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Abstract

We study a security design problem under asymmetric information, in the spirit of

Myers and Majluf (1984). We introduce a new condition on the right tail of the firm-

value distribution that determines the optimality of debt versus equity-like securities.

When asymmetric information has a small impact on the right-tail, risky debt is pre-

ferred for low capital needs, but convertible debt is optimal for larger capital needs. In

addition, we show that warrants are the optimal financing instruments when the firm

has already pre-existing debt in its capital structure. Finally, we provide conditions

that generate reversals of the standard pecking order.
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1 Introduction

The problem of raising capital under asymmetric information is a classic question in cor-

porate finance. Firms’ insiders typically have access to better information than investors

on the value of their firms’ assets — a situation that leads to potential mispricing of the

securities issued by a firm and, thus, to shareholders’ value dilution. In these circumstances,

firms of better-than-average quality may find it desirable to optimally choose the design of

their security offerings in a way to minimize the adverse effect of asymmetric information.

In a classic paper, Myers and Majluf (1984) suggest that firms can reduce dilution (i.e., mis-

pricing) by issuing debt rather than equity, an intuition known as the pecking order theory.

The rationale behind the pecking order, as argued in Myers (1984), is that the value of debt,

by virtue of being a senior security, is less sensitive to private information.

Important deviations from the pecking-order theory, however, have emerged in several

recent empirical studies. For example, Frank and Goyal (2003) and Fama and French (2005)

document that small, high-growth firms, a class of firms which is presumably more exposed

to the effects of asymmetric information, rely heavily on financing through outside equity,

rather than debt. Leary and Roberts (2010) conclude that “the pecking order is never able to

accurately classify more than half of the observed financing decisions.”1 This evidence has led

researchers to conclude that asymmetric information may not be a first-order determinant

of corporate capital structures.2

Failure of the pecking order theory in empirical tests may be due to the fact that asym-

metric information is not a first-order driver of capital structure choices, but it may also be

a sign that the circumstances under which the pecking order preference arises are not met.

In this paper, we study the implications of different distributional properties of asymmetric

information within a general security design model. We then apply these insights to the

1Leary and Roberts (2010) also note that most of the empirical evidence is inconclusive, and write:
“Shyam-Sunder and Myers (1999) conclude that the pecking order is a good descriptor of broad financing
patterns; Frank and Goyal (2003) conclude the opposite. Lemmon and Zender (2010) conclude that a
‘modified’ pecking order—which takes into account financial distress costs—is a good descriptor of financing
behavior; Fama and French (2005) conclude the opposite. Frank and Goyal (2003) conclude that the pecking
order better describes the behavior of large firms, as opposed to small firms; Fama and French (2005)
conclude the opposite. Finally, Bharath, Pasquariello, and Wu (2010) argue that firms facing low information
asymmetry account for the bulk of the pecking order’s failings; Jung, Kim, and Stulz (1996) conclude the
opposite.”

2For example, Fama and French (2005) suggest that violations of the pecking order theory imply that
“asymmetric information problems are not the sole (or perhaps even an important) determinant of capital
structures.” In contrast, Gomes and Phillips (2012) argues that the pecking order reverses in private mar-
kets, where younger, growth firms issue private equity with a probability that increases with measures of
asymmetric information.
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question that is at the very heart of Myers and Majluf (1984): what is the relative dilution

of debt and equity under asymmetric information? In other words, if firms of heterogeneous

quality issue the same security, are firms of “better than average” quality better off by issuing

debt or equity?

We study a general security design problem in the context of a capital raising game. We

argue that the shape of the optimal security crucially hinges on the “location” of asymmetric

information in the firm-value distribution. In particular, we introduce a new measure of the

exposure to information in the right tail of the distribution, which we denote as Informa-

tion Costs in the Right Tail (or ICRT). We show that when asymmetric information has

a sufficiently small impact on the right tail of the value of a firm, relative to the rest of

the distribution, straight (but risky) debt is optimal when the firm needs to raise low levels

of capital, but equity-like securities — such as convertible debt — emerge as the optimal

securities when the firm must raise larger amounts of capital. Furthermore, we find that

warrants can be optimal securities when the firm has already pre-existing debt in its capital

structure.

We then study economic environments that generate violations of the pecking order

theory, and that allow us to obtain testable cross-sectional implications. We view a firm

as a collection of assets, where firm insiders have varying degree of asymmetric information

on each asset.3 In particular, we assume the firm is endowed with both assets in place

and a growth opportunity. The value of both assets in place and the growth opportunity

are characterized by lognormal distributions, where the growth opportunity is riskier than

the assets in place. We model asymmetric information by assuming that the firm insiders

have private information on the means of the distributions, while their second moments are

common knowledge.4

We show that equity financing can dominate debt financing when insiders are relatively

better informed than investors on the firm’s assets in place, rather than on its (riskier)

growth opportunities. In other words, the pecking order can be reversed when a firm’s assets

3The idea of the firm as a collection of assets is a common one in the literature, see Berk, Green, and
Naik (1999) for a recent example.

4Technically, in our paper we consider a lognormal model where private information orders firm-value
distributions by first-order stochastic dominance, but where monotone-likelihood ratio properties and/or
hazard rate orderings may not hold. Since the standard lognormal model implies the monotone likelihood
ratio order, there is no room in a lognormal “single-asset” setting to violate the pecking order theory.
By introducing a second source of uncertainty in a multiple-asset model, we are able to separate first-
order stochastic dominance from monotone likelihood ratio properties of the firm-value distribution, which
generates robust deviations from the pecking order. Our results reflect the rather limited closure properties
of the conditional stochastic dominance order (see section 1.B.3 of Shaked and Shanthikumar (2007)).
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in place are more exposed to asymmetric information relative to its new investments.5 We

show that equity is more likely to dominate debt for young firms that have greater investment

needs, and that have access to riskier and more valuable growth options. Thus, our model

can explain why young firms may initially prefer equity over debt, and then switch to debt

financing as they mature. Intuitively, our results depend on the fact that the properties

of the firm-value distribution for high realizations of firm value (that is, in the right-tail)

are determined by the asset with higher volatility. It means that, contrary to the common

intuition, the preference of debt versus equity financing is not driven by the absolute amount

of asymmetric information, but rather by the composition of a firm’s assets and their relative

exposure to this asymmetric information.

Greater information asymmetry on a firm’s assets in place relative to its growth oppor-

tunities may emerge in cases where a firm is exposed to substantial “learning-by-doing.”6

Consider a firm whose assets in place have been obtained by the exploitation of past invest-

ment opportunities, while the firm still has untapped growth options. In this situation it is

plausible that the firm has accumulated relatively more accurate information on its assets

in place relative to the still undeveloped growth opportunities. This is because more infor-

mation has become privately available over time (for example, as the result of past R&D

activities), rather than on the new potential investments, where critical information still has

yet to be revealed.7 If the new growth opportunities have greater volatility our model shows

that the original Myers and Majluf’s result may not hold.

The paper also studies the financing game that arises when the firm has pre-existing

debt in its capital structure. We show that firms that already have debt outstanding are,

all else equal, relatively more likely to prefer equity over debt financing, for reasons solely

driven by information asymmetry considerations. This feature of our model suggests that

(pre-existing) high leverage may lead to more equity financing, and vice versa. Thus, asym-

metric information may in fact lead to a “mean reversion” in leverage levels, as it is often

documented in the empirical literature on capital structure (see Leary and Roberts, 2005).

5More generally, we show that the pecking order theory can be violated in the case of firms endowed
with multiple asset classes, such as multidivisional firms. If the riskier division is less exposed to asymmetric
information, a reversal of the pecking order arises. Thus, our model generates new predictions on the
cross-sectional variation of firm capital structures of multidivisional firms.

6As in, for example, Berk, Green, and Naik (2004).
7An example of such situation is provided by a pharmaceutical company whose assets in place are formed

by fully developed drugs as well as new drugs where substantial additional R&D is necessary to obtain a
commercially exploitable product. The new R&D will privately reveal to the company valuable information
to assess the true commercial value of the drug, thus increasing the extent of asymmetric information with
outside investors with respect to the initial patent stage.
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These predictions are novel within models based on informational frictions, and invite for

further research.8

Our paper contributes to the ongoing research on the pecking order and, more generally,

the security design literature.9 The problem of the optimal design of securities issued by

firms was originally studied by Diamond (1984) and Gale and Hellwig (1985) in situations

where investors can verify future firm cash-flow only at a cost. In our model, we sidestep

the issue of costly state verification by assuming that future cash flow is fully contractible.

Innes (1990) considers a moral-hazard situation where the entrepreneur can take an action

that affects the distribution of future cash flow. This paper shows that, in this case, the

optimal security is non-monotonic in that it has a “live-or-die” feature, whereby the firm

pays investors a constant share of output, when output is below a certain critical level, and

then retains all the output otherwise. In our model, we sidestep the moral hazard problem

by taking as given the set of distributions of future cash flow, and we restrict ourselves to

monotonic securities.10

A paper closely related to our work is Nachman and Noe (1994). Like ours, they consider

the optimal security design problem faced by an informed insider wishing to raise a fixed

amount of required capital for her firm. The paper shows that standard debt is the solution

to an optimal security design problem for all level of required capital (and, thus, the original

Myers and Majluf’s pecking order obtains) if and only if the private information held by

the insider orders the (future) firm-value distribution by Conditional Stochastic Dominance

(CSD), a condition that is considerably stronger that First Order Stochastic Dominance

(FOSD).11 The critical difference between our paper and theirs is that we maintain FOSD

but we relax the assumption of CSD, and we characterize the optimal security design (and

the debt-to-equity choice) when CSD fails. Interestingly, an important class of distributions

that satisfies CSD is the lognormal distribution where the mean of the distribution is private

information. We emphasize that while a collection of log-normally distributed assets may

8Our model features a static capital structure choice, but it lends itself to a dynamic specification (in
a similar framework, also Leland, 1994, allows for a static financing decision). Further research focusing
on dynamic capital structure choices is suggested by the fact that the existing set of securities in a firm’s
balance sheet affects the optimal financing choice at later dates.

9Recent surveys of this literature can be found in Harris and Raviv (1992), Allen and Winton (1995),
Fulghieri and Goldman (2008).

10The assumption of monotonic securities is common in the security design literature, and it is aimed at
avoiding situations in which firm insiders can lower the payouts to outside investors by opportunistically
contributing, ex-post, funds to the firm.

11Loosely speaking, CSD requires that private information orders the conditional distributions in the right
tails by FOSD, for all possible truncations. The Statistics and Economics literature also often uses the term
Hazard Rate Ordering to refer to CSD, and we shall use both terms interchangeably.
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satisfy CSD when each asset is taken in isolation, it may fail to satisfy CSD when these

assets are taken as a portfolio.

Subsequent research has focused on different aspects of the security design problem.

DeMarzo and Duffie (1999) consider the “ex-ante” security design problem faced by a firm’s

insiders before learning their private information, rather then the interim security design

problem (that is, after becoming informed) studied by Nachman and Noe (1994). This

paper shows that debt is the ex-ante optimal security if the interim private information

satisfies the “uniform worst case” condition, a property that is stronger than CSD.

Biais and Mariotti (2005) builds on DeMarzo and Duffie (1999) and study the interaction

between adverse selection and liquidity provision. As in DeMarzo and Duffie (1999), unlike

our paper, a firm’s insiders design the security ex-ante, before becoming informed; different

from DeMarzo and Duffie (1999) and our paper, Biais and Mariotti (2005) assumes that firm

insiders privately observe the realization of the firm’s cash flow at the interim stage, before

the security is actually issued. Their paper shows that the ex-ante optimal security design

problem results again in a standard debt contract, in which the choice of the face value of

the debt allows the firms to reduce the rents extracted by the liquidity provider.

DeMarzo, Kremer, and Skrzypacz (2005) examine the security design problem in the

context of auctions, where buyers (rather than sellers) have private information on the asset

put up for sale. The paper finds that, in this case, sellers can capture more of the value held

by the buyer’s positive private information by selling an equity stake in the asset, that is

a security with exposure to the right tail. It is worthwhile noting that these results obtain

under the monotone likelihood ratio property (MLRP), a condition that is stronger than

CSD.

Our paper differs from this literature in several ways. First, and foremost, in our paper,

we only require FOSD and, thus, our distributions can violate conditions in the previously

mentioned literature, i.e. the uniform worst case condition of DeMarzo and Duffie (1999),

or MLRP in DeMarzo, Kremer, and Skrzypacz (2005), or perfect observation of true firm

value at the time the security is issued, as in Biais and Mariotti (2005). Second, as in Myers

and Majluf (1984) and Nachman and Noe (1994), we constrain the firm to raise a fixed

amount of capital, which leads to pooling rather than separating equilibria. In contrast, in

DeMarzo and Duffie (1999) issuers can separate in the interim security issuance stage by

using retention as a signal (in the spirit of Leland and Pyle, 1977). In our paper, by design,

we focus on pooling equilibria because we want to study the core issue of the pecking order

theory, namely the relative dilution of debt and equity when firms of heterogeneous quality
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pool and raise capital by issuing the same security.12

Chakraborty and Yılmaz (2009) show that when investors have access to noisy public

information on the firm’s private value after the security is issued, the dilution problem can

be costlessly avoided by issuing securities having the structure of callable, convertible debt.

A key difference between this paper and ours is that, different from our paper, Chakraborty

and Yılmaz (2009) additional (noisy) public information becomes available over time, after

the security is issued. Other related papers include Chemmanur and Fulghieri (1997) and

Chakraborty, Gervais, and Yılmaz (2011), which argue that warrants may be part of the

optimal security structure. Finally, a growing literature considers dynamic capital structure

choice (Fischer, Heinkel, and Zechner, 1989; Hennessy and Whited, 2005; Strebulaev, 2007;

Morellec and Schürhoff, 2011). We conjecture that the economic forces of our static frame-

work will play a first-order role in a dynamic version of the model and we leave this study

for future research.

There are several other papers that challenge Myers and Majluf (1984) and Myers (1984)

by extending their framework in different ways.13 These papers show that a wider range

of financing choices, which allow for signaling with costless separation, can invalidate the

pecking order (see, e.g., Brennan and Kraus, 1987; Noe, 1988; Constantinides and Grundy,

1989). However, Admati and Pfleiderer (1994) point out that the conditions for a fully

revealing signaling equilibrium identified in these papers are rather restrictive. Cooney

and Kalay (1993) relax the assumption that projects have a positive net present value.

Fulghieri and Lukin (2001) relax the assumption that the informational asymmetry between

a firm’s insiders and outside investors is exogenous, and allow for endogenous information

production. Dybvig and Zender (1991) study the effect of optimally designed managerial

compensation schemes, and Edmans and Mann (2012) look at the possibility of asset sales

for financing purposes. Hennessy, Livdan, and Miranda (2010) consider a dynamic model

with asymmetric information and bankruptcy costs, with endogenous investment, dividends

and share repurchases, where the choice of leverage generates separating equilibria. Bond

and Zhong (2014) show that stock issues and repurchases are part of an equilibrium in a

dynamic setting. In contrast to these papers, but in the spirit of Myers and Majluf (1984),

we consider a pooling equilibrium of a static model where the only friction is asymmetric

12DeMarzo (2005) considers both the ex-ante and the interim security design problems, and examines
the question of whether to keep multiple assets in a single firm (pooling), and the priority structure of the
securities issued by the firm (tranching).

13We focus our literature discussion on papers that study informational frictions. Moral hazard consid-
erations are also important drivers of capital structure choices, i.e. DeMarzo and Fishman (2007), Biais,
Mariotti, Plantin, and Rochet (2007).
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information between insiders and outsiders.

The remainder of the paper is organized as follows. Section 2 presents a simple example

that illustrates the basic results and intuition of our paper. Section 3 outlines the basic

model of capital raising under asymmetric information. Section 4 considers the optimal se-

curity design problem. In Section 5 we study the choice of debt versus equity, and present

our main empirical predictions. All the proofs are in the Appendix.

2 A simple example

The essence of the pecking order theory is typically illustrated via a pooling equilibrium with

two types and a discrete state space. The basic results of our paper, and their intuition, can

be shown with a simple numerical example, summarized in Table 1.14

We consider two types of firms: good type, θ = G, and bad type, θ = B, where a firm’s

type is private information to its insiders. We assume that the two types of firms are equally

likely in the eyes of investors. At the beginning of the period, firms wish to raise capital

I. When raising capital, the two types of firms pool and issue the same security, so that

investors do not change their priors on the firms’ type when seeing the security issuance

decision.

For reasons that will become apparent below, we will assume that a firm’s end-of-period

firm value, Z, is characterized by a trinomial distribution with three possible outcomes

Z ∈ {z1, z2, z3}. To fix ideas, we assume that the states z1 and z2 are relevant for the value

of assets in place, while state z3 is relevant for the growth opportunity. In particular, we

assume that the end-of-period value of the assets in place is given by z1 = 10, z2 = z3 = 100.

If the growth opportunity is exercised, firm value becomes z1 = 10, z2 = 100, z3 = 300. Thus,

exploitation of the growth opportunity adds value to the firm only in state z3, increasing the

end-of-period firm value in that state from 100 to 300. The firm’s capital requirements are

set to be equal to I = 60.

The probability of the three possible outcomes of Z depends on private information

held by the firm’s insiders, and is given by fθ ≡ {fθ1, fθ2, fθ3} for a firm of type θ, with

θ ∈ {G,B}. In our examples below, we will assume that fG = {0.2, 0.4, 0.4} and fB =

{0.3, 0.4−x, 0.3+x}, and we will focus in the cases x = 0.02 and x = 0.08 in the discussion.15

14The numerical example presented in this section builds on the discussion in Nachman and Noe (1994),
Section 4.3.

15Table 1 considers all cases x ∈ (0, 0.1). We remark that x ≤ 0.1 is necessary to maintain first-order
stochastic dominance.
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Note that the presence of the growth opportunity has the effect of changing the distribution

of firm value in its right tail, and that the parameter x affects the probability on the high

state z3 relative to the middle state z2 for the type-B firm.

Consider first the case where x = 0.08. The values of the firm for the good and bad

types are given by E[ZG] = 162 and E[ZB] = 149, with a pooled value equal to 155.5. Firms

can raise the investment of 60 to finance the growth opportunity by issuing a fraction of

equity equal to λ = 0.386 = 60/155.5. This means that under equity financing the initial

shareholders of a firm of type-G retain a residual equity value equal to (1−0.386)162 = 99.5.

The firm could also raise the required capital by issuing debt, with face value equal to

K = 76.7. In this case debt is risky, with payoffs equal to {10, 76.7, 76.7}, and it will default

only in state z1. The value of the debt security when issued by a type-G firm is DG = 63.3,

and when issued by a type-B firm is DB = 56.7, with a pooled value of 60, since the two

types are equally likely. This implies that under debt financing the shareholders of a type-G

firm will retain a residual equity value equal to E[ZG]−DG = 98.7 < 99.5, and equity is less

dilutive than debt. Thus, the pecking order preference is reversed.

The role of the growth opportunity in reversing the pecking order can be seen by

considering the following perturbation of the basic example. Set now x = 0.02, so that

fB = {0.30, 0.38, 0.32}. In the new example the growth opportunity is relatively less impor-

tant for a type-B firm than in the base case. Note that this change does not affect debt

financing, because debt is in default only in state z1. Therefore the change in x affects equity

dilution but not debt dilution. In the new case, E[ZB] = 137, lowering the pooled value to

149.5. This means that now the firm must issue a larger equity stake, λ = 0.401 = 60/149.5,

and thus existing shareholders’ value is now equal to (1 − 0.401)162 = 97.0 < 98.7. Thus,

equity financing now is more dilutive than debt financing, restoring the pecking order.

The reason for the change in the relative dilution of debt and equity rests on the impact

of asymmetric information on the right-tail of the firm-value distribution. In the base case,

for x = 0.08, asymmetric information has a modest impact on the growth opportunity (since

fG3−fB3 = 0.02) relative to the “middle” of the distribution (since fG2−fB2 = 0.08), which

is determined by the exposure of the assets in place to asymmetric information. Thus, firms

of type-G can reduce dilution by issuing a security that has greater exposure to the right-tail

of the firm-value distribution, such as equity, rather than debt, which lacks such exposure. In

contrast, in the case of x = 0.02, asymmetric information has a more substantial impact on

the growth opportunity, and thus on the right tail relative to the middle of the distribution,

since now we have fG3 − fB3 = 0.08 and fG2 − fB2 = 0.02, making equity more mispriced.
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A second key ingredient of our example is that the firm is issuing (sufficiently) risky

debt to make dilution a concern. If debt is (nearly) riskless, the pecking order would hold.

We obtain this in our example by assuming z1 = 10 and by setting I = 60. If the level

of investment is reduced to I = 10, then the firm could issue riskless debt and avoid any

dilution altogether. Similarly, for investment needs sufficiently close to I = 10 debt has little

default risk and the potential mispricing will still be small. In contrast, for sufficiently large

investment needs the firm will need to issue debt with non-trivial default risk, creating the

potential for a reversal of the pecking order.

Finally note that in the special case in which fB ≡ {0.3, 0.3, 0.4} there is no asymmetric

information at all in the right-tail (that is, for z3 = 300). In this case, type-G firms would

in fact be able to avoid dilution altogether by issuing securities that load only on cash flows

in the right tail, such as warrants. We will exploit this feature in Section 4, where we study

the security design problem, proving the optimality of securities with equity-like features.

In the rest of the paper we build models that generate a reversal of the pecking order, and

we show that a reversal can emerge in many economically relevant situations. In Section 3

we introduce a condition, which we refer to as “low-information-costs-in-the-right-tail,” that

generalizes the parametric assumptions in the previous example. This condition is novel in

the literature and it is critical to generate reversals of the pecking order. The decomposition

of the firm-value distribution into three regions in Section 5 establishes formally that the

trinomial structure of our example is necessary for our results, and it provides its key drivers.

Section 5.2 considers a simple real options model which generates new cross-sectional predic-

tions that can be used to test asymmetric information theories, with and without a pecking

order.

3 The basic model

3.1 The capital raising game

We consider an one-period model with two dates, t ∈ {0, 1}. At the beginning of the period,

t = 0, an all equity-financed firm with no cash wishes to raise a certain amount of capital,

I, that needs to be invested in the firm at that time.16 The firm’s value at the end of the

16By research design, we initially do not explicitly model the reason for this capital requirement, which
we take as exogenous. The investment requirement of the firm I may reflect, for example, a new investment
project that the firm wishes to undertake, as discussed in Section 5. Also note that, in the spirit of Myers
and Majluf (1984), we rule out of the possibility that firms finances their growth opportunities separately
from the assets in place, i.e., by “project financing.”
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period, t = 1, is given by a random variable Zθ. There are two types of firms: “good” firms,

θ = G, and “bad” firms, θ = B, which are present in the economy with probabilities p and

1− p, respectively. A firm of type θ is characterized by its density function fθ(z) and by the

corresponding cumulative distribution function Fθ(z), with θ ∈ {G,B}. Because of limited

liability, we assume that Zθ takes values of the positive real line. For ease of exposition,

we will also assume that the density function of Zθ satisfies fθ(z) > 0 for all z ∈ R+. In

addition, we assume type G firms dominate type B ones by first-order stochastic dominance,

defined as follows.

Definition 1 (FOSD). We will say that the distribution FG dominates the distribution FB

by (strong) first-order stochastic dominance if FG(z) ≤ (<)FB(z) for all z ∈ R++.

The stronger property of Conditional Stochastic Dominance, CSD, plays a crucial role in

the security design problem, as argued in Nachman and Noe (1994).

Definition 2 (CSD). We will say that the distribution FG dominates the distribution FB

by conditional stochastic dominance if FG(z|z′) ≤ FB(z|z′) for all z′ ∈ R+ and z ≥ z′, where

Fθ(z|z′) ≡
Fθ(z + z′)− Fθ(z′)

1− Fθ(z′)
.

By setting z′ = 0, we see that CSD implies FOSD. We note that CSD can equivalently

be defined by requiring that the truncated random variables [Zθ|Zθ ≥ z̄], with distribution

functions (Fθ(z)−Fθ(z̄))/(1−F (z̄)), satisfy FOSD for all z̄.17 In addition, Nachman and Noe

(1994) show that CSD is equivalent to the condition that the ratio (1− FG(z))/(1− FB(z))

is non-decreasing in z for all z ∈ R+ (see their Proposition 4). Thus, loosely speaking, CSD

implies that the set of payoffs in the right tail of the firm-value distribution are always more

likely to occur for a type-G firm relatively to a type-B firm.18

Firms raise the amount I to fund the investment project by seeking financing in capital

markets populated by a large number of competitive, risk-neutral investors. Capital markets

are characterized by asymmetric information in that a firm’s type θ ∈ {G,B} is private

information to its insiders. We assume that the firms will always find it optimal to issue

securities and raise capital I, rather than not issuing any security and forgo the investment

17We remark that the CSD (hazard-rate) ordering is weaker than the Monotone Likelihood Ratio order,

which requires [ZG|ZG ∈ (z, z̄)]
fosd
≥ [ZB |ZB ∈ (z, z̄)] for all z and z̄; see equation (1.B.7) and Theorem 1.C.5

in Shaked and Shanthikumar (2007).
18Referring back to the example in Section 2, it is easy to verify that if x ≤ 0.05 the type-G distribution

not only dominates the type-B in the first-order sense, but also in the CSD sense.
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opportunity. We make this assumption to rule out the possibility of separating equilibria

where type-B firms raise capital and invest I, while type-G firms separate by not issuing any

security. By design, in this paper we explicitly focus on the properties of (pooling) equilibria

where both types of firms issue securities and raise capital in equilibrium.

When insiders have private information, firms will typically issue securities at prices that

diverge from their symmetric information values. Under these circumstances, firms will find

it desirable to raise capital by issuing securities that reduce the adverse impact of asymmetric

information. To fix ideas, let S be the set of admissible securities that the firm can issue to

raise the required capital I. As is common in this literature (see, for example, Nachman and

Noe (1994)), we let the set S be the set of functions satisfying the following conditions:

0 ≤ s(z) ≤ z, for all z ≥ 0, (1)

s(z) is non-decreasing in z for all z ≥ 0, (2)

z − s(z) is non-decreasing in z for all z ≥ 0. (3)

Condition (1) ensures limited liability for both the firm and investors, while (2) and (3) are

monotonicity conditions that ensure absence of risk-less arbitrage.19 We define S ≡ {s(z) :

R+ → R+ : s(z) satisfies (1), (2), and (3)} as the set of admissible securities.

We consider the following capital raising game. The firm moves first, and chooses a

security s(z) from the set of admissible securities S. After observing the security s(z) issued

by the firm, investors update their beliefs on firm type θ, and form posterior beliefs p(s) :

S→ [0, 1]. Given their posterior beliefs on firm type, investors purchase the security issued

by the firm at a price V (s). The value V (s) that investors are willing to pay for the security

s(z) issued by the firm is equal to the expected value of the security, conditional on the

posterior beliefs p(s), that is

V (s) = p(s)E[s(ZG)] + (1− p(s))E[s(ZB)]. (4)

Condition (4) implies that securities are fairly priced, given investors’ beliefs. If security s

is issued, capital V (s) is raised, and the investment project is undertaken, the payoff to the

19See, for example, the discussion in Innes (1990). Note that, as pointed out in Nachman and Noe (1994),
condition (2) is critical to obtain debt as an optimal security. In absence of (2), the optimal contract may
have a “do or die” component, whereby outside investors obtain all of the firm cash flow when it falls below
a certain threshold, and nothing otherwise.

11



initial shareholders for a firm of a type θ is given by

W (θ, s, V (s)) ≡ E[Zθ − s(Zθ)] + V (s)− I. (5)

The firm will choose the security issued to finance the investment project by maximizing its

payoff (5), subject to the constraint that the security is admissible and that it raises at least

the required funds I. Let sθ(z) ∈ S be the security issued by a firm of type θ.

3.2 Equilibria

Following the literature, we will adopt the notion of Perfect Bayesian Equilibrium, PBE, as

follows.

Definition 3 (Equilibrium). A PBE equilibrium of the capital raising game is a collec-

tion {s∗G(z), s∗B(z), p∗(s), V ∗(s)} such that: (i) s∗θ(z) maximizes W (θ, s, V ∗(s)) subject to the

constraint that s ∈ S and V ∗(s) ≥ I, for θ ∈ {G,B}, (ii) securities are fairly priced, that is

V ∗(s) = p∗(s)E[s(ZG)] + (1 − p∗(s))E[s(ZB)] for all s ∈ S, and (iii) posterior beliefs p∗(s)

satisfy Bayes rule whenever possible.

We start with a characterization of the possible equilibria in our capital raising game.20

The following Proposition mimics Proposition 1 of Nachman and Noe (1994).

Proposition 1. Let Fθ satisfy strict FOSD. No separating equilibrium exists in the capital

raising game. In addition, in a pooling equilibrium with s∗G = s∗B = s∗, the capital raising

game is uninformative, p(s∗) = p, and the financing constraint is met with equality:

I = pE[s(ZG)] + (1− p)E[s(ZB)]; (6)

this equilibrium is supported by the out-of-equilibrium belief that if investors observe the firm

issuing a security s′ 6= s∗ they believe that p(s′) = p (passive conjectures).

Proposition 1 follows from the fact that, with two types of firms only, a type-B firm

has always the incentive to mimic the behavior of a type-G firm (i.e., to issue the same

security). This happens because (2) and strict FOSD together imply that securities issued

by a type-G firm are always priced better by investors than those issued by a type-B firm,

and type-B firm is always better-off by mimicking a type-G one. This also implies that, in

20We note that the strong form of FOSD is only necessary for Proposition 1. Our main results go through
assuming only FOSD.
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equilibrium, the type-G firm is exposed to dilution due to the pooling with a type-B firm,

and the corresponding loss of value can be limited by issuing only the securities needed to

raise the capital outlay I.

Proposition 1 allows us to simplify the exposition as follows. Since both types of firms

pool and issue the same security s and the capital constraint is met as equality, (5) and (6)

imply that the payoff to the original shareholders of firm of type G becomes

W (G, s, V (s)) = E[ZG]− I − (1− p)Ds,

where the term

Ds ≡ E[s(ZG)]− E[s(ZB)] (7)

represents the mispricing when security s ∈ S is used, which is the cause of the dilution

suffered by a firm of type G.

Under these circumstances, firms of type G will find it optimal to finance the project by

issuing a security that minimizes dilution Ds, that is

min
s∈S

Ds (8)

subject to the financing constraint (6).

3.3 Information costs in the right-tail

In what follows we will be concerned with the asymmetric information costs in the right

tail of the value distribution Fθ(z) for a firm of type G relative to a firm of type B. These

asymmetric information costs are related to the function H(z) defined as:

H(z) ≡ FB(z)− FG(z)

1− F (z)
, (9)

where F (z) denotes the mixture of the distributions of the good and bad types, that is,

F (z) = pFG(z) + (1− p)FB(z). (10)

The function H(z) plays a critical role in our analysis. First note that FOSD implies that

H(z) > 0 for all z ∈ R++. In addition, and more importantly, monotonicity of H(z) is
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equivalent to CSD, as it is established in the following proposition.21

Proposition 2. The distribution FG dominates FB by (strong) conditional stochastic dom-

inance if and only if the function H(z) is (strictly) increasing in z for all z ∈ R+. This is

equivalent to requiring that the hazard rates hθ(z) ≡ fθ(z)/(1 − Fθ(z)) satisfy hG(z) ≤ (<

)hB(z) for all z ∈ R+.

The function H(z) provides a measure of the extent of asymmetries of information, and for

monotonic securities it is closely linked to the cost to a type-G firm of promising to investors

an extra dollar in state z.22 In what follows, it will be important to characterize properties

the right tail of the firm-value distribution that are stronger than FOSD, but at the same

time weaker than CSD. Note first that H(0) = 0 and that, from FOSD, we have H(z) > 0

for z in a right neighborhood of z = 0, which together imply that H ′(0) > 0. We note that,

while the monotonicity properties of H(z) on the left-tail of the distribution of z are dictated

by FOSD, this is not the case for the right-tail of the distribution.

To characterize the behavior of the information costs in the right-tail of the distribution,

we introduce the following definition, which will play a key role in our analysis.

Definition 4 (h-ICRT). We will say that distribution FG has information costs in the right

tail of degree h (h-ICRT) over distribution FB if limz↑∞H(z) ≤ h.

We will use the term NICRT (no-information-costs-in-the-right-tail) to refer to the case

h = 0. The relationship between FOSD, CSD and h-ICRT may be seen by noting that for two

distributions {FG, FB} that satisfy FOSD, there may exist a sufficiently low h ∈ R+ such that

the h-ICRT property holds, while conditional stochastic dominance fails. Thus, intuitively,

distributions that satisfy the h-ICRT condition “fill” part of the space of distributions that

satisfy FOSD but do not satisfy the CSD condition. In particular, all distributions that

satisfy Definition 4 for h = 0 (NICRT) will fail to satisfy the CSD condition.

21In the simple example of Section 2, the function H is increasing if x ≤ 0.05. Thus a necessary condition
for the distributions in the example to not satisfy CSD is that x > 0.05.

22This happens because, for monotonic securities, an extra dollar paid in state z means that investors will
be paid an extra dollar also in all states z

′
> z. This interpretation will become apparent in Section 4 (see

equation (14)).
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4 Optimal security design

4.1 Base case

Following Nachman and Noe (1994), the optimal security design problem (8) can be expressed

as:23

min
s∈S

∫ ∞
0

s′(z)(FB(z)− FG(z))dz, (11)

subject to ∫ ∞
0

s′(z)(1− F (z))dz = I. (12)

The Lagrangian to the above problem is

L(s′, γ) =

∫ ∞
0

s′(z)(FB(z)− FG(z)− γ(1− F (z)))dz (13)

=

∫ ∞
0

s′(z)(1− F (z))(H(z)− γ)dz, (14)

where H(z) was defined in (9). Remember that the the function H(z) measures, for any

value z, the extent of the asymmetric information costs in the right tail of the firm-value

distribution. The following is an immediate consequence of the linearity of the security

design problem.

Proposition 3. A solution s∗ must satisfy, for some γ ∈ R+,

(s∗)′(z) =


1 if H(z) < γ;

[0, 1] if H(z) = γ;

0 if H(z) > γ.

(15)

Note that the value of the Lagrangian multiplier γ depends on the tightness of the financing

constraint (12) and, thus, on the level of the required investment I, with ∂γ/∂I > 0. From

H(0) = 0 and FOSD we have that H(z) < γ, which implies that the optimal security must

satisfy (s∗)′ = 1 in a right neighborhood of z = 0. This means that an optimal security will

always have a (possibly small) straight-debt component.24 The importance of this straight-

debt component (that is, the face value of the debt) will depend on the size of the investment

23Remember that, in our setting, we only impose that the probability distributions of firm value satisfy
FOSD; thus the only departure from Nachman and Noe (1994) is that we relax CSD.

24Note, however, that as Proposition 5 shows, this property hinges critically on the assumption that the
firm has no pre-existing debt.
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I (since it affects the Lagrangian multiplier γ), as well as on the particular functional form for

H(z). The shape of the optimal security for greater value z depends monotonicity properties

of the function H(z) and, thus, on the extent of asymmetric information in the right tail of

the firm-value distribution, and it is characterized in the following proposition.

Proposition 4. Consider the security design problem in (11)–(12).

(a) (Nachman and Noe, 1994) If the distribution FG conditionally stochastically dominates

FB, then straight debt is the optimal security.

(b) If the problem satisfies the NICRT condition, and H ′(z∗) = 0 for a unique z∗ ∈ R+,

then convertible debt is optimal for all investment levels I.

(c) Assume that there exists z̄ such that fG(z) = fB(z) for all z ≥ z̄, and H ′(0) > 0.

Further assume that H ′(z∗) = 0 for a unique z∗ ∈ [0, z̄]. Then NICRT holds, and there

exists a Ī > 0 such that for all I ≤ Ī warrants are optimal, whereas for all I ≥ Ī

convertible debt is optimal.

(d) If limz↑∞H(z) = h̄ > 0 and there exists a unique z∗ ∈ R+ such that H ′(z∗) = 0, then

there exists Ī such that for all I ≤ Ī straight debt is optimal, whereas for all I ≥ Ī

convertible debt is optimal.

Part (a) of Proposition 4 assumes CSD. In this case, monotonicity of the function H ′(z)

implies that there is a z∗ below which (s∗)′(z) = 1, for all z ≤ z∗, with (s∗)′(z) = 0 otherwise,

yielding straight debt as an optimal security (see Figure 2). The intuition for the optimality

of straight debt can be seen as follows. As discussed in Nachman and Noe (1994), CSD

(and thus monotonicity of H(z)) requires that the ratio of the measure of the right tails

of the probability distribution for the two types, (1− FG(z))/(1− FB(z)), is monotonically

increasing in z.25 For monotonic securities, this ratio can be interpreted as measuring the

marginal cost of increasing the payouts to investors by $1 for a type-G firm relative to a

type-B firm. When it becomes relatively more expensive for a firm of type-G to increase a

payouts to investors as the firm value z becomes larger (that is, when information costs faced

by a type-G firm are increasing in z) the proposition shows that the optimal security is debt.

In this case, firms of better types prefer to have the maximum payout to investors for low

realizations of z, that is in the (right) neighborhood of z = 0, and then to limit the payout

25Equivalently, CSD requires that the hazard rate of the payoff distribution for a type-G is smaller than
that for a type-B for all values of z.
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to investors for high realizations of z. These considerations, together with the requirement

that the security is monotonic, lead to the optimality of debt contracts.

The cases considered in parts (b) and (c) of Proposition 4 provide the conditions under

which securities with equity-like components are optimal. The key driver of the optimal

security choice is the size of the informational costs in the right tail of the payoff distribution,

measured by H(z). Under NICRT, we have that in the limit H(z) = 0 and, thus, that the

information costs suffered by a type-G becomes progressively smaller as the firm-value z

increases. Part (b) of Proposition (4) shows that in this case type-G firms can reduce their

overall dilution by maximizing the payout to investors also in the right tail of the distribution,

in addition to a neighborhood of z = 0. This happens because, by increasing the payoffs

in the right tail, where information costs are now low because of NICRT, allows the firm

to correspondingly reduce the (fixed) payout in the middle of the distribution, where the

information costs are now relatively higher. This implies that the optimal security will

initially have a unit slope, then a fixed payout, and then again a unit slope (see Figure

2). Thus the optimal security will have the shape of a convertible bond, where the bond is

convertible into 100% of equity with lump-sum payment to original shareholders equal to κ,

which we will refer to as the “conversion price.”

Part (c) of the Proposition considers a particular (strong) form of NICRT. Specifically,

in this case we have H(z) = 0 for all z ≥ z̄, and NICRT holds. Furthermore, the absence

of information costs for z ≥ z̄ implies that, when the capital requirements are low, that is,

for I ≤ Ī ≡ E[max(z − z̄, 0)], a type-G firm can raise financing without incurring in any

dilution. For I ≥ Ī, the firm cannot fully finance the project by pledging the right-tail of the

payoff distribution, and in that case the proposition shows that convertible debt is optimal.

In part (d) of Proposition (4), neither CSD nor NICRT hold, since we have both a non-

monotone function H and the h̄-ICRT condition holds for h̄ > 0. The proposition shows

that the size of a project affects the financing choices of a firm: straight debt is optimal for

low levels of I, while convertible debt becomes optimal for large levels of the investment I.

This happens because when investment needs are low, the firm can finance the project by

issuing only straight debt, a security that loads only in the left tail of the distribution, where

the information costs are the lowest. For greater investment needs, under h̄-ICRT the firm

finds it again optimal to maximize its payout to investor in the right tail of the distribution,

as discussed for part (b) of the proposition, by issuing convertible debt.
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4.2 Optimal securities with pre-existing debt

We have described so far a firm that is all equity-financed ex-ante. In the paper we are also

interested in studying the effect of prior financing on the optimal security design problem.

In particular, we now extend the basic model and we assume that the firm has already issued

straight debt with face value K0 prior to the beginning of the period, t = 0, which is due at

the end of the period, t = 1.26 In accordance to anti-dilutive “me-first” rules that may be

included in the debt covenants, we assume that this pre-existing debt is senior to all new debt

that the firm may issue in order to finance the new project. We maintain the assumption

that the firm needs to raise external capital at t = 0.27

The security design game is modified as follows. At the beginning of the period, the

firm chooses a security s ∈ S, where the set S satisfies (2)-(3), with the added constraints

s(z) = 0 for all z < K0, and

0 ≤ s(z) ≤ z −K0, for all z ≥ K0. (16)

The presence of pre-existing debt changes the structure of information costs in a non-

trivial way, because cash flows in the left tail of the distribution cannot be pledged any longer

to new investors. This makes equity-like securities relatively more attractive.

Proposition 5. Consider the optimal security design problem when the firm has a senior

debt security with face value K0 outstanding. Assume that the NICRT condition holds, and

that there exists a unique z∗ such that H ′(z∗) = 0.

(a) If H ′(K0) > 0, then there exists Ī such that: (i) warrants are optimal for I < Ī, and

(ii) convertible debt is optimal for I ≥ Ī.

(b) If H ′(K0) < 0, then the optimal securities are warrants.

Proposition 5 provides conditions under which warrants arise as optimal financing instru-

ments, in contrast to the case in which only straight debt or convertible debt is solution to

the optimal security design problem that we discussed in Proposition 4. Intuitively, warrants

are optimal securities when pre-existing debt has absorbed the information benefits in the

26Pre-existing firm debt may have been issued, for example, to finance prior investment rounds in the firm.
We emphasize, however, that the model we study is static, in that we do not study how this prior financing
came to place.

27This assumption allows us to ignore a possible debt overhang problem in the sense of Myers (1977),
whereby the presence of pre-existing debt may induce a firm not to raise new capital.
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left tail of the distribution, that is in a right neighborhood of z = 0 and (which generates,

as discussed in the previous section, the optimality of debt when K0 = 0). When K0 is

moderate, so that H ′(K0) > 0, NICRT implies that the optimal security design is one that

always loads in the right-tail, where information costs are the now the lowest (since now

the left tail is already committed). In addition, when the financing needs are low, the firm

is able to raise the required capital by issuing only warrants; when the financing needs are

high, the firm raises the additional capital by issuing also (junior) debt, that is by using

convertible debt. When K0 is large, so that H ′(K0) < 0, the firm will always find it optimal

to issue only warrants (since the firm now faces decreasing information costs). We note that

warrants can emerge as optimal securities when the firm has pre-existing debt in its capital

structure, even when the asymmetric information environment is such that straight debt

would be optimal in the absence of pre-existing debt.

4.3 Characterizing NICRT and CSD

In this section we provide several numerical examples that will shed light on the drivers of the

optimal security design problem (11)-(12). We begin with an extension of the simple example

presented in Section 2 that illustrates the conditions under which the NICRT condition

arises, as well as the optimality of different securities under CSD and NICRT established in

Propositions 4 and 5. We then present parametric specifications that will provide plausible

economic situations that will generate such cases.

The first numerical example builds on the simpler one we introduced in Section 2. We

now assume a continuous distribution (as in the main body of the paper) rather than the

discrete one we used earlier. Specifically, we assume that type-G and type-B densities are

now given by:

fG(z) =


0.2k for z ∈ [0, 100]

0.4k for z ∈ [100, 200]

0.4k for z ∈ [200, 300]

, fB(z) =


0.3k for z ∈ [0, 100]

(0.4− x)k for z ∈ [100, 200]

(0.3 + x)k for z ∈ [200, 300]

, (17)

where k = 0.01 is a normalizing constant, and x ∈ [0, 0.10] in order to have that a type-G

firm dominates a type-B firm by FOSD. It is important to note that this example mirrors the

one from Section 2 in that the type-B distribution has a higher probability in the left-tail of

the payoff distribution, z ∈ [0, 100], and the parameter x moves mass from the intermediate

set of payoffs, z ∈ [100, 200] to the right-tail, z ∈ [200, 300]. Figure 1 plots the densities for
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the type-G and type-B firms, as well as the H(z) function, which, using Propositions 4 and

5, characterizes the optimal securities.

Consider first the basic case where the firm has no pre-existing debt, K0 = 0, and the

initial investment is I = 75. When x ≤ 0.05 the function H(z) is monotonic, and straight

debt is the optimal security (see the top right graph in Figure 1). For example, at x = 0.05, a

straight debt security with a face value of F = 83.8 is optimal. When x = 0.10, the function

H(z) achieves a maximum at z = 100 and then H(z) = 0 for z ∈ [200, 300] (see middle right

graph in Figure 1). In the x = 0.10 case, there is no asymmetric information in the right

tail, so the NICRT condition holds. It is possible to verify that a convertible bond with a

face value of F = 24.9, with a conversion price at κ = 193.8 is the optimal security that

finances the investment of I = 75. In the first case, when x ≤ 0.05 and the CSD condition

holds, the firm issues optimally risky debt, a security that loads primarily on the left-tail of

the distribution. In the second case, when x = 0.10 and NICRT holds, the firm issues first a

debt tranche with a lower face value (and thus lower risk), and a warrants component that

loads payouts to investors in the right-tail, where there is no asymmetric information.

Next, consider the intermediate case in the bottom of Figure 1, where x = 0.09, so

that neither NICRT nor CSD hold. If I = 40, the optimal security is standard debt, with

F = 42.2. For larger investment levels, namely for I ≥ 42, the optimal security includes a

convertibility provision. For example, for I = 45, the optimal security is convertible debt

with face value of F = 44.44 and a conversion price κ = 238.2. Furthermore, it is easy

to show that for values of I ∈ (42.0, 82.1) the optimal security will involve a straight debt

component with F = 44.4, and a warrants component with a conversion trigger κ that is a

decreasing function of the investment requirements I.

Finally, note that when x = 0.10, condition (c) in Proposition 4 is satisfied and issuing

only warrants may be optimal. For example, when I = 40 a warrant with a conversion price

κ = 223.5 is an optimal security.28 When x = 0.10, a type-G firm does not suffer any dilution

for cash flows in the [200, 300] range and the asymmetric information problem can be entirely

avoided by restricting payouts to this range. When the required investment I is sufficiently

small, the firm’s cash needs can be entirely satisfied by issuing a security that loads only in

the right-tail, and warrants become the optimal security. At larger investment requirements

(as it was the case for I = 75), the firm exhausts the capacity to make payouts to investors

out of the right tail, inducing the firm to issue also (straight) debt, making convertible bonds

the optimal security.

28Using the notation in Proposition 4, one can verify that Ī = 50 in our example, that is, warrants are
optimal for all I ≤ 50, whereas for I > 50 convertible bonds are the optimal securities.
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The main feature of the examples we discussed so far is to stress the key role of the

exposure to asymmetric information in the right-tail of the payoff distribution. In particu-

lar, they show that once the CSD is violated, it may be “cheaper” to issue a security that

concentrates payouts in the right-tail of the distribution, in contrast to the standard peck-

ing order intuition. Our next step is study parametric specifications describing economic

environments that are likely to generate such violations of the pecking order. As such, these

parametric examples will be useful to generate sharper empirical implications.

We present three parametric specifications that can violate the CSD. The common feature

of these examples is to represent the firm as a collection (a portfolio) of assets.29 Specifically,

we model the end-of-period firm value Zθ as the combination of two lognormal random

variables, Xθ and Yθ. We will consider three alternative specifications: (a) Zθ = max(Xθ, Yθ),

whereby the firm has the option, at the end of the period, to exchange two assets, Xθ and Yθ

(“rainbow” or exchange option case);30 (b) Zθ = Xθ + Yθ, that is the firm is a multi-division

firm, where firm value is the sum of the value of its divisions, Xθ and Yθ (“multi-division

firm” case); (c) Zθ = Xθ+max(Yθ−IT , 0), whereby the firm has the option at the future date

T to invest in a “growth opportunity” by making the additional capital expenditure IT (“real

option” case), in addition to the initial investment I. The next Proposition summarizes our

findings.

Proposition 6. Let Xθ and Yθ be two lognormal random variables with E[log(Xθ)] = µθx,

E[log(Yθ)] = µθy, var[log(Xθ)] = σ2
x, var[log(Yθ)] = σ2

y, cov[log(Xθ), log(Yθ)] = ρσxσy.

Without loss of generality, assume that σy > σx. Then:

1. If Zθ = Xθ, that is, Zθ has a lognormal distribution, then the distribution FG dominates

the distribution FB by CSD.

2. If µGy = µBy, and the payoff from the project Zθ satisfies either (a) Zθ = max(Xθ, Yθ),

(b) Zθ = Xθ + Yθ, or (c) Zθ = Xθ + max(Yθ − IT , 0), then the NICRT holds.

The intuition behind Proposition 6 is straightforward. For Gaussian random variables,

such as lognormal distributions, second moments of the distributions dominate tail behavior.

This implies that the joint assumptions that Y has higher volatility, σy > σx, and suffers no

29There is a large literature in corporate finance that uses the type of parametric examples we introduce
next. See Berk, Green, and Naik (1999) for an explicit model of a firm as a collection of different projects
with exogenous investment timing, and the papers surveyed in Strebulaev and Whited (2012), which also
feature endogenous investment timing.

30Stulz (1982) uses the exchange option specification in a real options framework, and motivates its appeal
in a corporate context.
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information costs, µGy = µBy, are sufficient to guarantee that NICRT holds. In these cases,

as discussed in Propositions 4–5, depending on parameter values warrants or convertible

debt can be optimal securities, leading to violations of the pecking order.

We conclude this section by providing three different constellations of parameter values

that numerically illustrate the results of Proposition 4. We specialize the examples to the

“real options” specification (c), which we will examine in more detail in Section 5.2. Table 2

presents three difference scenarios where, respectively, standard debt (Case A), convertible

debt (Case B) and warrants (Case C) are optimal securities. For each of these cases, Figure

2 plots the H(z) function in the left panels, and the optimal security in the right panels,

each row corresponding to each of the cases in Table 2. In all cases we assume that p = 0.5,

σx = 0.3, σy = 0.6, ρ = 0.5, T = 5, and that IT = 50.

The first scenario (Case A) presents the case where the asymmetric information is con-

centrated entirely in the high volatility asset, Y . Namely, we set X̄G = X̄B = 100, ȲG = 250,

ȲB = 150 and I = 100, where we define E[Xθ] ≡ X̄θ and E[Yθ] ≡ Ȳθ. In this case the H(z)

function is monotone over its whole domain (see the top left graph in Figure 2). This implies

that the optimal security will have unit slope when H(z) < γ (where γ is represented by

the horizontal dotted line) and it will have zero slope when H(z) ≥ γ. Thus, the optimal

security is standard debt with a face value K, determined by H(K) = γ (and which is equal

to K = 138.8).

In the second scenario (Case B) the NICRT condition holds, since the asymmetric infor-

mation is concentrated entirely in the low-volatility asset, X. Namely, we set ȲG = ȲB = 200,

X̄G = 150, X̄B = 50, and I = 120. In this case, the H(z) function is “hump-shaped,” it is

first an increasing and then a decreasing function of firm value z (see the middle left graph

in Figure 2). This implies that the optimal security will have unit slope when for z < K,

where H(z) < γ, and it will have zero slope for K ≤ z ≤ κ, where H(z) ≥ γ, and will have

unit slope when for z ≥ κ, where again H(z) < γ. Thus, the optimal security is a convertible

debt contract with face value K = 69.5 and conversion price κ = 593.4, where the values

{K,κ} satisfy H(K) = H(κ) = γ. As shown in Proposition 6 securities load in the lower

end of the payoffs, due to the usual Myers and Majluf (1984) intuition, but also on upper

end of the payoff distribution, because of the NICRT property introduced in our paper.

In the last numerical example, Case C, we consider the effect of pre-existing debt on the

security design problem discussed in Proposition 5. We modify Case B by assuming that the

firm has debt outstanding with K0 = 100, and that the initial investment is 70 (see the lower

left graph in Figure 2). It can be calculated that the value of the pre-existing debt is 79.3,
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while total firm value (debt plus equity) is equal to 259.2. In this case, the H(z) function

is the same as in Case B, but now H(K0) ≥ γ, which means that the optimal security will

have zero slope for K0 ≤ z ≤ κ, where H(z) ≥ γ, and will again have unit slope for z ≥ κ,

where H(z) < γ. Thus, the optimal security design is a warrant with an exercise price of

κ = 502.5, where H(κ) = γ, as in the case (i) of part (a) of Proposition 5.

Finally, it can shown that if we change the initial investment from 70 and we set it to

be equal to 120, as in the previous Case B, the optimal security will again be convertible

debt, where the face value of the new (junior) debt is K = 135.7, and the conversion price

becomes κ = 317.2, as in the case (ii) of part (a) of Proposition 5. It can also be shown that,

given the parameters values of Case C, warrants will always be optimal if the pre-existing

debt has a face value of K0 ≥ 199, as in part (b) of Proposition 5. This happens because,

in this case, H ′(K0) < 0, and H(K0) ≥ γ, which means that the optimal security has zero

slope for K0 ≤ z ≤ κ, where H(z) ≥ γ, and will have unit slope when for z ≥ κ, where

H(z) < γ.

We conclude this section by noting that the numerical examples presented in this section

suggest the following observation: violations of the pecking order can arise when the asset

with greater volatility, Y , also has smaller difference in the means, that is if µGy − µBy <
µGx − µBx. Thus, reversal of the pecking order can be obtained when the asset with lower

exposure to asymmetric information also has greater volatility. We develop this intuition

further in the next sections, where we study debt and equity contracts as financing choices.

5 The debt-equity choice

We now restrict our attention to two classes of securities, debt and equity. We study this

case explicitly because of the debt-equity choice problem — as opposed to the more general

security design problem we have examined so far — has attracted so much attention in both

the theoretical and the empirical corporate finance literature.

5.1 General results

From (7), the dilution costs associated with equity are given by

DE = λ (E[ZG]− E[ZB]) , (18)
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with λ = I/E[Z], whereas those associated with debt

DD = E[min(ZG, K)]− E[min(ZB, K)], (19)

where the parameter K represents the (smallest) face value of debt that satisfies the financing

constraint I = pE[min(ZG, K)] + (1 − p)E[min(ZB, K)]. In what follows we will say the

pecking order obtains if DE > DD, and the “reverse pecking order” holds if DD > DE. To

obtain further insights on the factors that drive the relative dilution of debt and equity, note

that the difference in the dilution costs of debt and equity can be written as:

DD −DE =

∞∫
0

(min(z,K)− λz) c(z)dz, (20)

where c(z) ≡ fG(z)−fB(z). Note that the density function fθ(z) measures, loosely speaking,

the (implicit) private valuation of a $1 claim made by the insiders of a firm of type θ ∈ {G,B}
if the final payoff of the firm is z. Thus, the function c(z) can be interpreted as representing

the private cost due to asymmetric information for a firm of type G, relative to a firm of

type B, of issuing a security that has a payoff of $1 if the final firm value is z. In particular,

if c(z) > 0 we will say that the information costs for a type G are positive, and that these

costs are negative if c(z) < 0.

We introduce next an additional regularity condition that will simplify the analysis and

greatly streamline the presentation of some of the results.

Definition 5 (SCDP). The distributions Fθ(z), for θ = G,B, satisfy the single-crossing

density property (SCDP) if FG strictly first-order stochastically dominates FB, and there

exists a unique ẑ ∈ R+ such that fG(ẑ) = fB(ẑ).

Note that the SCDP condition implies that for all z ≤ ẑ we have fB(z) ≥ fG(z), and for

all z ≥ ẑ we have fB(z) ≤ fG(z). Intuitively, this means that cash flows above the critical

cutoff ẑ have a positive information cost for type G firms, c(z) > 0, whereas cash flows below

that cutoff have negative information costs, c(z) < 0.31

Expression (20) can be further decomposed as follows. Define z̄(K,λ) ≡ K/λ and note

that for z < z̄(K,λ) we have that min(z,K) > λz, which implies that the payoffs to debthold-

31Note that FOSD alone only implies that there exists z1 and z2 such that c(z) < 0 for all z < z1 and
c(z) > 0 for all z > z2, but it does not rule out other interior crossings; in contrast, SCDP ensures that
z1 = z2. We will assume SCDP for ease of exposition. The discussion below could be adapted to take into
account the presence of multiple crossings.
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ers are greater than those to equity holders; the converse holds for z > z̄(K,λ). Under SCDP,

the point ẑ divides the positive real line into two disjoint sets: a first set at the lower end

of the positive real line, [0, ẑ) where c(z) < 0, that is where a type-G firm enjoys “nega-

tive information costs” (effectively an information benefit), and a second set [ẑ,∞] where

c(z) ≥ 0, that is where a type-G firm faces “positive information costs.” The point z̄(K,λ)

divides the positive real line in two other subsets, depending on whether or not equity yield

higher payoffs than debt to investors. We have the following.

Proposition 7. Assume the SCDP holds. Then a necessary condition for the reverse pecking

order is that z̄ > ẑ.

If z̄ > ẑ, which we will refer to as the “un-pecking necessary condition” (or UNC), from (20)

the reverse pecking order obtains if and only if

DD−DE =

∫ z̄

ẑ

(min(z,K)−λz)c(z)dz−
∫ ẑ

0

(λz−min(z,K))c(z)dz−
∫ ∞
z̄

(λz−K)c(z)dz > 0.

(21)

Under UNC and the maintained assumptions the three integrals in (21) are all positive. The

first term of the r.h.s. of (21) measures the dilution cost of debt relative to equity in the

intermediate-value region [ẑ, z̄], where debt has higher payouts than equity and type-G firms

suffer a positive information cost, c(z) > 0. In this region dilution costs of equity are lower

than those of debt because equity has lower payoff than debt precisely in those states in

which type-G firms are exposed to positive information cost (since c(z) > 0). Note that

existence of this region is guaranteed by UNC. It is the presence of this term that makes

equity potentially less dilutive than debt.

The second term of the r.h.s. of (21) measures the benefits of debt financing for low

realizations of firm value (i.e., for z < ẑ). In this low-value region, dilution costs are lower

for debt than equity because debt gives a higher payoff than equity, but such payoff has

negative information costs (i.e., c(z) < 0). The third and last term measures the dilution

costs of equity relative to debt for high realizations of firm value (i.e., for z > z̄). In this

high-value region, equity payoffs are greater than debt in those states that are more likely to

occur to a type-G firm, and thus carry positive information costs (i.e., c(z) > 0).

The relative importance of these three regions determines the optimality of debt versus

equity choice. In particular, equity financing dominates debt financing when the advantages

of equity financing originating from the intermediate region of firm value (for z ∈ [ẑ, z̄]),

that is, the first term on the r.h.s. of (21) dominate the disadvantages in the low (for z < ẑ)

and the high (for z > z̄) regions of firm value, that is, the second and the third term
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on the r.h.s. of (21). Note that if UNC does not hold (so that z̄(K,λ) < ẑ), equity has

negative information costs (that is, c(z) < 0) precisely in the states where the payouts to

equityholders are greater than those to debtholders, making it impossible for the inequality

(21) to be satisfied. Thus, UNC is a necessary condition to reverse the pecking order.

Figure 3 displays the plots of the function c(z) (top panel, solid line) and of the densities

of firm value for both type of firms and their average, {fG(z), fB(z), f(z)} (bottom panel).

Note that in this numerical example, built around one of the specifications from Proposition

6, the region in which debt has a disadvantage over equity, the intermediate region of (21)) is

relatively large, the interval [76.4, 470.7]. In addition, the bottom panel of Figure 3 plots the

distributions of Zθ ≡ Xθ + max(Yθ − IT , 0) for θ ∈ {B,G}. By direct inspection, it is easy

to verify that the distribution of firm value Zθ closely resembles a lognormal distribution,

with the important difference that the asymmetric information loads in the “middle” of the

distribution, and to a lesser extent in its right tail.

The presence of pre-existing debt will change our analysis as follows. We restrict again

the choice of security to equity or (junior) debt. We assume that the firm can raise the

necessary capital either by sale of junior debt with face value K, or by sale of a fraction λ

of total (levered) equity of the firm to outside investors. Following an argument similar to

the one that yields (21), the relative dilution of debt versus equity is now given by:

DD −DE =

∫ ∞
K0

[(1− λ) max(z −K0, 0)−max(z − (K0 +K), 0)] c(z)dz. (22)

Note that the main difference of (22) relative to the corresponding expression in (20) is the

fact that all payoffs below K0 are allocated to the pre-existing senior debt. This implies that

only the probability mass located in the interval [K0,∞) is relevant for the determination

of the relative dilution costs of debt and equity and, thus, for the choice of financing of

the new project. Recall from (21) that the two regions located at the left and the right

tails of the probability distribution favor debt financing, while the intermediate region favors

equity financing. Intuitively, the presence of pre-existing debt in a firm’s capital structure,

by reducing the importance of the left-tail region, makes equity more likely to be the less

dilutive source of financing.

5.2 Empirical predictions

In this section, we study in more detail the real options specification introduced in Section 4.3,

which will serve as the basis for our main cross-sectional predictions. We adopt a standard
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specification of a real option framework, such as the one studied in Berk, Green, and Naik

(1999), and modify the basic model of Section 3 as follows. A firm of type θ is endowed

at the beginning of the period, t = 0, with both assets in place and a growth opportunity.

Assets in place of a type-θ firm are denoted as Xθ. In addition, by making at t = 0 the

investment I, the firm generates a new “growth option” that can be exercised at the future

date T . To exercise the growth opportunity the firm must make at t = T an additional

investment IT . Thus, the end of period firm value, Zθ, for a firm of type θ ∈ {B,G} is given

by

Zθ ≡ Xθ + max(Yθ − IT , 0),

where Xθ represent the value at T of the firm’s assets in place, and max(Yθ−IT , 0) represents

the value of the growth opportunity.32 We again assume that the NPV of growth opportunity

is sufficiently large that firms will always find it optimal to issue securities and invest, rather

than not issuing any security and abandon the project. For simplicity, we also assume that

the growth option is of the European type (see, e.g., Morellec and Schürhoff, 2011, for a

model with endogenous investment timing). As in section 4.3, we assume that both Xθ and

Yθ follow a lognormal process, that is, both log(Xθ) and log(Yθ) are normally distributed with

means µθxT and µθyT and with variances σ2
xT and σ2

yT . Let ρ be the correlation coefficient

between log(Xθ) and log(Yθ).

In the spirit of Myers and Majluf (1984), we model asymmetric information by assuming

that the firm insiders have private information on the means of the distributions, while their

variances are common knowledge. We let E[Xθ] = X̄θ and E[Yθ] = Ȳθ, and we assume

X̄G ≥ X̄B and ȲG ≥ ȲB, with at least one strict inequality. We define the average value

of the assets in place and of the growth opportunity as X̄ = pX̄G + (1 − p)X̄B and Ȳ =

pYG + (1 − p)YB, respectively, and let cx = XG − XB and cy = YG − YB. Thus, cx and

cy measure the exposure to asymmetric information of the assets in place and the growth

opportunity. The assumptions ensure FOSD, and allow for scenarios in which the NICRT

condition holds (see Proposition 6).

We now conduct a series of numerical examples centered on the base case reported in

Table 3. In this leading example asymmetric information is more severe on assets in place,

where X̄G = 125 and X̄B = 75, rather than the growth opportunity, where ȲG = 205

and ȲB = 195. Greater information asymmetry on a firm’s assets in place relative to its

growth opportunities may emerge in cases where a firm is exposed to substantial “learning-

32Note that, by setting IT = 0, this specification of nests the case of a multidivision firm, where Zθ ≡
Xθ + Yθ.
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by-doing.” In addition, we assume that assets in place have lower volatility than the growth

opportunities, as in Berk, Green, and Naik (2004), and we set σx = 0.3, σy = 0.6, T = 15

and ρ = 0. We let both types be equally likely, p = 0.5. In this base case specification,

we set the initial investment amount to be I = 100, and the investment at exercise of the

growth option to be IT = 50.

The value of the firm post-investment for the two types is given by E[ZG] = 307.9 and

E[ZB] = 248.2, so that pE[ZG] + (1 − p)E[ZB] = 278.1. Without the project, the (average)

status-quo firm value is the value of assets in place X, which is equal to X̄ = 100. Since the

value of the post-investment is firm 278.1, and the investment is I = 100, the project has an

(unconditional) positive NPV of 178.1. Note also that the efficient outcome is for both types

of firms is to finance the project, since for a type-G we have that E[ZG]− I = 307.9− 100 =

207.9 > 125 = X̄G, and for a type-B we have that E[ZB]− I = 248.2− 100 = 148.2 > 75 =

X̄B.

It is easy to verify that issuing equity will require that the equity holders give up a stake

of λ = 0.360 = 100/278.1. In order to finance the project with debt, the firm needs to

promise bondholders a face value at maturity of K = 218.4. The dilution costs of equity are

DE = 0.36 × (307.9 − 248.2) = 21.5 whereas those of debt are DD = 111.9 − 88.1 = 23.7,

with a relative dilution DD/DE = 23.7/21.5 = 1.10. Thus, the type-G firm is exposed to

lower dilution by raising capital with equity rather than debt.33 Note that the implied credit

spread for the risky debt is 5.3%, which in the recent years was roughly equivalent to spread

on a non-investment grade bond, such as BB-rated debt.

The bottom portion of Table 3 examines the impact of changes of some of the key

parameters in the base case on the relative dilution of debt an equity. The first set of

examples focus of the exposure to asymmetric of the assets in place relative to the growth

opportunity. Specifically, a decrease of the exposure to asymmetric information in the growth

opportunity, by setting YG = YB = 200, has the effect of increasing the the dilution of debt

relative to equity to 1.76. Conversely, an increase of the exposure to asymmetric information

in the growth opportunity, by setting now YG = 225 and YB = 175, has the effect of reducing

the dilution of debt relative to equity to 0.76, and making now debt less dilutive than equity.

Similarly, an increase of the exposure to asymmetric information in the assets in place, by

setting X̄G = 150 and X̄B = 50, has the effect of increasing the the dilution of debt relative

33It is worthwhile to remark that the investment choices are individually rational when using either debt
or equity. To see this, note that in the case of equity financing the residual equity value for a type-G firm is
equal to (1 − 0.36) × 307.9 = 197.1 > 125 = X̄G, and for a type-B firm it is equal to (1 − 0.36) × 248.2 =
158.9 > 75 = X̄B . In the case of debt financing, the residual equity value for a type-G firm is equal to
307.9− 119.9 = 188 > 125 = X̄G, and for a type-B firm it is equal to 248.2− 88.1 = 160.1 > 75 = X̄B .
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to equity to 1.26, and a decrease of their exposure to asymmetric information, by setting

X̄G = X̄B = 100, has the effect of reducing the dilution of debt relative to equity to 0.20,

making again debt less dilutive than equity. These results conform with the notion that

reversals of the pecking order preference can occur when the asset with greater volatility is

less exposed to asymmetric information relative to the asset with lower volatility.

We consider next the effect of the volatility parameters, σx and σy. An increase of the

volatility of the assets in place to σx = 0.40 has the effect of reducing the dilution of debt

relative to equity from DD/DE = 1.10 to 1.01, while an increase of the volatility of the

growth opportunity to σy = 0.80 has the opposite effect of increasing the relative dilution

of debt and equity to 1.53. As discussed in Proposition 6, these examples show that equity

is less dilutive than debt when the volatility of the growth opportunities is sufficiently large

relative to the volatility of the assets in place.

The impact of the subsequent investment IT is as follows. Specifically, a decrease of the

future investment requirement, from IT = 50 to IT = 0, reduces the dilution of debt relative

to equity to 0.88, which makes debt overall less dilutive than equity restoring the pecking

order. In contrast, an increase of the subsequent investment to IT = 100 worsens the relative

dilution of debt and equity, which is now equal to 1.18. These results depend on the fact

that an increase of the subsequent investment requirements IT increases the “exercise price”

of the growth option, which has the same effect as an increase of the volatility σy.

In the last set of examples we examine the impact of pre-existing debt on the relative

dilution debt and equity. In the spirit of Proposition 5, the presence of a pre-existing debt

with face value K0 = 20 in our base-case parameter constellation as the effect of increasing

the relative dilution debt to equity to 1.28, increasing the advantage to equity relative to

debt financing. This effect is further reinforced at greater levels of pre-existing debt, where

for K0 = 40 the relative dilution of debt to equity becomes 1.47.34

The dilution effects presented in 3 are further studied in Figures 4, 5 and 6, which present

more general comparative static exercises based on the numerical examples from Table 3.

The top graph in Figure 4 displays indifference lines of DD = DE, as a function of the

exposure to asymmetric information of the assets in place, cx, and the growth opportunity,

cy, for three levels of the volatility of the growth opportunity, σy ∈ {0.6, 0.7, 0.8}. In the

region above the lines, we have that DD > DE and hence equity is less dilutive than debt

34 Note that the default spreads implicit in the cases in which equity is less dilutive than debt range
from 5.3% to 9.8%. These default spreads are currently associated with bonds with credit ratings ranging
from BB to C. See, for example, http://pages.stern.nyu.edu/~adamodar/New_Home_Page/datafile/

ratings.htm.
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and the reverse pecking order obtains. In the region below the lines, we have that DD < DE
and hence equity is more dilutive than debt, and the usual pecking order obtains. Note

that the slope of the indifference lines declines when the volatility of the growth opportunity

rises. These graphs reveal that equity is more likely to be less dilutive than debt when

the exposure to asymmetric information on the less volatile assets in place, cx, is larger,

when the exposure to asymmetric information of the more volatile growth opportunities, cy,

is smaller. In addition, the parameter region where equity dominates debt becomes larger

when the volatility of the growth opportunity increases.

The bottom graph in Figure 4 charts indifference lines of DD = DE, as a function of the

time horizon, T , and the investment cost, I, for three levels of the average value of assets in

place, X̄ ∈ {95, 100, 105}. For pairs of (I, T ) below the lines debt is optimal, whereas equity

is optimal above the lines. These graphs reveal that equity is more likely to be less dilutive

than debt for higher investment costs I, and longer time horizons T (i.e., for younger firms).

In addition, the parameter region where equity dominates debt becomes larger when the

(average) values of assets in place, X, is lower (i.e., smaller firms).

The top graph of Figure 5 displays the pairs of the average value of assets in place

and the average value of the growth option, (X̄, Ȳ ), for which the dilution costs of equity

and debt are the same, i.e. DE = DD, for different level of asymmetric information on

asset cx ∈ {10, 25, 40}. For pairs of (X̄, Ȳ ) below the lines debt is optimal, whereas equity is

optimal above the lines. These graphs reveal that equity is more likely to be less dilutive than

debt when the growth opportunities represent a larger component of firm value. In addition,

the parameter region where equity dominates debt becomes larger when the exposure to

asymmetric information of assets in place, cx, increases.

The bottom graph of Figure 5 plots the pairs of volatilities, (σx, σy), such that the dilution

costs of equity and debt are the same, i.e. DE = DD, for three levels of the investment cost

I ∈ {100, 110, 120}. For pairs of volatilities, (σx, σy), below the lines debt is optimal, whereas

equity is optimal above the lines. These graphs reveal that equity is more likely to be less

dilutive than debt when the volatility of assets in place is low, and when the volatility of

growth opportunities is large. In addition, the parameter region where equity dominates

debt becomes larger when the firm’s investment need, I, increases.

The top graph of Figure 6 examines the impact of the size of the investments needs

on the form of financing. The graph reveals that equity financing is more likely to be less

dilutive than debt when the firm has greater investment needs either at the time of the initial

investment, t = 0, or at the time the growth option is exercised, t = T . These observations
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imply that future capital needs of the firm will have an independent effect on the financing

decisions.

Finally, the bottom graph of Figure 6 examines the impact of pre-existing debt on the

form of financing. The graph reveals that, for a given level of assets in place X̄, equity

financing is more likely to be less dilutive than debt when the firm has greater amount of

pre-existing debt, K0. In addition, the graph suggests that firms are likely to switch from

equity to debt financing as they accumulate assets in place, that is as X̄ becomes larger.

At the same time, firms that finance asset acquisitions through debt financing are likely to

switch to equity financing as they increase the amount of debt in their capital structure, K0.

These considerations suggests asymmetric information may in fact lead to “mean reversion”

in leverage levels, as it is often documented in the empirical literature on capital structure

(see Frank and Goyal, 2003; Fama and French, 2005; Leary and Roberts, 2005).

In summary, the examples in Table 3, as well as Figures 4, 5, and 6 reveal a very con-

sistent pattern: violations of the pecking order are likely to be optimal for young firms,

endowed with valuable and risky growth opportunities and with large investment needs. In

addition, equity is more likely to be less dilutive than debt when growth opportunities rep-

resent a greater proportion of firm value, when these growth opportunities are riskier, and

when the firm has greater financing needs. Thus, our model can help explain the stylized

fact that small and young firms with large financing needs and valuable growth opportunities

(i.e. high growth firms) often prefer equity over debt financing, even in circumstances where

asymmetric information is potentially severe.

6 Conclusion

In this paper, we revisit the pecking order of Myers and Majluf (1984) and Myers (1984)

in the context of a general security design problem. We show that optimality of equity-

like securities, such as convertible debt and warrants, depend crucially on the exposure to

asymmetric information of the right tail of the firm-value distribution, which we characterize

with a novel measure, the h-ICRT. We show that for h sufficiently low, the solution to

the optimal security design problem is either straight debt, convertible debt, or warrants,

depending on the amount of financing required, and the presence of pre-existing debt.

We then study the debt to equity choice within a parametric specification of our model,

in which a firm consists of a portfolio of lognormal assets. We show that even if the dis-

tribution of each individual assets satisfies the conditional stochastic dominance condition,
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the distribution of the combined firm value may not. This means that, contrary to com-

mon intuition, equity financing can dominate debt financing under asymmetric information,

even in cases where individual assets would be financed by debt when taken in isolation. In

addition, we show that the presence of existing debt makes equity less dilutive than debt.

Taken together, these results suggest that the relationship between asymmetric information

and choice of financing is more subtle than previously believed.
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Appendix

Proof of Proposition 1. In a separating equilibrium {s∗G, s∗B} where we have that s∗G 6= s∗B,

p(s∗G) = 1, and p(s∗B) = 0, which implies that V ∗(s∗θ) = E[s∗θ(Zθ)] and that W (θ, s∗θ, V
∗(s∗θ)) =

E[Zθ] − I. This implies that W (B, s∗G, V (s∗G)) −W (B, s∗B, V (s∗B)) = V (s∗G) − E[s∗G(ZB)] =

E[s∗G(ZG)] − E[s∗G(ZB)] > 0 by FOSD. Thus, the pair {s∗G, s∗B} cannot be an equilibrium.

Furthermore, if in a candidate pooling equilibrium where the security s∗ is offered by both

types of firms, we have that V ∗(s∗) > I, consider the scaled down contract γs∗ for γ ∈
(0, 1). Then, there is at least one value of γ ∈ (0, 1) such that p(γs∗) = p, by passive

beliefs, V ∗(γs∗) ≥ I and W (G, γs∗, V ∗(γs∗)) = E[ZG] − γ(E[s∗(ZG)] − V (s∗(ZG))) − I >

E[ZG]− (E[s∗(ZG)]−V (s∗(ZG)))−I = W (G, s∗, V ∗(s∗)), a contradiction. Thus, any pooling

equilibrium must satisfy the budget constraint with equality, V (s) = I.

Proof of Proposition 2. From the definition of H(z) in (9), we have:

dH(z)

dz
=

(fB(z)− fG(z))(1− F (z)) + (pfG(z) + (1− p)fB(z))(FB(z)− FG(z))

(1− F (z))2

=
fB(z)− fG(z) + FB(z)fG(z)− FG(z)fB(z)

(1− F (z))2

=
fB(z)(1− FG(z))− fG(z)(1− FB(z))

(1− F (z))2
.

Thus H ′(z) > 0 if and only if fB(z)(1 − FG(z)) > fG(z)(1 − FB(z)), which reduces to the

CSD condition.

Proof of Proposition 3. See Theorem 8 in Nachman and Noe (1994). From the La-

grangian in (14), we note that the objective function is linear in the choice variable s′(z).

Thus, only corner solutions are optimal. When H(z) < γ the Lagrangian is minimized mak-

ing s′(z) be equal to its upper bound, s′(z) = 1, whereas for H(z) > γ, the minimization

calls for setting s′(z) to its lower bound, s′(z) = 0.

Proof of Proposition 4. Since H is increasing in (a), there is a single crossing point z

such that H(z) = γ, for any γ ∈ R+. The claim in (a) follows immediately from Proposition

3. Assuming NICRT, and that H ′(z∗) = 0 at most once, it is immediate that there are two

unique crossing points for H(z∗) = γ, for any γ ∈ R+. The claim in (b) is immediate from

Proposition 3. Under the conditions of case (c), we have that NICRT holds. Since H ′(0) > 0,

for a sufficiently low Ī all investment levels I ≤ Ī are associated with s′(z) = 0 for all z ≤ z∗.

This will be true up to the level Ī that is possible to finance pledging all residual cash flows
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above z∗, namely Ī = E[max(Z−z∗, 0)]. For I > Ī, we have that the condition H(z) = γ > 0

defines two crossings, and the optimal securities are convertible bonds, as in (b). Case (d) is

analogous to case (b), but noting that for γ ≤ γ̄ there is a single point satisfying H(z∗) = γ,

but two such points for γ sufficiently large.

Proof of Proposition 5. The proof is analogous to that of Proposition 3. The first-order

conditions require s′(z) to be either one (or zero) at points for which H(z) < γ (or H(z) > γ).

Under the conditions in (b), and the initial assumptions, there is only one crossing, and all

mass of the security is concentrated in the right tail. This occurs for low values of γ, or

equivalently of the investment I. The claim in (a) mirrors case (b) from Proposition 4.

Proof of Proposition 6. In order to proof the first statement, we argue that the distribu-

tion of the good type dominates the distribution of the bad type in the likelihood ratio sense,

namely fG(z)/fB(z) is monotonically non-decreasing for all z ∈ R+. From basic principles

we have:

fG(z)

fB(z)
=

1
zσ
√

2π
e
− 1

2

(
log(z)−µG

σ

)2

1
zσ
√

2π
e
− 1

2

(
log(z)−µB

σ

)2

= e
− 1

2

(
log(z)−µG

σ

)2
+ 1

2

(
log(z)−µB

σ

)2

= e−
1
2

(µ2G−µ2B)

σ2
+log(z)(µG−µB

σ2
)

= e−
1
2

(µ2G−µ2B)

σ2 z(µG−µB
σ2

);

which is monotonically increasing in z when µG > µB, as we set to prove. Since the likelihood

ratio order implies conditional stochastic dominance (Shaked and Shanthikumar, 2007), this

concludes the proof.

In order to prove the second statement, we start with case (a). Using l’Hopital’s rule,

one has

lim
z↑∞

H(z) = lim
z↑∞

FB(z)− FG(z)

1− F (z)
(23)

= lim
z↑∞

fG(z)− fB(z)

pfG(z) + (1− p)fB(z)
. (24)

From basic principles it is clear that:

P (Zθ = z) ≡ fθ(z) = fxθ(z) + fyθ(z)

38



with

fxθ(z) =
1

zσx
√

2π
e
− 1

2

(
log(z)−µxθ

σx

)2

N

(
log(z)− µyθ
σy
√

1− ρ2
− ρ(log(z)− µxθ)

σx
√

1− ρ2

)

fyθ(z) =
1

zσy
√

2π
e
− 1

2

(
log(z)−µyθ

σy

)2

N

(
log(z)− µxθ
σx
√

1− ρ2
− ρ(log(z)− µyθ)

σy
√

1− ρ2

)

where µxθ = log(Xθ) and µyθ = log(Yθ). The limit in (24) is easy to compute by factoring

out leading terms. We note that when σy > σx the right-tail behavior is determined by the

piece of the densities fθ(z) that corresponds to the density of Y . When cy = 0, the limit of

these densities is zero, as we set to prove.

Consider next case (b), in which Zθ = Xθ + Yθ. Let Fm(z) denote the distribution

function of a lognormal random variable with log-mean µGy and log-variance σ2
y. Since

1− F (z) = p(1− FB(z)) + (1− p)(1− FG(z)), we have that

lim
z↑∞

1− F (z)

1− Fm(z)
= lim

z↑∞
p

1− FB(z)

1− Fm(z)
+ (1− p) 1− FG(z)

1− Fm(z)
. (25)

Using Theorem 1 from Asmussen and Rojas-Nandayapa (2008), we have that

lim
z↑∞

1− FG(z)

1− Fm(z)
= 1, (26)

and that

lim
z↑∞

1− FB(z)

1− Fm(z)
=

{
1 if µyB = µyG,

0 if µyB < µyG.
(27)

Further note that

H(z) =

(
1− FG(z)

1− Fm(z)

)(
1− F (z)

1− Fm(z)

)−1

−
(

1− FB(z)

1− Fm(z)

)(
1− F (z)

1− Fm(z)

)−1

. (28)

Using this last expression together with (25)-(27), we conclude that

lim
z↑∞

H(z) =

{
0 if µyB = µyG,

(1− p)−1 if µyB < µyG.
(29)

This completes the proof of case (b).
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In order to see case (c), note that

P(Xθ + max(Yθ − IT , 0) > z) > P(Xθ + Yθ > z + IT ) (30)

and

P(Xθ + max(Yθ − IT , 0) > z) < P(Xθ + Yθ > z). (31)

These two inequalities serve as a bound for the limit of the function H(z) for the random

variable Xθ + max(Yθ − IT , 0). The two bounds fall within the scope of the proof of case (b)

of the Proposition, and therefore have the same limits, which coincide with those of case (c).

This completes the proof.

Proof of Proposition 7. From the definition of the reverse pecking order, we are set to

prove, by contradiction, that DD > DE cannot hold if ẑ > z̄, i.e., if UNC does not hold. The

reverse pecking order condition, if ẑ > z̄, can be written as∫ z̄

0

(min(K, z)− λz︸ ︷︷ ︸
>0

) c(z)︸︷︷︸
<0

dz +

∫ ẑ

z̄

(K − λz︸ ︷︷ ︸
<0

) c(z)︸︷︷︸
<0

dz +

∫ ∞
ẑ

(K − λz)︸ ︷︷ ︸
<0

c(z)︸︷︷︸
>0

dz > 0. (32)

We note that since g is the difference of two densities, it must be the case that∫ ∞
0

c(z)dz = 0; ⇒ −
∫ ẑ

0

c(z)dz =

∫ ∞
ẑ

c(z)dz

Further, we have ∫ ∞
ẑ

(λz −K)c(z)dz >

∫ ∞
ẑ

(λẑ −K)c(z)dz

= (λẑ −K)

∫ ∞
ẑ

c(z)dz

= (K − λẑ)

∫ ẑ

0

c(z)dz

> (K − λẑ)

∫ ẑ

z̄

c(z)dz

>

∫ ẑ

z̄

(K − λz)c(z)dz.

We note that the last two inequalities follow from the fact that
∫ z̄

0
c(z)dz < 0, and by our

conjecture that z̄ < ẑ, which implies that K − λẑ < 0. Therefore, these inequalities imply
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that the sum of the last two terms in (32) is negative, and since the first one is negative as

well, it follows that (32) cannot hold, and thus DD −DE < 0, i.e., a reversal of the pecking

order cannot obtain if UNC is not true.
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Table 1: A simple example

The table presents the parameter values and equilibrium outcomes of the capital raising problem discussed
in Section 2. The payoff of the firm is given by a trinomial random variable Z ∈ {z1, z2, z3}. The growth
opportunity requires an investment of I = 60, and generates an extra cash flow of 200 in the high state. The
payoff and the state probabilities are summarized below.

Payoffs z1 z2 z3
Assets in place 10 100 100
Growth opportunity 0 0 200
Total payoff 10 100 300

Distributions z1 z2 z3
Good-type, fG 0.2 0.4 0.4
Bad-type, fB 0.3 0.4− x 0.3 + x

The column labelled “Pooled value” below computes the expected value of the firm, E[Z], where each type
is assumed equally likely. The variable x can take values in [0, 0.10], to guarantee that the distribution fG
first-order stochastically dominates fB . The variable λ denotes the fraction of equity the firm needs to issue
to finance the investment of I = 60. The column labelled DE denotes the dilution costs of equity, namely
λ(E[ZG]− E[ZB ]). For all values of x, the firm can also finance the project with a debt security with a face
value K = 76.7, for which the dilution costs, DD ≡ E[min(ZG,K)]− E[min(ZB ,K)], are 6.7 (last column).

x E[ZG] E[ZB ] Pooled value λ DE DD
0.00 162 133 147.5 0.407 11.8 6.7
0.01 162 135 148.5 0.404 10.9 6.7
0.02 162 137 149.5 0.401 10.0 6.7
0.03 162 139 150.5 0.399 9.2 6.7
0.04 162 141 151.5 0.396 8.3 6.7
0.05 162 143 152.5 0.393 7.5 6.7
0.06 162 145 153.5 0.391 6.6 6.7
0.07 162 147 154.5 0.388 5.8 6.7
0.08 162 149 155.5 0.386 5.0 6.7
0.09 162 151 156.5 0.383 4.2 6.7
0.10 162 153 157.5 0.381 3.4 6.7
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Table 2: Optimal security design problem

The table presents the parameter values and equilibrium outcomes of the security design problem discussed
in Section 4. The payoff of the firm for type θ is given by Zθ = Xθ + max(Yθ− IT , 0), where both Xθ and Yθ
are lognormal, with E[Xθ] = Xθ, E[Yθ] = Yθ. We further denote var(log(Xθ)) = σ2

xT , var(log(Yθ)) = σ2
yT ,

and cov(log(Xθ), log(Yθ)) = ρσxσyT . The labels “Straight debt,” “Convertibles,” and “Warrants” refer to
the functions s(z) = min(K, z), s(z) = min(K, z) + max(z − κ, 0), and s(z) = max(z − κ, 0) respectively.

Symbol Case A Case B Case C

Primitives

Value of assets in place type G X̄G 100 150 150

Value of assets in place type B X̄B 100 50 50

Value of new assets type G ȲG 250 200 200

Value of new assets type B ȲB 150 200 200

Time to maturity T 5 5 5

Volatility of assets in place σx 0.3 0.3 0.3

Volatility of new assets σy 0.6 0.6 0.6

Probability of the good type p 0.5 0.5 0.5

Correlation between assets ρ 0.5 0.5 0.5

Pre-existing debt face value K0 0 0 100

Initial investment I 100 120 70

Investment at exercise IT 50 50 50

Equilibrium outcomes

Optimal security s(z) Straight debt Convertibles Warrants

Face value K 138.8 69.5 −
Conversion trigger/exercise price κ − 593.4 502.5
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Table 3: Optimal debt-equity choice

The table presents the parameter values and equilibrium outcomes of the capital raising problem discussed
in Section 5.2. The payoff of the firm for type θ is given by Zθ = Xθ + max(Yθ − IT , 0), where both Xθ and
Yθ are lognormal, with E[Xθ] = Xθ, E[Yθ] = Yθ. We further denote var(log(Xθ)) = σ2

xT , var(log(Yθ)) = σ2
yT ,

and cov(log(Xθ), log(Yθ)) = ρσxσyT .

Symbol Value

Base case

Value of assets in place for the good type X̄G 125

Value of assets in place for the bad type X̄B 75

Value of new assets for the good type ȲG 205

Value of new assets for the bad type ȲB 195

Good type firm value E[ZG] 307.9

Bad type firm value E[ZB ] 248.2

Time to maturity T 15

Volatility of assets in place σx 0.30

Volatility of new assets σy 0.60

Probability of the good type p 0.50

Correlation between assets ρ 0

Investment amount I 100

Investment at maturity IT 50

Equilibrium outcomes

Value of firm post-investment E[ZT ] 278.1

Equity fraction issued λ 0.360

Face value of debt K 218.4

Credit spread rD = (K/D)1/T − 1 5.3%

Dilution costs of debt DD = E[min(ZGT ,K)]− E[min(ZBT ,K)] 23.7

Dilution costs of equity DE = λ(E[ZGT ]− E[ZBT ]) 21.5

Relative dilution DD/DE 1.10

Comparative statics

New parameter(s) Equity share Face value Spread Debt dilution Equity dilution Relative dilution
λ K rD DD DE DD/DE

ȲG = ȲB = 200 0.360 218.3 5.3% 22.9 18.0 1.27
ȲG = 225, ȲB = 175 0.359 219.4 5.4% 26.9 35.3 0.76

X̄G = X̄B = 100 0.360 213.9 5.2% 0.7 3.5 0.21
X̄G = 150, X̄B = 50 0.360 233.4 5.8% 49.7 39.5 1.26

σx = 0.4 0.360 290.6 7.4% 21.6 21.5 1.01
σy = 0.8 0.344 316.6 8.0% 31.6 20.6 1.53

IT = 0 0.333 169.8 3.6% 17.6 20.0 0.88
IT = 100 0.375 247.9 6.2% 26.5 22.3 1.19

K0 = 20 0.386 303.3 7.7% 29.5 23.0 1.28
K0 = 40 0.410 406.1 9.8% 34.5 23.4 1.47
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Figure 1: The left panels plot the densities for the high-type (in blue) and the bad-type (in
red), whereas the right panels plot the relative information costs, the function H(z) = (FB(z) −
FG(z))/(1−F (z)). The parameter values correspond to the example discussed in section 4.3, with
x = 0.05 for the top two graphs (“CSD case”), with x = 0.10 for the middle graphs (“NICRT
case”), and x = 0.09 for the bottom graphs (“Intermediate case”).
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Figure 2: The left panels plot the function H(z) = (FB(z)−FG(z))/(1−F (z)), whereas the right
panels plot the optimal securities. The parameter values correspond to the cases listed in Table
2: Case A is depicted in the top two graphs, Case B corresponds to the middle figure, and Case
C to the bottom plots. The vertical dashed lines mark the points z for which H(z) = γ, where γ
is given by the dotted horizontal line in the left panels. The vertical solid line in the bottom left
graph shows the value of existing debt in Case C, namely K0 = 100.
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Figure 3: The top graph plots on the x-axis the payoffs from the firm at maturity, and in the y-axis
it plots as a solid line the difference in the densities of the good and bad type firms, fG(z)− fB(z)
(y-axis labels on the left), and as dotted lines the payoffs from debt and equity (y-axis labels on
the right). The left-most vertical dashed line is the point ẑ for which fG(ẑ) = fB(ẑ), so points
to the right of that line have positive information costs. The right-most vertical dashed line is
the point z̄ for which K = λz̄, so for payoffs to the right of that line equityholders receive more
than debtholders. The bottom graph plots the densities of the good and bad types (dotted lines),
as well as the joint density (integrated over types). The payoff of the firm for type θ is given by
Zθ = Xθ + max(Yθ − IT , 0), where both Xθ and Yθ are lognormal, as discussed in Section 4.3. The
parameter values used in the figures are X̄G = 125, X̄B = 75, ȲG = ȲB = 200, σx = 0.3, σy = 0.6,
ρ = 0, T = 10, p = 0.5, I = 110, IT = 50. The dilution costs of debt for these parameters are
DD = 22.6, whereas those of equity are DE = 20.3.
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Figure 4: The top graph plots the set of points (cy, cx) for which the dilution costs of equity
and debt are the same, i.e. DE = DD. We consider the following parameter values: X̄ = 100,
Ȳ = 200, σx = 0.3, I = 120, IT = 50, T = 10, ρ = 0 and p = 0.5. Recall we set X̄G = X̄ + cx
and X̄B = X̄ − cx, and similarly ȲG = Ȳ + cy and ȲB = Ȳ − cy. The solid line corresponds to the
case where σy = 0.6, whereas the other two lines correspond to σy = 0.7 and σy = 0.8. For pairs
of (cy, cx) below the lines debt is optimal, whereas equity is optimal above the lines. The bottom
graph plots the set of points (I, T ) for which the dilution costs of equity and debt are the same,
i.e. DE = DD. We consider the following parameter values: Ȳ = 200, σx = 0.3, IT = 50, T = 10,
cx = 25, cy = 0, ρ = 0 and p = 0.5. The solid line corresponds to the case where X̄ = 100, whereas
the other two lines correspond to X̄ = 105 and X̄ = 95. For pairs of (I, T ) below the lines debt is
optimal, whereas equity is optimal above the lines.
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Figure 5: The top graph plots the set of points (X̄, Ȳ ) for which the dilution costs of equity and
debt are the same, i.e. DE = DD. We consider the following parameter values: cx = 25, cy = 0,
σx = 0.3, σy = 0.6, I = 110, T = 15, IT = 50, ρ = 0 and p = 0.5. The solid line corresponds
to the case cx = 25, whereas the other two lines correspond to cx = 10 and cx = 40. For pairs
of (X̄, Ȳ ) below the lines debt is optimal, whereas equity is optimal above the lines. The bottom
graph plots the set of points (σx, σy) for which the dilution costs of equity and debt are the same,
i.e. DE = DD. We consider the following parameter values: cx = 25, cy = 0, X̄ = 100, Ȳ = 150,
T = 15, IT = 50, ρ = 0 and p = 0.5. The solid line corresponds to the case I = 110, whereas the
other two lines correspond to I = 100 and I = 120. For pairs of (σx, σy) below the lines debt is
optimal, whereas equity is optimal above the lines.
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Figure 6: The top graph plots the set of points (IT , I) for which the dilution costs of equity and
debt are the same, i.e. DE = DD. We consider the following parameter values: cx = 25, cy = 0,
σx = 0.3, σy = 0.6, YG = YB = 175, X̄ = 100, ρ = 0 and p = 0.5. The solid line corresponds
to the case T = 10, whereas the other two lines correspond to T = 15 and T = 20. For pairs
of (IT , I) below the lines debt is optimal, whereas equity is optimal above the lines. The bottom
graph plots the set of points (K0, X̄) for which the dilution costs of equity and debt are the same,
i.e. DE = DD. We consider the following parameter values: cx = 25, cy = 0, σx = 0.3, σy = 0.6,
Ȳ = 175, IT = 0, T = 10, ρ = 0 and p = 0.5. The solid line corresponds to the case I = 40,
whereas the other two lines correspond to I = 50 and I = 60. For pairs of (K0, X̄) below the lines
equity is optimal, whereas debt is optimal above the lines.
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