means

µq,t − rt

σ2
q

= γAαA −
(

1− γA
1− ψA

)
σξA

σq

= γAαA −
(

1− γA
1− ψA

)
ξx,A
ξA

x (1− x) (αA − αB) .

Use market clearing for shares

xαA + (1− x) αB = 1

(1− x) (αA − αB) = (αA − 1)

means

µq,t − rt

σ2
q

= γAαA −
(

1− γA
1− ψA

)
ξx,A
ξA

x (αA − 1)

= αA

[
γA −

(
1− γA
1− ψA

)
ξx,A
ξA

x
]
+

(
1− γA
1− ψA

)
ξx,A
ξA

x.

So, we can use this in the conditions for B

αA

[
γA −

(
1− γA
1− ψA

)
ξx,A
ξA

x
]
+

(
1− γA
1− ψA

)
ξx,A
ξA

x +

(
1− γB
1− ψB

)
ξx,B
ξB

x (αA − 1) = γBαB

αA

[
γA −

(
1− γA
1− ψA

)
ξx,A
ξA

x +

(
1− γB
1− ψB

)
ξx,B
ξB

x
]
+

(
1− γA
1− ψA

)
ξx,A
ξA

x−
(

1− γB
1− ψB

)
ξx,B
ξB

x = γBαB.

Define

Rx
t =

[(
1− γA
1− ψA

)
ξx,A
ξA
−
(

1− γB
1− ψB

)
ξx,B
ξB

]
x

then

αA

[
γA
γB
− Rx

t
γB

]
+

Rx
t

γB
= αB,

so

xαA + (1− x) αB = 1

xαA + (1− x)
[

αA

[
γA
γB
− Rx

t
γB

]
+

Rx
t

γB

]
= 1

xαA + (1− x) αA

[
γA
γB
− Rx

t
γB

]
+ (1− x)

Rx
t

γB
= 1

αA =
1− (1− x) Rx

t
γB

x + (1− x)
[

γA
γB
− Rx

t
γB

] ,

so

αA − 1 =
1− (1− x) Rx

t
γB

x + (1− x)
[

γA
γB
− Rx

t
γB

] − 1

=
(1− x) (γB − γA)

γBx + (1− x) [γA − Rx
t ]

.
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Notice αA > 1⇔

1− (1− x)
Rx

t
γB

> x + (1− x)
γA
γB
− (1− x)

Rx
t

γB

1− x > (1− x)
γA
γB

γB > γA

�

Proof proposition (stochastic discount factor). Suppose there is a unique stochastic discount factor m, with a drift

given by a process r and diffusion (price of risk) given by κ. Then, the absence of arbitrage implies that

µq − rt = EP
t

[
dmt
mt

dqt
qt

]
(40)

= σq1,tκt.

We can solve for κt using the agent’s FOCs and market clearing-conditions. In particular, I define εi,t = αi,tσq1,t as the

exposure chosen by agent i to W1 shocks. The price of this exposure is κt. Then,

αi,t
(
µq − rt

)
= εi,tκt.

Then the FOC for εi,t are

εi,t =
κt
γi

+

(
1− γi

(1− ψi) γi

)
σξi,

and using market clearing for shares, I get xεA + (1− x) εB = σq1, so

κ (x) =
σq1 − x

(
1−γA

(1−ψA)γA

)
σξA − (1− x)

(
1−γB

(1−ψB)γB

)
σξB

x
γA

+ 1−x
γB

where

σξi =
ξ ′ix
ξi

σx.

Then, the risk free rate follows by the no-arbitrage condition (40). Following expression (10), and incorporating the

laws of motion dnA,t
nA,t

, dnB,t
nB,t

, I obtain

dqt
qt

=

[
rt + δ + (xtαA,t + (1− xt) αB,t)

(
µq,t − rt

)
− x

cA,t
nA,t
− (1− xt)

cB,t
nB,t

]
dt

+ (xtαA,t + (1− xt) αB,t) σq1,tdW1,t

+

[
ϕ

et
qt
− ϕ

]
dt.

Thus, using market clearing for goods and shares, and then canceling out

dqt
qt

=

[
µq,t + ϕ

et
qt
− yt

qt

]
dt + σq1,tdW1,t,

dqt
qt

+
yt − ϕet

qt
dt = µq,tdt + σq1,tdW1,t.
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By no-arbitrage, I obtain the expression in equation (19)

EP

[
dqt
qt

]
+

yt − ϕet
qt

dt− rt − σq1,tκt = 0.

Using pdt = qt/yt, this can be written as an ordinary differential equation in pd (xt). That is, using Itô’s lemma in

the function pdtyt = qt, I have µq = µpd (x) + µ + σpd (x) σ and σq1 (x) = σpd (x) + σ. The functions are simply

µpd (x) = pd′x
pd E [dx] + 1

2
pd′′xx
pd E

[
dx2] and σpd =

pd′x
pd σx. �

Proof proposition (infinitely lived investor). I first solve for the value function of the representative investment in-

vestor in the economy with aggregate endowment (1). To that end, I use the same power form as in (12), together with

the first-order condition for consumption. Then, I can substitute to get

U =
c1−γ

1− γ
ξ

(1−γ)ψ
1−ψ , (41)

with ξ being a constant (i.e., there are no endogenous fluctuations in the investment opportunity set). I can then use

(41) in 0 = f (U ,c) + EP [dU ] to solve for ξ

0 =
ρ

1− 1
ψ

(ξ − 1) + µ− γ

2
σ2

ξ =
[γ

2
σ2 − µ

] (1− 1
ψ

ρ

)
+ 1

The stochastic discount factor, following the martingale approach developed in Schroder and Skiadas (1999), is given

by

mt = exp
(∫ t

0
f ′U ,udu

)
f ′c,t , (42)

where the derivatives with respect to the value function U and c are given by

f ′c = ρc−
1
ψ ((1− γ)U )

( 1
ψ −γ)
1−γ ,

f ′U =
ρ

1− 1
ψ

( 1
ψ − γ

1− γ

)
c1− 1

ψ (1− γ)

1
ψ −γ

1−γ U
1
ψ −γ

1−γ − ρ (1− γ)

1− 1
ψ

,

so the risk-free rate is

rt = −EP

[
dmt
mt

]
Using Itô’s lemma in (42) and computing the expectation yields

rt = r ≡ ρ (1− γ)ψ

1− ψ
[ξ − 1] +

1
ψ

µ− 1
ψ

(
1
ψ
+ 1
)

σ2.

To compute real bond prices, I use a guess-and-verify procedure. That is, I guess that real bond prices are exponen-

tially affine in the time dimension

P(T) (t) = exp (A (t)) ,

with

P(0) (t) = 1, ∀t
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where At is an unknown function of time. Real bond prices are characterized by the same Cauchy problem as in the

main text,

P′(T)t = rP

A′t = r (43)

with

A (0) = 0

so the ODE (43) is very simple: A (t) = rt. Then yields y(T)t = − 1
T log P(T)

t = r ∀ (t, T) .

Then the price-dividend ratio is characterized by

pdt =
qt
yt

= EP
t

[∫ ∞

t

mt+u
mt

yu

yt
du
]

.

The pdt = pd is constant, and it has the standard Gordon growth expression. The partial differential equation charac-

terizing the nominal bond is

P′t (π, t)
P (π, t)

= −r− π +
P′π (π, t)
P (π, t)

λπ (π − πt) +
1
2

P′′ππ (π, t)
P (π, t)

σ2
π (π − πL)−

P′π (π, t)
P (π, t)

γϕ13σσπ
√

π − πL, (44)

P (π, 0) = 1 ∀π.

I next change variables and assume that 4 (π + πL) λπ = σ2
π to ease calculations19

z = π − πL ,

and notice

P (π) = P (z + πL) ,
P′π
P

=
P′z
P

.

Use the solution

P = Ã (t) exp
(

B (t) z + C (t)
√

z
)

, (45)

where Ã (t) is adjusted for the change in variables. Substituting (45) in (44), functions Ã, B, and C solve a system of

ordinary differential equations. In particular, the solution for B follows a particular case of the Riccati equation:

B′t =
σ2

π

2
B (t)2 − λπ B (t)− 1 ,

B (0) = 0 ,

the function C(t), associated with the
√

x term solves

0 = −C′t − λπC (t)− B (t) γϕ13σσπ +
σ2

π

2
B (t)C (t) ,

C (0) = 0 ,

19Notice that when πL = 0, this assumption would led to a violation of the so-called Feller condition. Because πL < 0, the process
is reflected at a point that is below 0.
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and the constant

0 = − Ã′t
Ã
− r + πL + λπ (π + πL) B (t)− 1

2
C (t) γϕ13σσπ +

σ2
π

2
C (t)2

Ã (0) = 1.

Although the solution for A(t), B(t), and C(t) can be solved in closed form, I omit it in the interest of space(see

Longstaff (1989)). However, this system of ODEs can be solved numerically with any standard routine.

�
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Evidence for the U.K. In the table below, I report evidence for real and nominal yields in the U.K.. The source of the

data is the Bank of England.20 I use the same criteria adopted for U.S. data and consider the Full Sample the largest

available sample for real yields. This includes 1985:Q1-2016:Q4 for the U.K. Short sample I and Short sample II are as

in the U.S. data, 2003:Q1-2016:Q4 and 1985:Q1-2008:Q2. I report real rates starting from 3 years, because the shorter

maturity available is 2.5 years.

Maturity (quarters)

Panel A. Full Sample 4 8 12 20 28 40 80 diff(40-12)

Mean Nominal 0.0134 0.0136 0.0138 0.0143 0.0147 0.0150 0.0139 0.0012

Real 0.0044 0.0048 0.0050 0.0053 0.0046 0.0006

St. dev Nominal 0.0094 0.0089 0.0085 0.0080 0.0077 0.0072 0.0062 -0.0012

Real 0.0051 0.0047 0.0044 0.0043 0.0040 -0.0011

Panel B. Short Sample I

Mean Nominal 0.0053 0.0057 0.0061 0.0071 0.0078 0.0085 0.0096 0.0028

Real 0.0000 0.0001 0.0001 0.0013 0.0015 0.0013

St. Dev Nominal 0.0051 0.0048 0.0045 0.0040 0.0036 0.0031 0.0022 -0.0017

Real 0.0044 0.0038 0.0034 0.0030 0.0024 -0.0014

Panel C. Short Sample II

Mean Nominal 0.0177 0.0177 0.0178 0.0179 0.0180 0.0179 0.0160 0.002

Real 0.0071 0.0072 0.0073 0.0074 0.0067 0.003

St. Dev Nominal 0.0070 0.0065 0.0062 0.0061 0.0060 0.0059 0.0061 -0.006

Real 0.0022 0.0021 0.0022 0.0022 0.0024 0.000

As can be seen in the table, the nominal and real term structures share similar properties: They are upward sloping

on average up to 40 quarters (10 years) but then the average yield of an 80-quarter bond is smaller than the 40-quarter.

Small sample II is the exception, in which on average both real and nominal yield curve are upward sloping. The

volatility of long-term rates is smaller than the volatility of short-term yields. Indeed, the volatility of real and nominal

yields is very similar in Short Sample I (as in the U.S.).

20http://www.bankofengland.co.uk/statistics/pages/yieldcurve/default.aspx

65



Extension: Consol bond. In this extension, I consider the pricing of a perpetual (real) bond with an exponentially

decaying coupon, denoted δ. The purpose is to illustrate the main results in the paper using these alternative financial

instruments. To avoid redundancy with the analysis presented above, I include this subsection in the appendix. The

price of the consol bond, denoted Ct, is

Ct = EQ
t

[∫ ∞

t
e−
∫ s

t (ru+δ)duds
]
≡ C(xt)

Thus, the yield of the bond is yC,t = 1/Ct − δ. The maturity of the bond is determined by 1/δ, and when δ = 0, the

bond is a perpetuity. The consol bond is characterized by the following ordinary differential equation:

− (r (x) + δ) +
1
C
+

C′x
C

µx (x) +
1
2

C′′xx
C

σx (x)2 − C′x
C

σx (x) κ (x) = 0.

In the next figure, I show the yield of Ct for δ = 1/4(= δshort−term), δ = 1/120(= δlong−term), and δ = 0(= δperpetuity).

These are proxies for a 4-quarter, 120-quarter, and perpetual zero-coupon bonds. The left panel shows the yield yC

for different levels of x. The right panel shows the standard deviation of the three yields. As in the main text, the term

structure is upward sloping and the volatility of yields decreases with maturity.
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Lastly, the next figure shows the premium associated with each consol bond (i.e., covP
t

(
dm
m , dC

C

)
= C′x

C σx (x) κ (x)).

The figure shows that long-term bonds pay an average higher compensation for risk.
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Numerical procedure. As mentioned in the text, I use a spectral collocation method based on Chebyshev polyno-

mials of the first kind to solve the problems numerically (model, real yield curve, nominal yield curve, consol bonds,

invariant distribution for x, invariant bivariate distribution for x and π). This technique yields a highly accurate global

solution.

The solution of the model consists of 4 functions that depend on xt: two value functions, ξA, ξB, the valuation

of the aggregate earnings and the valuation of the endowment claim. Equilibrium is characterized by a system of

nonlinear ordinary differential equations with the 2 HJB equations, the no-arbitrage condition for the endowment

claim and the initial earnings, the market clearing conditions for goods (xξA + (1− x)ξB = y/q), the market clearing

condition for shares, and the first order conditions. Real bond prices are characterized by the partial differential

equation in (22), where prices depend on two state variables (x and t). Nominal bond prices with exogenous inflation

are characterized by the partial differential in (26), where prices depend on three state variables (x, π and t).

The procedure is as follows. Consider a generic function h (x) : (0, 1) → R. Then, the function can be written in a

polynomial form as

h (x) =
K

∑
i=0

aiΨi (ωi (x)) + O (K) , (46)

where K is the order of the polynomial, Ψ is the basis function (which in this case is the Chebyshev polynomials),

{ai}K
i=0 are unknown coefficients, ωi are the Chebyshev nodes, and O (K) is an approximation error (which is of order

10−15 in the solutions I provide). The Chebyshev nodes are

ωi = cos
(

2i + 1
2 (K + 1)

π

)
, i = 0, ..., K.

Therefore, ωi ∈ [−1, 1] . Since in the model x ∈ (0, 1), I express the domain as 21 xi =
1
2 (1 + ωi) , and therefore x never

reaches 0 or 1 for finite K. The Chebyshev polynomials of order j > 2 can be represented in the following recursive

form:

Ψ0 = 1 (47)

Ψ1 = ω

Ψj+1 = 2ωΨj −Ψj−1.

Based on (47), it is straightforward to compute the derivatives of h (x)using (46). The rest of the procedure is to

solve for the associated set of unknown coefficients as {ai}K
i=0 in each function, such that equilibrium conditions

are verified. Since the state variable x is strong Markov, based on Duffie and Lions (1992), the founded solution for

the value functions is unique. Solving PDEs for a function h(x, π) is a direct extension of this logic, by extending the

argument to a tensor grid to represent the two-dimensional state space.

21For π, which is between πL and πmax —where I πmax is set to 5 standard deviations above the mean of π —the nodes are πi =

πL +
πmax−πL

2 (1 + ωi).
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Invariant distribution of π. Let g (π, t, ; π0) be the density process associated with (24). Informally, the invariant

distribution is when ∂[g(π,t;π0)]
∂π = 0 (i.e., g does not depend on time). The Kolmogorov Forward Equation for the

process π with initial condition π0 > πL is

0 = − ∂ [g (π) µ (π)]

∂π
+

1
2

∂2
[

g (π) σ (π)2
]

∂π2 ,

where µ (π) = λπ (π − πt) and σ (π) = σπ
√

πt − πL, as in (24). So, 0 = ∂
∂π

{
−g (t, π) µ (π) + 1

2
∂[g(t,π)σ(π)2]

∂π

}
. I can

omit the constant for now, it will be used to integrate the density to one. Changing variables g̃ (π) = g (π) σ (π)2 .
Then,

∂
∂π g̃ (π)

g̃ (π)
= 2

µ (π)

σ (π)2 ,

which means

g (π) =
1

σ (π)2 exp

(
2
∫ u µ (u)

σ (u)2 du

)
.

The integral boils down to ∫ u µ (u)

σ (u)2 du =
λππ

σ2
π

∫ u du
(u− πL)

− λπ

σ2
π

∫ u u
u− πL

du

so

g (π) =
g

σ2
π
(π − πL)

2
(

λπ(π−πL)
σ2

π

)
−1

exp
(
−2λπ

σ2
π

π

)
, π ∈ (πL, ∞] (48)

where g is a constant to integrate to one. The following is a picture of g under the calibration in the main text.
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