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Abstract

We provide evidence that the empirical performance of the new factor models proposed by Hou,

Xue, and Zhang (2015) and Fama and French (2015) depends crucially on how their investment

factor is constructed. Specifically, we call attention to the fact that, in both models, the investment

factor is based on the measure of growth in total assets from Cooper, Gulen, and Schill (2008) and

not on what most researchers would view as traditional measures of corporate investment. For both

models, we show that there are large decreases in their ability to price the cross-section of returns

when the investment factor is instead constructed using the traditional investment measures, or

when it is constructed using arguably more complete measures that account for investment in

intangibles. Additionally, we do not find a significant decrease in performance when we replace

the asset-growth factor with a factor based on growth in noncash current assets or long term

debt (which cannot be a complete measures of investment). Our results challenge the idea that

traditional investment models can fully account for the explanatory power of the asset-growth factor

used in the Hou, Xue, and Zhang (2015) and Fama and French (2015) models.
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1 Introduction

Recent advances in empirical factor models such as the four-factor model of Hou, Xue, and Zhang

(2015) and the five-factor model of Fama and French (2015) have improved our ability to explain

the cross-section of equity returns, including the returns of many anomalies. In these new models,

the improvement relative to prior models such as the Fama and French (1993) three-factor model

and the Carhart (1997) four-factor model has come in part from the addition of new factors related

to firm-level profitability and investment. In both Fama and French (2015) and Hou, Xue, and

Zhang (2015), the motivation to use profitability and investment factors is based on theoretical

arguments (a dividend discount model for the five factor model and a production based model of

Cochrane (1991) for the four factor model) that profitability and investment are inextricably linked

to expected returns.

Using theory to identify empirical asset pricing factors is important, since there are many

return anomalies that could serve as factors, and some of these potential factors may be better

at explaining returns than those in widely accepted empirical asset pricing models.1 Without

economic motivation from theory, a purely data-driven approach to find new factors may lead to

problems, as discussed on page 7 of Fama and French (2017): “. . . opening the game to factors that

seem empirically robust but lack theoretical motivation has a destructive downside – the end of the

discipline that produces parsimonious models and the beginning of the dark age of data dredging

that produces a long list of factors with little hope of sifting through them in a statistically reliable

way.”

1A number of papers show that factor models developed using previously documented predictors of stock returns
perform well in explaining sorted portfolios and related spread portfolios. For example, Kogan and Tian (2017)
conduct a “model-mining experiment” whereby they construct all possible three- and four-factor models using factors
based on 27 previously proposed (firm-level) predictors of stock returns. They find that, in the absence of theoretical
constraints, it is relatively easy to construct a factor model that performs well in sample. For example, 48% of their
models outperformed the Fama and French (1993) three factor model. Stambaugh and Yuan (2016) develop a factor
model using“mispricing” factors based on aggregate information across 11 successful anomalies and show that their
model explains returns better than Hou, Xue, and Zhang (2015) and Fama and French (2015). The search for firm
level characteristics that predict the cross-section of returns is an important part of the finance literature, and to
the extent that new characteristics are used to construct new factors in asset pricing models, some researchers point
out that caution should be exercised to guard against “data mining” of these characteristics and resultant factors.
Recent papers highlighting the potential dangers of empirical-based predictability searches include Hou, Xue, and
Zhang (2017), Chordia, Goyal, and Saretto (2017), and Novy-Marx (2015). Moreover, Harvey, Liu, and Zhu (2016)
point out that the continued search for pricing factors implies researchers should have adjusted significance thresholds
upward to account for the presence of multiple testing. They also argue that “A factor derived from a theory should
have a lower hurdle than a factor discovered from a purely empirical exercise.” In his presidential address, Harvey
(2017) shows how to adjust the standard test statistic to incorporate priors implied by a theoretical model.
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Our paper examines the efficacy of the link between the empirical specification and theoretical

motivation of the investment factors in Hou, Xue, and Zhang (2015; hereafter HXZ) and Fama and

French (2015; hereafter FF5F). Specifically, we call attention to the fact that the investment factors

used in the empirical tests of both HXZ and FF5F are not based on traditional measures of firm

investment (such as measures based on capital expenditures and the growth in property, plant, and

equipment (PPE)) as one might expect from their theoretical arguments.2 Instead, both papers use

“asset growth” (i.e., the year-on-year percentage change in total assets) from Cooper, Gulen, and

Schill (2008) as a measure of investment. We show that both HXZ and FF5 factor models derive

much of their explanatory power from their nonconventional empirical specification for investment

(i.e., asset growth). That is, the models are no more powerful than prior models they are purported

to replace when conventional measures of investment are employed. Thus, despite the empirical

power of these models, and their potential relevance to performance evaluation, their relevance to

asset pricing is potentially limited by their (lack of) theoretical justification, as is the case with

many other firm characteristics associated with anomalous returns.

We argue that it is difficult to justify asset growth as the preferred measure of a firm’s investment

activity for several reasons. First, asset growth does not include off-balance sheet intangible capital,

such as knowledge capital and organizational capital, an increasingly important type of capital that

arguably should be included in an investment measure given recent evidence in Peters and Taylor

(2017). Second, asset growth confounds investments with the financing used for them. For example,

if a firm uses cash to finance an investment in PPE, we would observe zero growth in total assets

when an investment was clearly made. Third, it is not clear to what extent growth in certain

components of total assets, such as growth in current assets, can be classified as an investment

activity. While increases in current assets could be indicative of the firm growing its operations,

they can also be a result of the firm stagnating. Cash balances can increase in the absence of

investment opportunities, inventory can increase if the firm is not able to sell its products at the

same rate, and accounts receivables can increase if the firm is not able to recover the trade credit

extended to its customers. Essentially, the main issue is that asset growth is not investment,

especially as considered by the q-theory related motivation of HXZ and in the Gordon dividend

2See Appendix B for a partial but representative list of related investment papers and the measures used in those
papers.
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discount model framework of FF5F. We conduct tests to determine how well these new models

perform when using theory implied investment factors instead of an asset growth factor.

Our empirical work proceeds as follows. In Section 2, we briefly review the asset growth anomaly

of Cooper, Gulen, and Schill (2008) and provide out-of-sample evidence on how well the anomaly

performs over the full period of our sample. In Section 3, we provide background on the factor

models of HXZ and FF5F, with special attention to the theory and empirical implementation of

their investment factors. Throughout the paper, we examine the performance of the FF5F and

HXZ models using test assets from both papers. We first discuss tests of the FF5F and HXZ

models on a set of 35 anomaly spread portfolios from HXZ and compare their ability to explain

the anomaly spread portfolio returns to more established asset pricing models in the literature [i.e.,

CAPM, the Fama and French (1993) three-factor model (FF3F), and the Carhart (1997) four-factor

model (C4F)]. We find that the HXZ model outperforms all the others, yielding insignificant spread

portfolio alphas on all but 5 of the 35 anomalies. In contrast, the Carhart (1997), and FF5F models

fail to explain 16 and 21 anomalies, respectively. Next, we test versions of FF5F and HXZ in which

we drop their asset-growth based factor but retain their other factors. We find that the models

perform uniformly worse; the HXZ model fails to explain 21 anomalies, and the FF5F model fails

to explain 24. Clearly, in our sample, the asset growth factor, in both the FF5F and HXZ models,

play a key role in explaining anomaly spread portfolio returns.

In Section 4, we compare the performance of the FF5F and HXZ models using alternative

(more conventional) measures of investment. We are particularly interested in the performance

of investment factors related to the theoretical motivations of these models. The most common

measure employed in empirical tests of the q-theory focus on investment in physical capital, which

is measured using either the capital expenditure (CAPX) figure from the statement of cash flows

or the growth in property, plant, and equipment (PPE). We also consider investment measures

that incorporate intangible capital into the investment factors based on the capital decomposition

measures in Peters and Taylor (2017). For the HXZ model, replacing the asset growth factor

with alternative investment factors results in significantly worse performance. When using CAPX

(PPE), the model fails to explain 15 (14) out of 35 anomalies, and when using “total capital” from

Peters and Taylor (2017), the model fails to explain 14 anomalies. For the FF5F model, replacing

the asset growth factor with alternative investment factors also results in worse model performance.
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When using CAPX (PPE), the model fails to explain 23 (24) out of 35 anomalies, and when using

“total capital,” the model fails to explain 24 anomalies. In sum, both the HXZ and FF5F models

perform markedly better using an asset growth factor rather than investment factors. In some

cases, especially for the FF5F model, the alternative investment models do not improve on a model

with no investment factor.

In Section 5, we study why the asset growth factor works well in explaining anomaly returns by

implementing an asset growth decomposition from Cooper, Gulen, and Schill (2008). We decompose

the asset growth factor into factors that come from changes in items from both the left-hand side and

the right-hand side of the balance sheet. On the left-hand-side, we create factors based on changes

in cash, noncash current assets, gross PPE, and other assets (i.e., total assets minus the previous

three categories). On the right-hand-side, we develop factors using changes in long-term debt,

common equity, retained earnings, and operating liabilities (i.e., total assets minus the previous

three categories). The decomposition suggests that it is difficult to justify growth in total assets as

an accurate measure of a firm’s investment activity since other arguably “non-investment” related

firm activities play important roles in the asset growth of most firms. For example, we find that

growth in PPE, a common measure of investment in the literature, is not the largest component

of asset growth. Growth in noncash current assets is the largest component in most of the asset

growth deciles.

We then analyze the performance of variations of the HXZ model, where the asset growth factor

is replaced with a factor based on a subcomponent of asset growth from the left-hand side or the

right-hand side of the balance sheet. Our results suggest that the performance of the asset growth

factor in the HXZ model is driven in part by the factor based on noncash current assets. When

replacing the asset-growth factor with a factor based on growth in noncash current assets, we obtain

a factor model that performs almost as well as the original HXZ model; the noncash current assets

model explains all but 8 anomalies (as opposed to 5 for the asset growth based model). We then

perform the same tests for the FF5F model. As with the HXZ model, we find that a FF5F model

based on growth in noncash current assets performs just as well as the original FF5F model using

asset growth. Also, the FF5F model, using a factor based on long-term debt, performs as well as

the FF5F model using asset growth.

We repeat all previous tests using various sets of 25 and 32 portfolio combinations (formed
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by sorting on size, book-to-market (BM), asset growth (AG), and profitability), which is similar

to portfolios used in FF5F. We consider a total of 171 portfolios. With these test assets, the

HXZ model with asset growth fails to explain the average returns of 21 of 171 portfolios, and

the FF5F fails to explain 36 of 171 portfolios. The performance of both models drops when we

exclude asset growth as a factor; the HXZ model fails to explain 88 portfolios, and the FF5F

model fails to explain 37 portfolios. When we swap the asset growth risk premium with premiums

based on CAPX and PPE, both models experience worse performance in explaining the portfolio

returns. As we previously found with the anomaly spread portfolios, when we examine the balance

sheet components of asset growth, the HXZ model performs reasonably well, relative to the other

components, using noncash current assets as the investment factor, and the FF5F model performs

well using a long-term debt factor. These results (suggesting that the HXZ and FF5F models

perform just as well if variables such as growth in noncash current assets and growth in long-term

debt are used to form the investment factor) will likely come as a surprise to many readers, since

these variables ignore obvious measures of investments such as PPE spending.

Finally, we perform “model mining” tests where we construct factors using combinations of

possible investment measures and subcomponents of asset growth for a total of 220 different in-

vestment factors. These tests let us evaluate the performance of the asset growth based investment

models relative to many other investment models that a researcher with no strong prior on the exact

construction of the investment factor may consider. We evaluate how these alternative investment

factors perform in explaining the 35 anomalies and compare their performance to the HXZ and

FF5F models. Consistent with our previous results, we find for the HXZ (FF5F) model that using

asset growth as the investment factor outperforms almost all (the majority) of the other investment

factors. Traditional measures of investment, such as CAPX and PPE, do not perform as well in

explaining the anomalies as a factor based on asset growth, factors related to asset growth, and

factors composed primarily of non-CAPX or non-PPE related components. These findings suggest

that if an ex-post econometrician were asked to pick an “investment-type” variable with the most

explanatory power in-sample (with a benefit of hindsight), asset growth would likely emerge as one

of the obvious variables.

Overall, we view our results as casting doubt on the idea that these models’ ability to explain

asset pricing anomalies can be attributed to the fact that total asset growth is an appropriate

6



measure of investment. Asset growth contains investment, but it also captures many other aspects

of balance sheet expansion and contraction that arguably have little to do with most researchers’

definitions of firm investment. These non-investment components of asset growth appear to drive

the empirical success of the current popular asset pricing models. More generally, our study points

out that, while having theoretical underpinnings for new factor models is important, forging a tight

link between those theories and their empirical implementation is equally important, especially

when it comes to interpreting results. Our findings suggest that the appropriate use of asset-

growth based return premiums is in performance benchmarking models, much like many researchers’

adaptation of the Carhart (1997) four-factor model, rather than in asset pricing models.

2 The Asset Growth Anomaly

We begin our analysis by revisiting the asset growth anomaly of Cooper, Gulen, and Schill (2008).

In June of every year t from 1968 to 2016, we sort firms into deciles based on their year-over-year

growth in total assets, measured in the fiscal year ending in calendar year t − 1.3 In Table I, we

present time-series means of several portfolio-level average characteristics: asset growth, market

capitalization, book-to-market ratio (“BM”), buy-and-hold returns over the past 12 and 36 months

(“RET12” and “RET36”), gross profitability (“GP”), return on equity (“ROE”), net equity issuance

over the past 1 and 5 years (“Issuance 1 year” and “Issuance 5 years”), and accruals.4 In the last

five columns of Table I, we also break down the composition of each decile-portfolio into firms of

various sizes and ages. Specifically, we first present the percentage of firms in each decile that

are classified as “micro”, “small”, and “large”, based on the 20th and 50th NYSE market cap

percentiles, following Fama and French (2008). Second, in the last two columns, we present the

average firm age for each decile, as well as the percentage of firms younger than five years.5

In the bottom two rows of Table I, we present the average differences in firm characteristics

between decile 10 and decile 1, along with their respective t-statistics. The results show significant

differences between the extreme asset growth deciles along all dimensions reported in the table; high

asset growth firms are significantly larger, have lower book-to-market ratios, better past returns,

3Consistent with the extant literature, our sample excludes financials and firms with negative book equity.
4See Appendix A for a detailed description of how these variables were calculated.
5Firm age is measured as the number of years since the firm appears in CRSP.
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better profitability, more equity issuance, and higher accruals than low asset growth firms. The

high asset growth portfolio also has significantly fewer micro firms, more small and large firms, and

more young firms than the low asset growth portfolio. Interestingly, several of these characteristics

do not change monotonically across the ten asset growth deciles; the firms in the first and tenth

decile are smaller, younger, less profitable, and issue more equity than the firms in the remaining

eight deciles. Overall, Table I documents substantial cross-sectional differences among firms with

varying levels of asset growth.

We next investigate if the previously documented predictive power of asset growth over future

stock returns survives when controlling for many of these other firm characteristics in a regression

setting. In Table II, we present Fama-MacBeth (1973) regressions of future 12-month buy-and-hold

returns on asset growth and other firm characteristics. The sample period in Table II is from July

1968 to June 2016, which extends the original July 1968 to June 2003 sample of Cooper, Gulen, and

Schill (2008). In Panel A, we gradually introduce controls for size (market capitalization as of June

of each year), book-to-market equity (“BM”), past 12 months buy-and-hold returns (“RET12”),

and gross profitability (“GP”).6 In the last three columns, we run these regressions separately for

micro, small, and large firms. Across the board, we find that asset growth is strongly negatively

associated with future 12-month stock returns.7 Overall, this table shows that asset growth remains

a strong predictor of the cross-section of returns.

In Panel B of Table II, we investigate if the predictive power of the asset growth variable

survives the inclusion of other anomaly variables proposed in the literature. In all specifications, we

estimate Fama-MacBeth (1973) regressions in which the dependent variable is future 12-month buy-

and-hold returns and the control variables include size, BM, past 12-month buy-and-hold returns

(i.e., momentum), asset growth, and an additional anomaly variable taken from the following

representative list: net operating assets (“NOA”), common equity issuance (“CEI”), operating

accruals (“OA”), gross profitability (“GP”), return on assets (“ROA”), standardized unexpected

earnings (“SUE”), and abnormal returns around earnings announcements (“ABR”). As a whole,

the results show that all of these variables have significant predictive power over future returns,

6We restricted our attention to these firm characteristics for brevity. In unreported tests, we verify that our results
hold if we simultaneously include a large set of controls, including, but not limited to accruals, firm age, and equity
issuance. Panel B provides further robustness tests.

7Standard errors are corrected for autocorrelation using the Newey-West (1987) procedure with three lags.
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but none of them explains the predictive power of asset growth.

3 New Factor Models

3.1 The Hou, Xue, and Zhang (2015) four-factor model

HXZ propose a factor model that includes investment and profitability factors alongside more

traditional market and size factors. As theoretical support for this choice of factors, the authors

use a production-based asset pricing model with an exogenous stochastic discount factor and solve

for the optimal investment policy. The equilibrium conditions of the model suggest a negative

relationship between expected returns and investment, and a positive relationship between expected

returns and expected profitability. The intuition proposed by the authors is that, controlling for

profitability, firms that invest more are the firms with lower discount rates (i.e., expected returns).

Similarly, controlling for investment levels, firms with higher expected profits should have higher

discount rates.

The HXZ four-factor model is given by:

Rit −Rf,t = αi + βiMKTRMKT,t + βiMERME,t + βiI/ARI/A,t + βiROERROE,t (1)

The market factor (“MKT”) is the excess return on the CRSP value-weighted return index, and Rf,t

is the yield on the one-month Treasury bill. Firm size (“ME”) is calculated as price times number

of shares using CRSP data. Importantly, the authors measure corporate investment (“I/A”) as the

annual percentage growth in total assets and offer, as far as we can determine, no explanation for

why this is more appropriate than the traditional measures based on capital expenditures and PPE

growth found in the investments literature. Finally, profitability (“ROE”) is measured as income

before extraordinary items divided by one quarter lagged book equity (using quarterly Compustat

data).

To construct the size, investment, and profitability factors, HXZ use a 2-by-3-by-3 independent

sort on market capitalization, asset growth, and ROE. Specifically, at the end of every June, the

authors sort firms into two groups based on how their market cap compares to the median NYSE

market cap that month. Independently, every June, the authors sort firms into three groups based
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on how their asset growth compares to the 30th and 70th NYSE asset growth percentiles.8 Finally,

every month, the authors independently sort firms into three groups based on how their ROE

compares to the 30th and 70th NYSE ROE percentiles that month.9 The intersection of these

three independent sorts yields 18 portfolios. Every month, the three factors are calculated using

the value-weighted returns on these 18 portfolios. The return on the size factor equals the simple

average of the returns on the 9 small portfolios minus the simple average of the returns on the 9

large portfolios. The return on the “investment factor” equals the simple average of the returns

on the 6 low asset growth portfolios minus the simple average of the returns on the 6 high asset

growth portfolios. The return on the profitability factor is the simple average of the returns on the

6 high ROE portfolios minus the simple average of the returns on the 6 low ROE portfolios.

3.2 The Fama and French (2015) five-factor model

FF5F propose a model that augments their Fama and French (1993) three-factor model with an

investment factor and a profitability factor. To justify this model, the authors start with a dividend

discount model and use a clean-surplus assumption to write market value as discounted expected

profits minus discounted expected growth in book equity (which they call investment). Hence,

keeping valuations and expected investments constant, higher profitability should be associated

with higher discount rates. Similarly, keeping valuations and expected profits constant, higher

expected investment should imply lower discount rates.

The FF5F model is given by:

Rit−Rf,t = αi+βiMKTRMKT,t+β
i
SMBRSMB,t+β

i
HMLRHML,t+β

i
RMWRRMW,t+β

i
CMARCMA,t (2)

Once again, the market factor (“MKT”) is the excess return on the CRSP value-weighted

return index, and Rf,t is the yield on the one-month Treasury bill. SMB (small-minus-big) and

HML (high-minus-low) are size and value factors analogous to those from the Fama and French

(1993) three-factor model. RMW (robust-minus-weak) is a factor based on operating profitability,

which is measured as revenues minus COGS, interest expense, and SG&A, all divided by book

8Asset growth in year t is measured using total assets in fiscal years ending in calendar years t− 1 and t− 2.
9To calculate ROE in a given month m, the authors use the most recently announced earnings prior to month

m divided by the book equity in the quarter prior to those earnings. To avoid stale data, the earnings figure must
correspond to a fiscal quarter ending within 6 months of month m.
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equity. CMA (conservative minus aggressive) is a factor based on corporate investment, measured

again as annual growth in total assets.10 While their model speaks to growth in book-equity as the

measure of investment, the authors allude to choosing asset growth instead because sorts on asset

growth produce larger spreads in mean returns.

The value (HML), profitability (RMW), and investment (CMA) factors are constructed using

three different 2-by-3 independent sorts, each based on size and either book-to-market equity (for

HML), operating profitability (for RMW), or asset growth (for CMA). For example, to build the

HML factor, every June, firms are sorted into two groups based on how their market cap compares

to the NYSE median market cap that month. They also are independently sorted into three groups

based on how their book-to-market ratio compares to the 30th and 70th NYSE book-to-market

percentiles. Using this 2-by-3 sort, the return on the HML factor in any given month is the simple

average of the returns on the two high book-to-market portfolios minus the simple average of

the returns on the two low book-to-market portfolios. The RMW and CMA factors are created

analogously. Notice, however, that each 2-by-3 sort creates its own size factor.11 The return on

the overall SMB factor is calculated as the simple average of the returns on the three size factors

resulting from these individuals 2-by-3 sorts.12

It is important to note that the valuation model used as motivation in FF5F predicts a negative

relation between (long-run) expected returns and expected investment, while the q-theoretic model

in HXZ predicts a negative relation between (one-period) expected returns and realized investment.

Hence, in FF5F, asset-growth is used as a proxy for expected investment while in HXZ it is used as

a proxy for realized investment. We refrain from analyzing the relation between asset-growth and

expected investment for the simple fact that any such analysis must be preceded by a determination

of an appropriate measure of realized investment. The main argument of our study is that this

is by no means a trivial matter. In the absence of a generally agreed upon measure of realized

investment, any discussion of expected investment would be speculative at best.13

10In June, of every year t, operating profitability and asset growth are measured using annual Compustat data
from fiscal year ending in calendar year t− 1.

11For example, in the 2-by-3 sort based on size and book-to-market, the return on the size factor equals the average
return on the three small portfolios minus the average return on the three big portfolios.

12Fama and French (2015) also form factors based on three 2-by-2 sorts (instead of 2-by-3) as well as on a single
2-by-2-by-2-by-2 sort. At the end of their paper, they suggest that they prefer the 2-by-3 sorts because they follow the
approach in Fama and French (1993) and the resulting factors perform no worse than those based on the alternative
sorting strategies.

13That being said, in unreported results, we test whether various measures of investment (e.g. asset growth,
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In addition to the empirical difficulties of analyzing the relation between asset growth and

expected investment, there are also theoretical challenges to the idea that asset growth explains

expected returns because it is a good proxy for expected investment. As discussed in Hou, Xue,

and Zhang (2014), q-theory predicts a positive relation between one-period-ahead expected returns

and expected investment. In addition, Hou, Xue, and Zhang (2014) show that, while the valuation

model used in FF5F predicts a negative relation between expected investment and long-run expected

returns, a reformulation of the model yields a positive relation between expected investment and

one-period-ahead expected returns.

3.3 Empirical performance of asset-growth based models

To examine the performance of the various factor models used in this study, we use the same set of

anomaly variables as HXZ. They start with a broad set of 80 anomaly variables and form portfolios

based on NYSE cutoffs for each of these variables to prevent micro stocks from dominating the

extreme portfolios. They then focus only on the anomaly variables that generate value-weighted

spread portfolios with significant CAPM alphas. This yields a list of 35 anomaly variables which

we focus on in this study. Following HXZ, we also form portfolios based on NYSE cutoffs and

report results only for value-weighted portfolio returns. Our sample period starts in January 1972

and ends in December 2016.14 Appendix A describes how each of the 35 anomalies used in this

study is constructed.

In Table III, we use five different factor models to calculate alphas and t-statistics for the spread

portfolios of the 35 anomalies. Specifically, we use the capital asset pricing model (CAPM), the

Fama and French (1993) three-factor model (FF3F), the Carhart (1997) four-factor model (C4F),

the HXZ four-factor model, and the FF5F five-factor model. The bottom four rows of the table

summarize how these models fare at explaining the anomaly returns. In the row titled “Mean |α|:

spread” for each of the five models, we take the average of the absolute values of the 35 spread-

portfolio alphas corresponding to that model. Here the HXZ model performs significantly better

change in PPE, the total investment measure of Peters and Taylor (2017)), have predictive power over future levels
of investment and we find that this is not the case. For example, a regression of future asset growth on current asset
growth yields an R2 of 2.5% and a regression of future PPE growth on current PPE growth has an R2 of 8.9%.
Similarly, a regression of future PPE growth on current asset growth has an R2 of 7.8%. All these R2 statistics fall
drastically (in the range of 1-3%) if we use two-years-ahead predictive regressions. This suggests that asset growth
and several measures of realized investment are likely poor proxies for expected investment.

14The sample period in Hou, Xue, and Zhang (2015) is from January 1972 to December 2012.
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than the rest. It yields an average absolute spread alphas of 19 bps per month, whereas the FF5F

model and the Carhart (1997) model yield average absolute spread alphas of 38 and 29 bps per

month, respectively. The same cannot be said when looking at the average absolute alphas of all

decile portfolios (as opposed to just the spread portfolios). As shown in the “Mean |α|: all” row,

there is little difference in the average absolute alphas of the Carhart (1997), HXZ, and FF5F

models.

Moving on to more formal testing methods, we count, for each model, the number of anomalies

with spread-portfolio alphas with t-statistics larger than 2 in absolute value. The results, reported in

the “N(|t| > 2)” row, show that the HXZ model significantly outperforms all the others, explaining

all but 5 of the 35 anomalies. In contrast, the Carhart (1997) and FF5F models explain all but

16 and 21 anomalies respectively. Finally, for each model, we count the number of anomalies for

which the model is rejected by the Gibbons, Ross, and Shanken (1989, GRS) test at the 5% level.15

As seen in the “N(p < 5%)” row, the HXZ and FF5F models get rejected by the GRS test for 18

and 23 anomalies respectively.

Overall, Table III provides two main conclusions about the performance of the new investment–

and profitability–based factor models. First, while the FF5F five-factor model performs signifi-

cantly better than the Fama and French (1993) three-factor model, it does not provide significant

improvements over the Carhart (1997) model. Second, the HXZ model performs significantly better

than both the traditional CAPM, Fama and French (1993), and Carhart (1997) models, as well as

the new FF5F model, regardless of which test metric we use.

FF5F test the performance of variations of their five factor model using several sets of tests

assets (portfolios). In Table IV, we use the same test assets to test the performance of the models

from Table III. Specifically, the test assets consist of 25 Size-Book to Market portfolios (Panel B), 25

Size-Asset Growth portfolios (Panel C), 25 Size-Profitability portfolios (Panel D), 32 Size-Book to

Market - Asset Growth portfolios (Panel E), 32 Size-Book to Market-Profitability portfolios (Panel

F), and 32 Size-Asset Growth-Profitability portfolios (Panel G). In Panel A, we use a set of test

assets consisting of all the portfolios used in panels B through G. For each model (i.e., column), we

present the average of the absolute alphas corresponding to each set of portfolios (“Mean |α|”), the

15The Gibbons, Ross, and Shanken (1989) model tests the null hypothesis that the alphas of all the decile portfolios
formed on a particular anomaly variable are jointly zero.
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number of alpha t-statistics with absolute value larger than 2 (“N(|t| > 2)”) and the GRS statistic.

The results in Panel A of Table IV show that the HXZ and FF5F models outperform the

CAPM, Fama and French (1993), and Carhart (1997) models on all three metrics. However, the

HXZ model seems to significantly outperform the FF5F only with respect to the number of t-

statistics larger than 2. These two basic results hold regardless of which set of tests assets we

use (Panels B through G). Moreover, the HXZ and FF5F models seem to perform the best in

explaining the 25 Size–Profitability portfolios (Panel D), and they perform the worst in explaining

the 32 Size–AG–Profitability portfolios (Panel G).

4 Alternative Measures of Corporate Investment

Both HXZ and FF5F suggest adding investment-based factors to factor pricing models using the

basic intuition that, in equilibrium, firms with higher investments must be firms with lower discount

rates (holding everything else constant). We argue that, if the cross-sectional dispersion in corporate

investment explains much of the cross-sectional dispersion in average returns observed when sorting

stocks on other anomaly variables, then this result should be reasonably robust to changes in how

corporate investments are calculated. In this section, we test if this is the case using several different

measures of investment used in previous studies.

The corporate investment literature is vast, and any survey of it is bound to be incomplete. With

this caveat in mind, our broad review of the literature reveals that empirical studies of corporate

investment (including tests of the q-theory) most commonly focus on investment in physical capital,

measured either using the capital expenditure (CAPX) figure from the statement of cash flows or

growth in property, plant, and equipment (PPE). Appendix B provides a sample of studies using

CAPX or PPE growth to measure investment. This list is by no means exhaustive. Our only intent

is to point out that, at least from our reading of the literature, standard practice seems to measure

investment using CAPX and PPE-based variables.16 Hence, we use CAPX and change in PPE,

both divided by lagged PPE, as our two traditional measures of investment. In unreported tests,

we verify that our results are qualitatively unchanged if we use variations of these two measures,

16For comparison, in our search, we found only three studies that use growth in total assets to measure corporate
investment – Alti and Tetlock (2014), Li and Zhang (2010), and Baker, Stein, and Wurgler (2003). The latter two
use it as part of a larger set of investment measures.
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such as (1) normalizing by lagged total assets instead of PPE (e.g. Warusawitharana and Whited

(2016)) (2) normalizing by replacement value of capital calculated using a perpetual inventory

method (e.g. Fazzari, Hubbard, and Petersen (1988)) (3) subtracting the sale of PPE to obtain

measures of net investment instead of gross investment (e.g. Liu, Whited, and Zhang (2009)) (4)

adding R&D expense to all investment measures (e.g. Asker, Farre-Mensa, and Ljungqvist (2015))

(5) adding change in inventory to all investment measures (e.g. Lyandres, Sun, and Zhang (2008))

and (6) using capital expenditures net of depreciation (e.g. Denis and Sibilkov (2010)).

In a recent study, Peters and Taylor (2017) point out that although firms mainly owned physical

capital when the neoclassical theory of investment was developed more than three decades ago,

intangible capital has become an increasingly important factor of production and should be included

in measures of corporate investment. They calculate total intangible capital as the sum of intangible

capital on the balance sheet (goodwill) plus intangible capital off the balance sheet. The latter is

calculated as capitalized knowledge capital (R&D) plus capitalized organizational capital (30% of

SG&A).17 The total capital of a firm is calculated as the sum of physical capital (gross PPE) plus

intangible capital. In our analysis below, we use the annual change in these measures of total,

tangible and intangible capital as additional measures of investment.18

4.1 Relationship between asset growth and alternative investment measures

In Panel A of Table V, for each asset-growth decile, we show the average decomposition of firms’

total capital into its various components (expressed as percentages of contemporaneous total capi-

tal). The first two columns show how total capital decomposes into physical and intangible capital.

Across the 10 asset growth deciles, we see that a large portion of firms’ capital is intangible, which

suggests that focusing on growth in physical assets misses a significant component of firms’ invest-

ment activity. The next two columns show how total intangible capital decomposes into on- and off-

balance sheet intangible capital. This shows that off-balance-sheet intangible capital represents,

on average, more than a third of a firm’s total capital and most of their total intangible capital.

This means that measures of investment based only on balance sheet items also ignore a significant

17The assumption that firms on average use 30% of SG&A as an investment in human capital and the rest for
operating expenses has been used in several other studies e.g. Eisfeldt and Papanikolaou (2014), Hulten and Hao
(2008), and Zhang (2014).

18All three change variables are normalized by lagged total capital.
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component of corporate investment. This seems to be particularly important for firms with the

lowest asset growth (decile 1), where almost half of the capital (49.5%) is in the form of off-balance

items. The last two columns in the panel show how off-balance sheet intangible capital decomposes

into knowledge capital (R&D) and organizational capital (SG&A). Across the 10 deciles, we find

that organizational capital accounts for the largest portion of intangible capital. Finally, looking at

the differences between the extreme asset growth deciles (bottom two rows in the panel), we find

that high asset growth firms tend to invest more in on-balance sheet intangible capital (goodwill)

but less in off-balance-sheet capital (mostly coming from organizational capital).

In Panel B of Table V, using several different measures of investment, we show average invest-

ment levels for each asset growth decile. In the first two columns, we use the traditional measures

described above: CAPX divided by lagged PPE and percentage change in PPE. The third column

reports averages in the percentage change in total capital, as measured by Peters and Taylor (2017).

The last six columns use changes in the different types of capital discussed in Peters and Taylor

(2017), normalized by lagged total capital. The bottom two rows show that regardless of which

investment measure we choose, firms in the highest asset growth decile invest significantly more

than those in the lowest asset growth decile. However, looking at the last three columns, we notice

that the relationship is not monotonic. In fact, the bottom asset growth decile invests more in off

balance sheet capital than the next five to six asset growth deciles. This suggests that measures of

investment based on balance sheet items (including asset growth) provide an incomplete picture of

corporate investment activity. To further illustrate this point, in Panel C, we present correlation

coefficients between asset growth and each investment measure. We find that these correlations are

moderate when using measures of investment in physical capital (around 0.55), but they are quite

low when using measures of investment in intangible capital, particularly off-balance-sheet capital

(around 0.17 to 0.30).

4.2 Explaining anomaly returns

In Table VI, we investigate how the HXZ and FF5F models perform if the investment factor

is constructed using alternative measures of corporate investment (as opposed to asset growth).

Panel A presents results using variations of the HXZ model. The first column (“AG”) uses asset

growth to measure investment (hence this is just the HXZ model). In the second column (“None”),
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we reconstruct the HXZ model using no investment factor whatsoever. The following five columns

correspond to different versions of the HXZ model in which the investment is not measured as

asset growth but as either CAPX divided by lagged PPE (“CAPX”), percentage growth in PPE

(“PPE”), percentage growth in the total capital (“TOTK”), change in physical capital divided by

lagged capital (“PHK”), or change in intangible capital divided by lagged total capital (“INTK”).

The last three measures are based on the capital decomposition measures of Peters and Taylor

(2017).19

The bottom four rows of Panel A summarize the performance of all these alternative models.

Comparing the first two columns (“AG” and “None”), we notice that the HXZ model performs

significantly better (as judged by the number of anomalies with spread-portfolio alphas with t-

statistics larger than 2 in absolute value (“N(|t| > 2)”) with the investment (asset growth) factor

than without the investment (asset growth) factor. However, as seen in the following five columns,

the same cannot be said if the investment factor is constructed using any other measure than asset

growth. PPE and CAPX perform better than no investment factor, but worse than asset growth.

The TOTK, PHK, and INTK factors also do not perform as well as asset growth. In fact, INTK

performs about as well as the model with no investment factor. Note that there is not much

evidence of model performance differences as judged by the average absolute alphas of all decile

portfolios (“Mean |α|: all”) and the associated GRS tests. In fact, the model with no investment

factor (“None”) performs about as well as all models with investment factors as judged by these

two metrics. The success of the HXZ model is most evident using the test on spread portfolio

alphas (“Mean |α|: spread”). Overall in this panel, even though in some cases the alternative

investment measures do perform somewhat better than the model without an investment factor,

their performance does not come near the performance of the asset-growth based model.

In Panel B, we perform the same analysis using variations on the FF5F model.20 Here the

difference between the asset-growth-based FF5F model and its variants using alternative investment

measures is not as stark. Nevertheless, we notice that many of the alternative investment models

do not even improve on a model with no investment factor (the “None” column).

19Note that because each of the factors in the HXZ model depends on the multivariate sort on size, investment,
and profitability, when we change the measure of investment, this changes not only the investment factor, but also
the size and profitability factors.

20Note that changing the way we measure investment in the Fama and French (2015) model will change not only
the investment factor but also the size factor, because this factor depends on the 2-by-3 sort on size and investment.
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4.3 Explaining test-asset returns

In Table VII, we summarize the ability of the alternative models described above to explain returns

on various sets of test assets (portfolios). We use the same groups of portfolios as in Table IV, and

the same models as in Table VI. Panel A of Table VII shows the performance of models based on

HXZ. Panel A1, in which we use all 171 test assets together, shows that all the models obtained

by substituting the asset-growth based factor with alternative measures of investment significantly

underperform with respect to the asset-growth based HXZ model (AG). This holds true even when

we use the complete measure of investment of Peters and Taylor (2017) (TOTK) and is valid

regardless of which set of test assets we look at (Panels A1 through A7). For example, the base

HXZ model (“AG” in Column 1) can explain the average returns of all but 21 of the 171 portfolios.

In contrast, the other models with substitute investment factors range from failing to explain 35

portfolios (total capital (TOTK)) to 61 portfolios (intangible capital (INTK)).

In Panel B of Table VII, we show the performance of models based on the FF5F model. Once

again, the models based on alternative measures of investment perform worse than the asset-growth

based FF5F model (AG), even though the difference is not as pronounced as for the HXZ model. It is

important to note that the models based on alternative investment factors often do not outperform

the model with no investment factor whatsoever (“None”).

To reiterate, the two main findings of Table VI and Table VII are that (1) using alternative

measures of corporate investment to create the investment factor in HXZ yields models that perform

significantly worse than the original model based on asset-growth and (2) using different measures

of investment in the FF5F model generally does not improve on a version of the model with no

investment factor. These findings hold even when we consider a much larger set of investment

measures, as explained at the beginning of this section. In fact, of all the measures we use, none of

them comes close to the performance of the HXZ model with asset growth. The fact that no other

measure of investment provides similar performance as the asset-growth based model of HXZ, and

that no other measure of investment provides significant improvements on a version of the FF5F

model with no investment factor, raises serious concerns about whether these models truly identify

the negative theoretical relation between investment and expected returns.
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5 Decomposing Asset Growth

We find it difficult to justify growth in total assets as the most accurate measure of a firm’s

investment activity. First, as mentioned above, the asset growth measure ignores investments in

off-balance sheet intangible capital, such as knowledge capital and organizational capital. Second,

growth in total assets confounds investments with the financing used for them. For example, if a

firm uses cash to finance and invest in PPE, we would observe zero growth in total assets when

an investment was clearly made. Third, it is not clear if growth in current assets tells us much

about the firm’s investment activities. While increases in current assets could be a result of the

firm growing its operations, they can also be a result of the firm stagnating. Cash balances can

increase in the absence of investment opportunities, inventory can increase if the firm is not able

to sell its products at the same rate, and accounts receivables can increase if the firm is not able

to recover the trade credit extended to its customers.

While the asset growth measure may have the benefit of aggregating several different types

of investment made by the firm, as argued above, this aggregation may just as easily introduce

noise into the process of measuring corporate investments. In fact, studies such as Peters and

Taylor (2017), detail exactly how this aggregation should be done and what types of investments

should be included in the calculation. Nevertheless, the data shows strong evidence that the asset

growth factor helps explain the cross-sectional dispersion of expected stock returns. If this is indeed

because asset growth is a better aggregator of all the firm’s investment activities, then if we restrict

ourselves to specific subcomponents of asset growth and use them to form our investment factor, we

should obtain factor models that do not perform nearly as well as the asset-growth based models.

We investigate this prediction in the remainder of this section.

We decompose a firm’s growth in total assets into changes in items from both the left-hand side

and the right-hand side of the balance sheet. On the left-hand side, we use changes in cash, noncash

current assets, gross PPE, and other assets (i.e., total assets minus the previous three categories).

On the right-hand side, we use changes in long-term debt, common equity, retained earnings,

and operating liabilities (i.e., total assets minus the previous three categories). All eight growth

measures are normalized by lagged total assets. As a result, the sum of all the subcomponents on

each side of the balance sheet amounts to the firm’s percentage growth in total assets.
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In Panel A of Table VIII, for each asset growth decile, we present averages of asset growth

as well as averages of its subcomponents. Looking at the subcomponents on the left-hand side

of the balance sheet, we notice that growth in PPE – a common measure of investment in the

literature – is not the largest component of asset growth. Growth in noncash current assets seems

to play that role across almost all asset growth deciles. On the right-hand side of the balance

sheet, the largest component of asset growth seems to be the change in retained earnings for firms

with low asset growth, and common equity for firms with high asset growth. Panel B shows the

correlations between asset growth and its various subcomponents. While unsurprisingly high, these

correlations are nowhere near perfect, which means that sorting on asset growth will not yield the

same portfolios as sorting on its subcomponents.

5.1 Fama-MacBeth regressions

To investigate the explanatory power of the different asset-growth components, in Table IX, we run

Fama and MacBeth (1973) regressions of future 12 month returns on size (ME), book-to-market

(BM), gross-profitability (GP) and components of asset growth. In Panel A, we use items from

the left-hand-side of the balance sheet as predictors. In the first five columns, we use all firms in

our sample. We find that both when introduced separately (columns 1-4), and together (column

5), all components except for growth in cash have statistically significant predictive power over

returns. In the last five columns, we address the issue that the previous results overweight small

firms by running the same regressions excluding the micro firms (i.e. market capitalization below

the 20th NYSE cutoff). We find that in this sample, when introduced together (last column), the

only subcomponent that has predictive power over returns is growth in noncash current assets.

In Panel B, we use items from the right-hand-side of the balance sheet as predictors. Here the

results are qualitatively identical if we use the full sample (first five columns) or the all-but-micro

subsample (last five columns). When introduced separately, all components except for growth in

retained earnings (RE) are significant predictors of returns. However, when introduced together,

only the growth in long term debt (DEBT) and growth in book equity (EQ) are statistically

significant.21

21Daniel and Titman (2006), using an equity issuance measure, find similar results as we do for growth in book
equity in predicting the cross-section of returns.
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Overall, the results in Table IX provide two important takeaways. First, they highlight the fact

that several different sources of growth in total assets have predictive power over future returns.

Second, the subcomponents that are reliable predictors of returns (growth in noncash current assets,

debt, and equity) are not the most direct measures of investment activity in a firm. This calls into

question the idea that the negative relation between asset growth and future returns is solely a

reflection of the negative relation between corporate investment and expected returns predicted by

q-theory.

5.2 Explaining anomaly returns

In Panel A1 of Table X, we analyze the performance of variations of the HXZ model, where the

asset growth factor is replaced with a factor based on a subcomponent of asset growth from the

left-hand side of the balance sheet. As before, the first two columns replicate the results using the

original HXZ model (“AG”) and a version of it with no investment factor (“None”). The summary

results from the bottom four rows of the table indicate that, when replacing the asset-growth factor

with a factor based on growth in noncash current assets (“NCCA”), we obtain a factor model that

seems to perform about as well as the original HXZ model. Indeed, the noncash current assets

model explains all but 8 anomalies based on spread portfolio alphas (as opposed to 5 for the asset

growth based model) and is only rejected 16 times by the GRS test (as opposed to 18 times for

the asset growth based model). Furthermore, based on the GRS test, the model based on growth

in other assets (“Other”) performs better than the asset-growth based model. In Panel A2, we

perform a similar exercise using subcomponents of asset growth from the right-hand side of the

balance sheet to construct the investment factor. Here we find that, based on the GRS test, the

model based on growth in operating liabilities (“OLIAB”) performs just as well as the original

asset-growth based model.

In Panels B1 and B2 of Table X, we repeat the analysis in Panels A1 and A2, using variations of

the FF5F model instead of the HXZ model. The bottom four rows in Panel B1 reveal that the model

based on growth in noncash current assets (“NCCA”), as judged by the number of insignificant

spread portfolio alphas, performs as well as the original FF5F model (“AG”). Similarly, from Panel

B2, we see that the model based on growth in long-term debt (“DBT”) performs about the same

as the FF5F model as judged by the spread portfolio alpha tests, and performs better using the
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GRS test.

The results in Table X show that the HXZ and FF5F models would perform just as well if

variables such as growth in noncash current assets and growth in long-term debt were used to form

the investment factor. Since these variables ignore obvious measures of investments, such as PPE

spending, our results cast serious doubts on the idea that these models’ ability to explain asset

pricing anomalies can be attributed to the fact that total asset growth is a comprehensive measure

of investment.

5.3 Explaining test-asset returns

In Panel A of Table XI, we summarize the ability of the alternative models based on the asset growth

left-hand side of the balance sheet decomposition to explain the returns on 171 test portfolios for

the HXZ model. As we showed previously in Table VII, the HXZ model (AG) can explain, as

judged by portfolio alphas, all but 21 out of 171 portfolios. When we examine the ability of factors

based on the asset side of the balance sheet decomposition of asset growth in Panel A, we see that

the property, plant, and equipment (PPE) factor, which arguably is the most investment-like part

of the decomposition, performs much worse than asset growth by failing to explain the returns of

54 portfolios. In fact, the best performing subcomponent factor is based on growth in noncash

current assets (“NCCA”). The NCCA model fails to explain 31 of the portfolios and has a mean

absolute alpha across all 171 portfolios of only slightly more than the asset growth model. In Panel

B, which contains the decomposed right-hand side of the balance sheet, none of the subcomponents

comes close to the performance of the asset growth model in explaining the portfolio alphas.

In Panels C and D of Table XI, we summarize the ability of the alternative models based on

the asset growth decomposition to explain the returns on 171 test portfolios for the FF5F model.

In Panel C, which contains the decomposition of assets, we see that relative to the FF5F model

(AG), there is not much ability to explain the test portfolio returns using other components. As

we have seen before in other tables, the factors based on the components of left-hand side of the

balance sheet do not perform much better than the “None” model without an investment factor.

When we examine decomposed liabilities in Panel D, we see that the model based on growth in

long-term debt (“DBT”) performs better than the FF5F model, as judged by the spread portfolio

alpha tests and the GRS test. Overall, the results from Table XI provide similar conclusions as
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with the spread portfolios in Table X. There is evidence that traditional investment factors do not

perform as well as asset growth, and models using growth in noncash current assets for HXZ tests

and growth in long-term debt for FF5F tests also perform well.

6 A Data–Mining Approach

In the previous two sections, we analyzed how the performance on the HXZ and FF5F models would

change if the asset-growth-based investment factor in these models was instead constructed using

several key alternative measures of corporate investment (Section 4) or subcomponents of asset

growth (Section 5). In this section, we verify that the main findings of our analysis are not driven

by our particular choice of alternative investment measures or subcomponents of asset growth. To

this end, we extend the analysis in the previous two sections by considering 144 different measures

of investment and 76 different asset growth subcomponents with which to construct alternative

investment factors.

To construct our set of investment measures, we start with three different measures of investment

in physical capital (CAPX, change in gross PPE and CAPX net of PPE sales). We then consider

several other investments that the firm could make: change in inventory, change in goodwill, change

in capitalized knowledge capital, and change in capitalized organizational capital (the latter three

measures are calculated as in Peters and Taylor (2017)). For each of the three choices of physical

capital investment, we add every possible combination of the additional four types of investment.

This yields 3 × 2 × 2 × 2 × 2 = 48 different investment measures. Finally, we use three different

lagged normalizing variables (total assets, gross PPE and total capital as measured in Peters and

Taylor (2017)), which leads us to 48× 3 = 144 investment variables.

To construct our set of asset growth subcomponents, we consider all the possible combinations

of several key items from the left-hand-side or the right-hand-side of the balance sheet. On the

left-hand-side, we consider all the possible combinations of growth in cash holdings, inventory,

accounts receivable, net PPE, goodwill and “other” (i.e. total assets minus the other five items).

This yields 26 = 64 possibilities, of which one equals 0 and one equals total asset growth. This

leaves us with 62 well defined subcomponents. On the right-hand-side, we use all the combinations

of the same basic components we use in Section 5: operating liabilities, long-term debt, retained
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earnings, and shareholders equity minus retained earnings. Following the same logic, this leaves us

with 24 − 2 = 14 well defined subcomponents (and 62 + 14 = 76 in total). All subcomponents are

normalized by lagged total assets.

Next, we follow the same approach as in Sections 4 and 5, and we analyze how the performance

of the HXZ and FF5F models changes if the asset-growth factor is replaced with a factor based on

one of our 144 different measures of investment or one of our 76 subcomponents of asset growth.

For brevity, we restrict our attention to two performance measures: the average absolute alpha of

the 35 anomaly spread portfolios, and the number of spread-portfolio alpha t-statistics greater than

two. Hence, for both performance metrics, lower values represent better performance.

Figure 1 shows our results for HXZ-like models. In the top two panels, we report histograms of

average spread alphas (left) and number of t-statistics greater than 2 (right) for the 144 HXZ-like

models obtained from replacing the asset growth factor with an alternative investment measure.

The bottom two panels do the same for the 76 HXZ-like models obtained by using subcomponents

of asset growth as the investment factor. In all panels, the red vertical line shows the performance

of the HXZ model, using asset growth as investment. As a reference, the blue vertical line shows

the performance of the HXZ model obtained using the percentage change in PPE to construct the

investment factor.

The top two panels in Figure 1 show that constructing the HXZ model using any of our 144

different measures of corporate investment results in models with strictly worse performance than

HXZ. The bottom two panels show that the performance of the HXZ model can in fact be matched,

in many cases, by using subcomponents of asset growth to construct the investment factor. This

is inconsistent with the notion that the superior performance of the HXZ model displayed in the

top two panels is a result of asset growth being a more complete or less noisy measure of corporate

investment. If this were the case, then we should not be able to create models that perform just as

well as HXZ by simply ignoring some components of asset growth.

Figure 2 shows the performance of the alternative FF5F-like models. The structure is the same

as in Figure 1. The results in the top two panels differ from Figure 1 in that they show that one can

use alternative measures of investment to construct FF5F-like models that perform better than the

original, asset-growth-based model. However, this is not surprising given the poor performance of

the FF5F model to begin with. The more striking result is in the bottom two panels, which show

24



that there are many ways to improve on the FF5F model by simply ignoring some components of

asset growth. Once again, this is inconsistent with the idea that the explanatory power of the asset

growth factor in the FF5F model can be attributed to asset growth being an accurate measure of

investment.

7 Conclusion

The Hou, Xue, and Zhang (2015) and Fama and French (2015) factor models describe the cross-

section of expected stock returns better than pre-existing factor models. However, the success

of these models is difficult to interpret. As Kozak, Nagel, and Santosh (2017) point out, factor

models in themselves cannot help distinguish between behavioral and rational determinants of

expected return variation.22 Apart from performance-evaluation applications, the usefulness of the

new factor models must lie in the fact that they may have uncovered new sources of comovement

between stock returns that previous factor models did not pick up.

Our study aims to improve our understanding of the sources of comovement underlying the

Hou, Xue, and Zhang (2015) and Fama and French (2015) models. We do so by asking whether the

“investment factor” in these models explains anomalies because it picks up comovement in returns

of firms with similar investment levels. We provide two main pieces of evidence that suggest this

may not be the case. First, we point out that the “investment factor” used in Hou, Xue, and

Zhang (2015) and Fama and French (2015) is measured using firm-level growth in total assets

which is difficult to justify as the most accurate available measure of investment. We find that

when we construct it using many other (arguably more direct) measures of corporate investment,

the explanatory power of the Hou, Xue, and Zhang (2015) and Fama and French (2015) models is

greatly reduced. Second, we show that using some subcomponents of asset growth (e.g. growth in

noncash current assets or growth in long-term debt) to construct the investment factor, we obtain

models that perform virtually as well as the Hou, Xue, and Zhang (2015) and Fama and French

(2015) models.

To sum, the performance of these new factor models can be replicated using measures of invest-

ment that are arguably incomplete, but cannot be replicated using traditional measures used in the

22To do so, one must at least specify investor beliefs and preferences.
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literature (e.g. CAPX or growth in PPE) or more complete measures that include investment in

intangible capital (e.g. Peters and Taylor (2017)). This raises serious doubts about the possibility

that the investment factor’s explanatory power is derived from the fact that it captures comovement

in returns of firms with similar investment levels. Our findings suggest that much more needs to be

done to understand what drives the explanatory power of the asset growth factor in Hou, Xue, and

Zhang (2015) and Fama and French (2015). As such, we view these models as more appropriate

for performance benchmarking purposes, and we caution against using them to estimate expected

returns or to investigate the risk-return tradeoff.

26



References

Ahern, K.R., and J. Harford. 2014. The importance of industry links in merger waves. The Journal
of Finance 69: 527–576.

Almeida H., and Murillo Campello. 2007. Financial constraints, asset tangibility, and corporate
investment. Review of Financial Studies 20:1429-–60.

Almeida, Heitor, Murillo Campello, and Antonio F. Galvao, 2010. Measurement errors in investment
equations. Review of Financial Studies 23:3279-–3328.

Almeida, H., I. Cunha, and M. Ferriera, 2017. The Real Effects of Credit Ratings: The Sovereign
Ceiling Channel. Journal of Financial Economics 72:249–290.

Alti, A., and P. Tetlock, 2014. Biased beliefs, asset prices, and investment: a structural approach.
Journal of Finance 69:325-–361.

Asker, J., J. Farre-Mensa, and A. Ljungqvist. 2015. Corporate Investment and Stock Market Listing:
A Puzzle? Review of Financial Studies 28:342–340.

Baker, M., J. Stein, and J. Wurgler. 2003. When Does the Market Matter? Stock Prices and the
Investment of Equity-Dependent Firms. Quarterly Journal of Economics 118:969-–1005.

Basu, S. 1983. The relationship between earnings yield, market value, and return for NYSE common
stocks: Further evidence. Journal of Financial Economics 12:129–156.

Bolton P. , H. Chen, and N. Wang. 2011. A unified theory of Tobin’s q, corporate investment,
financing, and risk management. Journal of Finance 66:1545—78

Bond, Stephen, and Costas Meghir 1994. Dynamic investment models and the firm’s financial
policy. Review of Economic Studies 61:197-–222.

Bustamante, M. C. 2015. Strategic investment and industry risk dynamics. Review of Financial
Studies 28:297—341.

Campbell, J., J. Hilscher, and J. Szilagyi. 2008. In search of distress risk. Journal of Finance
63:2899–2939.

Carhart, M. 1997. On persistence in mutual fund performance. Journal of Finance 52:57–82.

Chan, L., N. Jegadeesh, and J. Lakonishok. 1996. Momentum strategies. Journal of Finance
51:1681–1713.

Chava S., and M. R. Roberts. 2008. How does financing impact investment? The role of debt
covenants. Journal of Finance 63:2085—121

Chen, Huafeng (Jason), and Shaojun (Jenny) Chen. 2012. Investment-cash flow sensitivity cannot
be a good measure of financial constraints: Evidence from the time series. Journal of Financial
Economics 103:221–428.

Chordia, Tarun, Amit Goyal, and Alessio Saretto. 2017. p-Hacking: Evidence from two million

27



trading strategies. Working paper.

Cleary, Sean, 1999, The relationship between firm investment and financial status, Journal of
Finance 54:673-–692.

Cochrane, J. 1991. Production-based asset pricing and the link between stock returns and economic
uctuations. Journal of Finance 46:209–237.

Cooper, M., H. Gulen, and M. Schill. 2008. Asset growth and the cross-section of stock returns.
Journal of Finance 63:1609–1652.

Cooper, I., and R. Priestley, 2011. Real investment and risk dynamics. Journal of Financial Eco-
nomics 101:185-–205.

Daniel, Kent, and Sheridan Titman. 2006. Market reactions to tangible and intangible information.
The Journal of Finance 61:1605–1643.

Denis, David, and Valeriy Sibilkov. 2010. Financial Constraints, Investment, and the Value of Cash
Holdings. Review of Financial Studies 23:248–269

Dechow, Patricia M., Richard G. Sloan, and Mark T. Soliman, 2004, Implied equity duration: A
new measure of equity risk, Review of Accounting Studies 9:197-–228.

Eisfeldt, A., and D. Papanikolaou. 2013. Organizational capital and the cross-section of expected
returns. Journal of Finance 68:1365–1406.

Eisfeldt, A., and D. Papanikolaou. 2014. The Value and Ownership of Intangible Capital. American
Economic Review 104:189–194.

Erickson, T., and T. Whited. 2012. Treating measurement error in Tobin’s q. Review of Financial
Studies 25:1286–329.

Fama, Eugene F., and Kenneth R. French. 1992. The cross-section of expected stock returns,
Journal of Finance 47:427–465.

Fama, Eugene F., and Kenneth R. French. 1993. Common risk factors in the returns on stocks and
bonds. Journal of Financial Economics 33:3–56.

Fama, Eugene F., and Kenneth R. French. 1996. Profitability, investment, and average returns.
Journal of Financial Economics 82:491–518.

Fama, Eugene F., and Kenneth R. French. 1997. Industry cost of equity. Journal of Financial
Economics 43:153–193.

Fama, Eugene F., and Kenneth R. French. 2008. Dissecting anomalies. Journal of Finance 63:1653–
1678.

Fama, Eugene F., and Kenneth R. French. 2015. A five-factor asset pricing model. Journal of
Financial Economics 116: 1–22.

Fama, Eugene F., and Kenneth R. French. 2017. Choosing factors. Working paper.

28



Fama, E., and J. MacBeth. 1973. Risk, return, and equilibrium: Empirical tests. Journal of Political
Economy 81:607–636.

Fazzari, S. G. Hubbard, and B. Petersen. 1988. Financing constraints and corporate investment.
Brookings Papers on Economic Activity 19:141–95.

Foster, G., C. Olsen, and T. Shevlin. 1984. Earnings releases, anomalies, and the behavior of
security returns. The Accounting Review 59:574–603.

Foucault, T., and L. Fresard 2014. Learning from peers’ stock prices and corporate investment.
Journal of Financial Economics 111:554-–77.

Gibbons, M., S. Ross, and J. Shanken. 1989. A test of the efficiency of a given portfolio. Econo-
metrica 57:1121–1152.

Hafzalla, N., R. Lundholm, and E. Van Winkle. 2011. Percent accruals. The Accounting Review
86:209–236.

Hadlock, Charles, 1998, Ownership, liquidity, and investment, RAND Journal of Economics 29:487-
–508.

Harvey, Campbell R. 2017. Presidential Address: The Scientific Outlook in Financial Economics.
Journal of Finance 72:1399–1440.

Harvey, Campbell R., Yan Liu, and Heqing Zhu. 2016. . . . and the Cross-Section of Expected
Returns. Review of Financial Studies 29:5–68.

Hennessy, Christopher, Amnon Levy, and Toni M. Whited, 2007, Testing Q theory with financing
frictions, Journal of Financial Economics 83:691-–717.

Hirshleifer, D., K. Hou, S. Teoh, and Y. Zhang. 2004. Do investors overvalue firms with bloated
balance sheets? Journal of Accounting and Economics 38:297–331.

Hou, Kewei, Chen Xue, and Lu Zhang. 2014. A comparison of new factor models. National Bureau
of Economic Research, No. w20682.

Hou, Kewei, Chen Xue, and Lu Zhang. 2015. Digesting anomalies: an investment approach. Review
of Financial Studies 28: 650–705.

Hou, Kewei, Chen Xue, and Lu Zhang. 2017. Replicating anomalies. Working paper.

Hribar, P., and D. Collins. 2002. Errors in estimating accruals: Implications for empirical research.
Journal of Accounting Research 40:105–34.

Hulten, Charles, and Xiaohui Hao. 2008. What is a Company Really Worth? Intangible Capital
and the “Market to Book Value” Puzzle. National Bureau of Economics Research Working Paper
14548.

Kahle, Kathleen M., and Rene M. Stulz. 2013. Access to capital, investment, and the financial
crisis. Journal of Financial Economics 110:280—99

29



Kaplan, S., and L. Zingales. 1997. Do financing constraints explain why investment is correlated
with cash flow? Quarterly Journal of Economics 112:169—215.

Kogan, Leonid, and Dimitris Papanikolaou. 2013. Firm Characteristics and Stock Returns: The
Role of Investment-Specific Shocks. Review of Financial Studies 26:2719–2759

Kogan, Leonid, and Mary H. Tian. 2017. Firm characteristics and empirical factor models: Data-
mining experiment. Working paper.

Kozak, Serhiy, Stefan Nagel, and Shrihari Santhosh. 2017. Interpreting factor models. Journal of
Finance, forthcoming.

Kruger, Philipp, Augustin Landier, and David Thesmar. 2015. The WACC fallacy: The real effects
of using a unique discount rate. Journal of Finance 70:1253–1285.

Li, Dongmei, and Lu Zhang. 2010. Does q-theory with investment frictions explain anomalies in
the cross section of returns? Journal of Financial Economics 98:297-–314

Liu, Laura Xiaolei, Toni M. Whited, and Lu Zhang, 2009, Investment-based expected stock returns,
Journal of Political Economy 117:1105-–1139.

Lyandres, Evgeny, Le Sun, and Lu Zhang. 2008. The new issues puzzle: Testing the investment-
based explanation. Review of Financial Studies 21:2825–2855.

Malmendier, Ulrike, and Geoffrey Tate. 2005. CEO overconfidence and corporate investment. Jour-
nal of Finance 60:2661-–2700.

Morck, Randall, Andrei Shleifer, and Robert Vishny, 1988, Management ownership and marketval-
uation: An empirical analysis, Journal of Financial Economics 20:293-–315.

Moskowitz, T., and M. Grinblatt. 1999. Do industries explain momentum? Journal of Finance
54:1249–1290.

Novy-Marx, R. 2011. Operating leverage. Review of Finance 15:103–134.

Novy-Marx, R. 2015. Backtesting strategies based on multiple signals. National Bureau of Economic
Research. Working paper.

Peters, Ryan H., and Lucian A. Taylor. 2017. Intangible capital and the investment-q relation.
Journal of Financial Economics 116:1–22.

Polk, Christopher, and Paola Sapienza. 2009. The stock market and corporate investment: A test
of catering theory. Review of Financial Studies 22:187–217.

Rajan, Raghuram G., Henri Servaes, and Luigi Zingales, 2000, The cost of diversity: The diversi-
fication discount and inefficient investment, Journal of Finance 55:35–80.

Rauh, J. D. 2006. Investment and financing constraints: evidence from the funding of corporate
pension plans. Journal of Finance 61:33—71

Richardson, S., R. Sloan, M. Soliman, and I. Tuna. 2005. Accrual reliability, earnings persistence

30



and stock prices. Journal of Accounting and Economics 39:437–485.

Sloan, R. 1996. Do stock prices fully reflect information in accruals and cash flows about future
earnings? The Accounting Review 71:289–315.

Stambaugh, Robert F., and Yu Yuan. 2016. Mispricing factors. The Review of Financial Studies
30:1270–1315.

Thomas, J., and H. Zhang. 2002. Inventory changes and future returns. Review of Accounting
Studies 7:163–187.

Warusawitharana, M., and Toni W. Whited. 2016. Equity Market Misvaluation, Financing, and
Investment. Review of Financial Studies 29:603–654.

Whited, Toni M. 1992. Debt, liquidity constraints, and corporate investment: Evidence from panel
data. Journal of Finance 47:1425–1460

Whited, Toni M. 2001. Is it inefficient investment that causes the diversification discount? Journal
of Finance 56: 1667–1692.

Xing, Y. 2008. Interpreting the value effect through the Q-theory: An empirical investigation.
Review of Financial Studies 21:1767–1795.

Zhang, Mindy X. 2014. Who bears firm-level risk? Implications for cash flow volatility. Working
paper.

31



AG d.PPE/l.PPE

0
10

20
30

A
lte

rn
at

iv
e 

In
ve

st
m

en
t F

ac
to

rs

0 .05 .1 .15 .2 .25 .3 .35 .4 .45 .5
Averages of Spread−Portfolio Absolute Alphas

AG d.PPE/l.PPE

0
10

20
30

40
A

lte
rn

at
iv

e 
In

ve
st

m
en

t F
ac

to
rs

0 5 10 15 20 25 30 35
Number of Significant (|t|>2) Spread−Portfolio Alphas

AG d.PPE/l.PPE

0
10

20
30

A
ll 

S
ub

co
m

po
ne

nt
s 

of
 A

G

0 .05 .1 .15 .2 .25 .3 .35 .4 .45 .5
Averages of Spread−Portfolio Absolute Alphas

AG d.PPE/l.PPE

0
10

20
30

40
A

ll 
S

ub
co

m
po

ne
nt

s 
of

 A
G

0 5 10 15 20 25 30 35
Number of Significant (|t|>2) Spread−Portfolio Alphas

Figure 1
Performance of Alternative HXZ-Style Models
This figure plots the performance of HXZ-style models obtained by replacing the asset-growth based invest-
ment factor in HXZ, with a factor based on one of 144 different measures of investment (top two panels)
or one of 76 different subcomponents of asset growth. For these alternative models, the left two panels
report histograms of average spread alphas, and the right two panels report histograms of the number of
t-statistics greater than 2. As reference points, the red vertical line shows the performance of the original,
asset-growth-based HXZ model, and the blue line shows the performance of the HXZ model obtained using
the percentage change in PPE to construct the investment factor.

32



AG d.PPE/l.PPE

0
10

20
30

A
lte

rn
at

iv
e 

In
ve

st
m

en
t F

ac
to

rs

0 .05 .1 .15 .2 .25 .3 .35 .4 .45 .5
Averages of Spread−Portfolio Absolute Alphas

AG d.PPE/l.PPE

0
20

40
60

A
lte

rn
at

iv
e 

In
ve

st
m

en
t F

ac
to

rs
0 5 10 15 20 25 30 35

Number of Significant (|t|>2) Spread−Portfolio Alphas

AG d.PPE/l.PPE

0
10

20
30

A
ll 

S
ub

co
m

po
ne

nt
s 

of
 A

G

0 .05 .1 .15 .2 .25 .3 .35 .4 .45 .5
Averages of Spread−Portfolio Absolute Alphas

AG d.PPE/l.PPE

0
20

40
60

A
ll 

S
ub

co
m

po
ne

nt
s 

of
 A

G

0 5 10 15 20 25 30 35
Number of Significant (|t|>2) Spread−Portfolio Alphas

Figure 2
Performance of Alternative FF5F-Style Models
This figure plots the performance of FF5F-style models obtained by replacing the asset-growth based invest-
ment factor in FF5F, with a factor based on one of 144 different measures of investment (top two panels)
or one of 76 different subcomponents of asset growth. For these alternative models, the left two panels
report histograms of average spread alphas, and the right two panels report histograms of the number of
t-statistics greater than 2. As reference points, the red vertical line shows the performance of the original,
asset-growth-based FF5F model, and the blue line shows the performance of the FF5F model obtained using
the percentage change in PPE to construct the investment factor.
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Table II
Asset Growth and The Cross-Sectional Predictability of Stock Returns

This table presents Fama-MacBeth (1973) regressions of future 12 months buy-and-hold returns on asset growth and other
known predictors of expected returns. The estimates are obtained by running cross-sectional regressions every year from
1968 to 2016 and averaging over the resulting time-series of cross-sectional coefficients. The dependent variable measures the
cumulative returns from July of the current year to June of the following year. In panel A, the independent variables include
asset growth (“AG”), market capitalization of equity (“ME”), book-to-market equity (“BM”), cumulative returns in the past
12 months (“RET12”) and gross profitability (“GP”). Columns 1 through 5 use all firms in our sample, and columns 6 through
8 are restricted to micro firms (market cap smaller than 20th NYSE percentile), small firms (market cap between 20th and 50th
NYSE percentiles), and large firms (market cap larger than 50th NYSE percentiles) respectively. In Panel B, we use our full
sample of firms and we introduce controls for the following anomaly variables: net operating assets (“NOA”), common equity
issuance (“CEI”), operating accruals (“OA”), gross profitability (“GP”), return on assets (“ROA”), standardized unexpected
earnings (“SUE”), and abnormal returns around earnings announcements (“ABR”). Standard errors are corrected for serial
correlation using the Newey-West (1987) procedure. t-statistics are reported in parentheses. *, **, and *** indicate statistical
significance at the 10%, 5%, and 1% level, respectively.

Panel A

(1) (2) (3) (4) (5) (6) (7) (8)
All All All All All Micro Small Large

Firms Firms Firms Firms Firms Firms Firms Firms

AG -0.118*** -0.107*** -0.093*** -0.092*** -0.087*** -0.097*** -0.072*** -0.041***
(-7.90) (-7.55) (-7.60) (-7.62) (-7.67) (-7.12) (-5.68) (-3.28)

Size -0.013** -0.009 -0.009 -0.008 -0.028*** 0.007 -0.003
(-2.03) (-1.36) (-1.32) (-1.18) (-3.16) (0.87) (-0.42)

BM 0.040*** 0.038*** 0.045*** 0.044*** 0.026** 0.037***
(3.99) (3.93) (4.12) (3.73) (2.08) (3.57)

RET12 -0.001 -0.007 -0.013 0.012 0.036*
(-0.07) (-0.38) (-0.69) (0.55) (1.75)

GP 0.076*** 0.077** 0.069** 0.062**
(2.70) (2.68) (2.15) (2.31)

Constant 0.162*** 0.226*** 0.166*** 0.162** 0.123* 0.204*** 0.034 0.086
(5.69) (3.94) (2.79) (2.58) (1.91) (3.03) (0.49) (1.45)
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Table II
Asset Growth and The Cross-Sectional Predictability of Stock Returns (continued)

Panel B

(1) (2) (3) (4) (5) (6) (7)

AG -0.056*** -0.065*** -0.080*** -0.087*** -0.090*** -0.088*** -0.090***
(-4.99) (-4.46) (-5.88) (-7.67) (-7.23) (-6.57) (-6.60)

ME -0.008 -0.011* -0.009 -0.008 -0.012* -0.011* -0.010
(-1.22) (-1.71) (-1.32) (-1.18) (-1.98) (-1.73) (-1.61)

BM 0.041*** 0.027*** 0.038*** 0.045*** 0.036*** 0.033*** 0.033***
(4.62) (3.05) (3.89) (4.12) (3.64) (3.03) (3.21)

RET12 -0.001 -0.011 0.000 -0.007 0.002 -0.002 0.004
(-0.07) (-0.64) (0.02) (-0.38) (0.09) (-0.10) (0.21)

NOA -0.063**
(-2.37)

CEI -0.057***
(-3.79)

ACC -0.073*
(-1.73)

GP 0.076***
(2.70)

OCA 0.690***
(3.73)

SVOL 0.011***
(5.21)

ABR 0.245***
(7.40)

Constant 0.196*** 0.187*** 0.159** 0.123* 0.191*** 0.195*** 0.185***
(2.99) (3.00) (2.58) (1.91) (3.22) (3.11) (3.05)
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Table III
Anomaly Spread-Portfolio Alphas: Performance of New Factor Models

This table presents alphas (left) and corresponding t-statistics (right) of spread portfolios (high minus low) of 35 anomalies.
The alphas are calculated using the CAPM, the Fama and French (1993) three factor model (FF3F), the Carhart (1997) four
factor model (C4F), the Hou, Xue, and Zhang (2015) four factor model (HXZ), and the Fama and French (2015) five factor
model (FF5F). The sample period is 1972-2016. Please see Section 3 for details on the HXZ and FF5F models and Appendix
A for details on how the anomalies are constructed. The bottom panel of the table summarizes the performance of the five
models employed. “Mean |α|: spread” is the mean absolute values of the 35 spread-portfolio alphas. “Mean |α|: all” is the
mean absolute value of all the decile-portfolio alphas of all anomalies. “N(|t| > 2)” counts how many of the 35 anomalies have
spread-portfolio alphas with t-statistics greater than 2 in absolute value. “N(p < 5%)” counts for how many of the 35 anomalies
the model employed is rejected by the Gibbons, Ross, and Shanken (1989) test at the 5% level.

Alphas of spread portfolios T-statistics of spread portfolios

Anomaly CAPM FF3F C4F HXZ FF5F CAPM FF3F C4F HXZ FF5F

SUE 0.46 0.51 0.30 0.13 0.48 4.33 4.59 2.57 1.02 4.15
SUE6 0.23 0.33 0.13 0.00 0.31 2.50 3.45 1.28 -0.01 2.79
Abr 0.82 0.91 0.69 0.74 0.98 6.57 6.57 4.97 4.90 7.09
Abr6 0.36 0.43 0.24 0.31 0.49 4.09 4.52 2.83 2.84 5.13
RE 0.75 0.95 0.30 -0.13 0.66 3.44 4.43 1.70 -0.62 2.77
RE6 0.51 0.75 0.16 -0.17 0.52 2.62 4.05 1.04 -0.79 2.40
R6 6 0.87 1.08 0.04 0.22 1.04 3.61 4.51 0.34 0.71 3.55
R11 1 1.18 1.43 0.04 0.24 1.31 4.21 5.21 0.33 0.62 3.68
Imom 0.66 0.77 -0.05 0.12 0.75 3.15 3.57 -0.34 0.42 2.63
BM 0.69 -0.01 -0.01 0.21 0.02 2.80 -0.06 -0.09 1.26 0.15
EP 0.62 0.03 -0.01 0.15 -0.04 2.90 0.22 -0.10 0.69 -0.33
CFP 0.56 -0.02 -0.06 0.20 -0.05 2.67 -0.16 -0.45 1.02 -0.40
NOP 0.83 0.56 0.49 0.20 0.13 3.77 3.83 3.38 1.30 1.09
Dur -0.54 -0.03 -0.04 -0.21 -0.01 -2.73 -0.19 -0.31 -1.10 -0.05
AG -0.52 -0.19 -0.12 0.06 0.02 -3.12 -1.41 -0.86 0.47 0.17
NOA -0.43 -0.55 -0.43 -0.43 -0.53 -2.92 -3.56 -3.08 -2.25 -3.11
dPIA -0.56 -0.40 -0.34 -0.23 -0.34 -3.98 -2.90 -2.43 -1.71 -2.88
IG -0.47 -0.30 -0.24 -0.07 -0.17 -3.54 -2.48 -1.97 -0.57 -1.50
NSI -0.77 -0.63 -0.54 -0.27 -0.31 -4.81 -4.36 -3.79 -1.98 -2.47
CEI -0.79 -0.54 -0.43 -0.26 -0.29 -5.20 -4.40 -3.39 -1.92 -2.67
IvG -0.39 -0.21 -0.12 0.00 -0.09 -2.87 -1.55 -0.89 -0.02 -0.74
IvC -0.51 -0.35 -0.28 -0.27 -0.34 -3.68 -2.70 -2.21 -1.84 -2.62
OA -0.23 -0.26 -0.24 -0.46 -0.41 -1.91 -2.17 -1.81 -3.44 -3.41
POA -0.46 -0.28 -0.25 -0.19 -0.17 -3.32 -2.19 -1.90 -1.42 -1.36
PTA -0.44 -0.25 -0.28 -0.13 -0.05 -3.24 -1.77 -2.09 -0.85 -0.32
ROE 0.89 1.08 0.78 0.00 0.57 4.01 5.44 4.20 -0.03 4.23
ROA 0.75 0.99 0.67 0.05 0.58 3.81 5.72 4.10 0.53 4.59
GPA 0.28 0.44 0.40 0.04 0.15 1.90 3.15 3.00 0.32 1.22
NEI 0.33 0.53 0.34 0.10 0.40 2.95 5.45 3.27 0.99 4.25
FP6 -0.70 -1.10 -0.63 -0.11 -0.60 -2.85 -5.56 -3.79 -0.80 -3.74
OCA 0.56 0.50 0.34 0.08 0.28 4.51 4.48 3.00 0.66 2.52
AdM 0.63 0.08 0.19 -0.04 -0.27 2.38 0.45 0.82 -0.14 -1.51
RDM 0.45 0.23 0.31 0.63 0.50 1.92 1.04 1.53 2.79 2.33
OL 0.43 0.38 0.32 -0.04 0.08 2.28 2.06 1.88 -0.25 0.50
Svol -0.47 -0.46 -0.38 -0.14 -0.20 -2.38 -2.38 -1.79 -0.67 -1.00

Mean |α|: spread 0.58 0.50 0.29 0.19 0.38
Mean |α|: all 0.15 0.15 0.11 0.10 0.12
N(|t| > 2) 32 26 16 5 21
N(p < 5%) 25 28 25 18 23
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Table IV
Performance of New Factor Models Using Various Test Assets

This table summarizes the ability of various factor models to explain monthly excess returns on 25 Size-Book to Market portfolios
(Panel B), 25 Size-Asset Growth portfolios (Panel C), 25 Size-Profitability portfolios (Panel D), 32 Size-Book to Market - Asset
Growth portfolios (Panel E), 32 Size-Book to Market-Asset Growth portfolios (Panel F), and 32 Size-Asset Growth-Profitability
portfolios (Panel G). The sample period is 1972-2016. In Panel A, we use a set of test assets consisting of all the portfolios used
in panels B through G. The models use to explain these expected returns are the CAPM, the Fama and French (1993) three
factor model (FF3F), the Carhart (1997) four factor model (C4F), the Hou, Xue, and Zhang (2015) four factor model (HXZ),
and the Fama and French (2015) five factor model (FF5F). Please see Section 3 for details on the HXZ and FF5F models.
“Mean |α|” is the average of the absolute alphas corresponding to each set of portfolios. “N(|t| > 2) ” is the number of alpha
t-statistics with absolute value greater than 2. “GRS test statistic” is the Gibbons, Ross, and Shanken (1989) statistic testing
that the alpha estimates corresponding to each set of portfolios are jointly 0.

CAPM FF3F C4F HXZ FF5F

Panel A: All 171 portfolios
Mean |α| 0.261 0.135 0.124 0.098 0.099
N(|t| > 2) 78 50 49 21 36
GRS test statistic 2.212 2.118 1.935 1.887 1.901

Panel B: 25 Size-BM portoflios
Mean |α| 0.26 0.104 0.092 0.104 0.105
N(|t| > 2) 10 6 6 4 6
GRS test statistic 4.356 3.61 3.019 3.191 3.369

Panel C: 25 Size-AG Portfolios
Mean |α| 0.263 0.117 0.108 0.087 0.095
N(|t| > 2) 16 8 7 5 5
GRS test statistic 5.026 4.26 3.674 3.256 3.674

Panel D: 25 Size-Profitability portfolios
Mean |α| 0.208 0.119 0.109 0.051 0.051
N(|t| > 2) 9 5 5 0 1
GRS test statistic 2.672 2.464 2.235 1.497 1.669

Panel E: 32 Size-BM-AG portfolios
Mean |α| 0.255 0.139 0.123 0.097 0.108
N(|t| > 2) 13 9 9 4 9
GRS test statistic 3.667 3.198 2.581 2.185 2.597

Panel F: 32 Size-BM-Profitability portfolios
Mean |α| 0.294 0.138 0.139 0.13 0.11
N(|t| > 2) 13 6 8 3 5
GRS test statistic 2.768 2.496 2.142 1.968 2.138

Panel G: 32 Size-AG-Profitability portfolios
Mean |α| 0.273 0.18 0.158 0.108 0.113
N(|t| > 2) 17 16 14 5 10
GRS test statistic 4.573 4.038 3.285 2.411 3.357
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Table V
Investment Characteristics of Asset Growth Portfolios

In this table, we summarize capital decompositions (Panel A) and investment levels (Panel B) of asset growth portfolios over
1972-2016. In Panel A, we use the Peters and Taylor (2017) measure of firm-level total capital which we decompose it into
physical capital (gross PPE) in the first column and intangible capital in the second column. The latter is the sum of intangible
capital on the balance sheet (goodwill), shown in column three, and intangible capital off the balance sheet (column four), which
in turn is the sum of knowledge capital (capitalized R&D) and organizational capital (capitalized 30% of SG&A). We normalize
each type of capital by total capital (which is the sum of gross PPE and total intangible capital). The numbers reported are
time-series averages of cross-sectional means of these normalized measures. In Panel B, we present average portfolio investment
levels. The first two columns show the standard measures of investment: CAPX divided by lagged PPE and percentage growth
in PPE. The last seven columns use investment measures based on the Peters and Taylor (2017) measure of total capital.
Column 3 shows the percentage growth in total capital and the following six columns show changes in the six types of capital
from Panel A, normalized by total capital. Please see Section 4 for details on these investment measures. Panel C presents
correlation correlation coefficients between asset growth and each of the investment measures used in Panel B.

Panel A: Decomposition of capital

Intan. Intan. Know. Org.
Physical Intan. capital capital capital capital

AG decile capital capital on B.S. off B.S. (R&D) (SG&A)

1(Low) 0.457 0.543 0.048 0.495 0.178 0.317
2 0.540 0.460 0.064 0.396 0.111 0.285
3 0.586 0.414 0.070 0.344 0.086 0.258
4 0.598 0.402 0.070 0.332 0.078 0.254
5 0.601 0.399 0.070 0.329 0.075 0.255
6 0.591 0.409 0.069 0.340 0.082 0.257
7 0.571 0.429 0.069 0.360 0.088 0.272
8 0.548 0.452 0.075 0.377 0.097 0.280
9 0.531 0.469 0.082 0.387 0.114 0.274
10(High) 0.503 0.497 0.119 0.378 0.143 0.235

Spread(10-1) 0.046 -0.046 0.071 -0.117 -0.035 -0.082
t(spread) 1.719 -1.719 5.941 -6.101 -1.833 -8.552

Panel B: Investment measures

Intan. Intan. Know. Org.
Total Physical Intan. capital capital capital capital

AG decile CAPX PPE capital capital capital on B.S. off B.S. (R&D) (SG&A)

1(Low) 0.124 -0.005 0.031 -0.014 0.049 -0.014 0.061 0.027 0.032
2 0.111 0.046 0.059 0.017 0.041 -0.004 0.045 0.015 0.029
3 0.112 0.062 0.069 0.030 0.039 0.000 0.039 0.011 0.027
4 0.116 0.075 0.081 0.040 0.040 0.001 0.038 0.010 0.028
5 0.127 0.091 0.094 0.050 0.045 0.004 0.040 0.010 0.030
6 0.146 0.116 0.117 0.063 0.054 0.008 0.046 0.012 0.034
7 0.172 0.149 0.147 0.079 0.068 0.011 0.056 0.015 0.040
8 0.211 0.200 0.194 0.101 0.092 0.020 0.071 0.019 0.050
9 0.279 0.305 0.288 0.151 0.134 0.041 0.092 0.027 0.063
10(High) 0.438 0.678 0.649 0.318 0.291 0.137 0.140 0.044 0.089

Spread(10-1) 0.313 0.683 0.618 0.332 0.242 0.151 0.080 0.017 0.058
t(spread) 14.982 20.622 20.447 21.142 12.454 10.721 11.093 4.157 13.627

Panel C: Correlations with asset growth

Full sample correlation 0.417 0.568 0.644 0.550 0.498 0.461 0.308 0.166 0.296
Mean TS correlation 0.442 0.582 0.635 0.583 0.476 0.382 0.354 0.209 0.351
Mean CS correlation 0.426 0.574 0.657 0.561 0.483 0.431 0.308 0.165 0.293
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Table VII
Replacing Asset Growth With Other Measures of Investment: Performance Using

Various Test Assets

This table summarizes the ability of various factor models to explain monthly excess returns on several sets of test assets (the
same ones used in Table IV). The sample period is 1972-2016. In Panel A, we use factor models that are variations of the
Hou, Xue, and Zhang (2015) four factor model (HXZ), in which the asset growth factor has been replaced with an analogous
factor based on a different measure of investment. In Panel B, we make the same adjustment to the Fama and French (2015)
five factor model (FF5F). In both panels, we use investment measures based on CAPX, growth in PPE, growth in total capital
(TOTK), investment in physical capital (PHK), and investment in intangible capital (INTK). The last three measures are based
on Peters and Taylor (2017): intangible capital (INTK) is the sum of intangible capital on the balance sheet (goodwill) plus
intangible capital off the balance sheet (capitalized knowledge capital (R&D) plus capitalized organizational capital (30% of
SG&A)). Physical capital (PHK) is gross PPE and total capital (TOTK) is the sum of physical capital plus intangible capital.
For comparison purposes, the table also reports results using the original HXZ and FF5F models (columns titled “AG”) and
versions of these models without an investment factor (columns titled “none”). “Mean |α|” is the average of the absolute alphas
corresponding to each set of portfolios. “N(|t| > 2)” is the number of alpha t-statistics with absolute value greater than 2.
“GRS test statistic” is the Gibbons, Ross, and Shanken (1989) statistic testing that the alpha estimates corresponding to each
set of portfolios are jointly 0.

Panel A: Performance of HXZ-like models

AG None CAPX PPE TOTK PHK INTK

Panel A1: All 171 portfolios
Mean |α| 0.098 0.221 0.137 0.132 0.123 0.159 0.169
N(|t| > 2) 21 88 44 39 35 50 61
GRS test statistic 1.887 2.18 2.108 2.082 2.039 2.096 2.086

Panel A2: 25 Size-BM portoflios
Mean |α| 0.104 0.25 0.144 0.136 0.13 0.178 0.185
N(|t| > 2) 4 14 8 7 6 10 11
GRS test statistic 3.191 4.28 3.637 3.534 3.473 3.626 3.839

Panel A3: 25 Size-AG Portfolios
Mean |α| 0.087 0.232 0.139 0.134 0.12 0.16 0.178
N(|t| > 2) 5 20 10 8 8 9 11
GRS test statistic 3.256 4.846 4.114 4.006 3.881 4.228 4.274

Panel A4: 25 Size-Profitability portfolios
Mean |α| 0.051 0.085 0.048 0.046 0.048 0.057 0.059
N(|t| > 2) 0 4 1 1 0 2 2
GRS test statistic 1.497 2.129 1.654 1.62 1.643 1.682 1.883

Panel A5: 32 Size-BM-AG portfolios
Mean |α| 0.097 0.229 0.138 0.133 0.121 0.162 0.171
N(|t| > 2) 4 16 7 7 7 8 10
GRS test statistic 2.185 3.261 2.859 2.808 2.73 2.905 3.073

Panel A6: 32 Size-BM-Profitability portfolios
Mean |α| 0.13 0.269 0.17 0.162 0.15 0.202 0.206
N(|t| > 2) 3 16 8 8 6 9 12
GRS test statistic 1.968 2.568 2.229 2.232 2.189 2.341 2.542

Panel A7: 32 Size-AG-Profitability portfolios
Mean |α| 0.108 0.239 0.165 0.16 0.151 0.179 0.198
N(|t| > 2) 5 18 10 8 8 12 15
GRS test statistic 2.411 3.825 3.269 3.231 3.194 3.349 3.594
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Table VII
Replacing Asset Growth With Other Measures of Investment: Performance Using

Various Test Assets (continued)

Panel B: Performance of FF5F-like models

AG None CAPX PPE TOTK PHK INTK

Panel B1: All 171 portfolios
Mean |α| 0.099 0.107 0.107 0.108 0.108 0.106 0.109
N(|t| > 2) 36 37 37 39 38 38 39
GRS test statistic 1.901 1.969 2.052 2.026 2.007 2.005 1.975

Panel B2: 25 Size-BM portoflios
Mean |α| 0.105 0.102 0.106 0.104 0.105 0.104 0.1
N(|t| > 2) 6 5 6 5 5 6 5
GRS test statistic 3.369 3.323 3.403 3.332 3.358 3.3 3.319

Panel B3: 25 Size-AG Portfolios
Mean |α| 0.095 0.111 0.108 0.112 0.111 0.108 0.117
N(|t| > 2) 5 7 7 8 8 7 7
GRS test statistic 3.674 4.04 4.027 4.033 4.015 4.013 3.99

Panel B4: 25 Size-Profitability portfolios
Mean |α| 0.051 0.047 0.045 0.048 0.047 0.048 0.05
N(|t| > 2) 1 2 2 2 2 2 2
GRS test statistic 1.669 1.713 1.655 1.699 1.691 1.638 1.669

Panel B5: 32 Size-BM-AG portfolios
Mean |α| 0.108 0.129 0.128 0.13 0.129 0.125 0.132
N(|t| > 2) 9 10 10 10 10 10 10
GRS test statistic 2.597 2.812 2.827 2.826 2.826 2.811 2.802

Panel B6: 32 Size-BM-Profitability portfolios
Mean |α| 0.11 0.103 0.109 0.105 0.105 0.106 0.099
N(|t| > 2) 5 3 4 4 4 4 3
GRS test statistic 2.138 1.943 2.078 1.986 1.998 2.023 1.871

Panel B7: 32 Size-AG-Profitability portfolios
Mean |α| 0.113 0.137 0.131 0.137 0.136 0.131 0.141
N(|t| > 2) 10 10 8 10 9 9 12
GRS test statistic 3.357 3.678 3.628 3.703 3.711 3.644 3.663
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Table VIII
Decomposing Asset Growth

In this table, we decompose growth in total assets into subcomponents based on the growth of items on the left hand side of
the balance sheet (growth in cash, noncash current assets, PPE and other assets) and the right hand side of the balance sheet
(growth in liabilities, long-term debt, common equity and retained earnings). The sample period is 1972-2016. In Panel A, the
numbers reported are time series averages of the cross-sectional means of each subcomponent for each asset growth decile. In
the first column, we also present average asset growth levels for each decile. Please see Appendix A for details on how each
subcomponent is calculated. In Panel B, we present correlation coefficients between asset growth and each of its subcomponents.

Panel A: Asset growth components

Noncash Long-
Asset current Other Operating term Common Retained

AG decile growth Cash assets PPE assets liabilities debt equity earnings

1(Low) -0.224 -0.073 -0.066 -0.033 -0.032 -0.036 -0.051 0.036 -0.167
2 -0.066 -0.024 -0.021 -0.010 -0.009 -0.012 -0.024 0.020 -0.049
3 -0.010 -0.010 0.000 0.002 -0.001 0.000 -0.013 0.011 -0.009
4 0.026 -0.003 0.015 0.012 0.003 0.009 -0.002 0.012 0.008
5 0.057 0.002 0.028 0.022 0.007 0.018 0.007 0.013 0.020
6 0.091 0.007 0.041 0.032 0.012 0.027 0.016 0.018 0.031
7 0.132 0.014 0.057 0.043 0.019 0.037 0.031 0.027 0.039
8 0.194 0.023 0.083 0.058 0.031 0.053 0.052 0.047 0.046
9 0.319 0.047 0.123 0.091 0.057 0.080 0.097 0.102 0.045
10(High) 0.906 0.166 0.243 0.189 0.189 0.183 0.268 0.426 -0.007

Spread(10-1) 1.130 0.239 0.309 0.222 0.221 0.219 0.319 0.390 0.161
t(spread) 24.599 14.988 28.235 25.530 13.050 34.362 25.879 9.955 7.225

Panel B: Correlations with asset growth

Full sample correlation 1.000 0.522 0.643 0.581 0.619 0.661 0.615 0.618 0.070
Mean TS correlation 1.000 0.311 0.696 0.635 0.467 0.641 0.588 0.466 0.402
Mean CS correlation 1.000 0.479 0.662 0.592 0.564 0.663 0.633 0.578 0.181
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Table X
Replacing Asset Growth With Its Subcomponents

This table presents alphas (left) and corresponding t-statistics (right) of spread portfolios (high minus low) of 35 anomalies. The
sample period is 1972-2016. In Panels A1 and A2, the alphas are calculated using a version of the Hou, Xue, and Zhang (2015)
four factor model (HXZ), where the asset growth factor has been replaced with an analogous factor based on a subcomponent
of asset growth. In Panels B1 and B2, we make the same adjustment to the Fama and French (2015) five factor model (FF5F).
Panels A1 and B1 use subcomponents of asset growth from the left hand side of the balance sheet: cash, noncash current
assets (NCCA), PPE and other. In panels A2 and B2 we use subcomponents of asset growth from the right hand side of the
balance sheet: operating liabilities (OLIAB), long-term debt (DBT), common equity (EQ), and retained earnings (RE). Please
see Appendix A for details on how the anomalies are constructed. For comparison purposes, the table also reports results
using the original HXZ and FF5F models (columns titled “AG”) and versions of these models without an investment factor
(columns titled “none”). “Mean |α|: spread” is the mean absolute values of the 35 spread-portfolio alphas. “Mean |α|: all” is
the mean absolute value of all the decile-portfolio alphas of all anomalies. “N(|t| > 2)” counts how many of the 35 anomalies
have spread-portfolio alphas with t-statistics greater than 2 in absolute value. “N(p < 5%)” counts for how many of the 35
anomalies the model employed are rejected by the Gibbons, Ross, and Shanken (1989) test at the 5% level.

Panel A1: Decomposition of total assets. Alphas obtained using HXZ-like models

Alphas of spread portfolios T-statistics of spread portfolios

Anomaly AG None CASH NCCA PPE Other AG None CASH NCCA PPE Other

SUE 0.13 0.19 0.18 0.12 0.18 0.23 1.02 1.64 1.53 0.97 1.56 1.58
SUE6 0.00 0.00 0.00 -0.02 -0.01 0.04 -0.01 -0.04 0.01 -0.13 -0.10 0.35
Abr 0.74 0.70 0.72 0.69 0.77 0.74 4.90 5.12 5.28 4.79 5.33 4.81
Abr6 0.31 0.27 0.28 0.29 0.30 0.32 2.84 2.74 2.90 2.66 2.85 2.83
RE -0.13 -0.01 0.01 -0.13 0.06 -0.10 -0.62 -0.03 0.06 -0.61 0.31 -0.46
RE6 -0.17 -0.12 -0.10 -0.17 -0.08 -0.14 -0.79 -0.63 -0.52 -0.81 -0.42 -0.61
R6 6 0.22 0.32 0.32 0.14 0.31 0.31 0.71 1.10 1.14 0.47 1.02 1.04
R11 1 0.24 0.41 0.42 0.16 0.36 0.38 0.62 1.18 1.25 0.44 0.99 0.97
Imom 0.12 0.24 0.22 0.03 0.25 0.17 0.42 0.92 0.87 0.11 0.95 0.60
BM 0.21 0.88 0.80 0.32 0.68 0.37 1.26 4.20 4.20 1.79 3.46 1.94
EP 0.15 0.61 0.52 0.28 0.54 0.25 0.69 2.86 2.61 1.28 2.52 1.11
CFP 0.20 0.67 0.58 0.28 0.61 0.26 1.02 3.24 3.01 1.42 2.91 1.30
NOP 0.20 0.69 0.62 0.31 0.58 0.44 1.30 3.68 3.55 1.93 3.28 2.39
Dur -0.21 -0.61 -0.54 -0.29 -0.53 -0.35 -1.10 -2.95 -2.79 -1.47 -2.60 -1.73
AG 0.06 -0.57 -0.50 -0.09 -0.34 -0.10 0.47 -3.49 -3.07 -0.57 -2.32 -0.61
NOA -0.43 -0.43 -0.46 -0.54 -0.34 -0.46 -2.25 -2.70 -2.88 -2.98 -2.00 -2.50
dPIA -0.23 -0.64 -0.62 -0.35 -0.36 -0.44 -1.71 -4.35 -4.13 -2.46 -2.88 -3.03
IG -0.07 -0.44 -0.41 -0.15 -0.24 -0.23 -0.57 -3.56 -3.39 -1.25 -2.06 -1.86
NSI -0.27 -0.60 -0.57 -0.42 -0.49 -0.42 -1.98 -4.17 -4.11 -2.90 -3.51 -2.71
CEI -0.26 -0.76 -0.70 -0.40 -0.61 -0.50 -1.92 -4.83 -4.62 -2.80 -3.97 -3.29
IvG 0.00 -0.45 -0.44 -0.03 -0.31 -0.13 -0.02 -3.19 -3.05 -0.25 -2.27 -0.98
IvC -0.27 -0.61 -0.61 -0.24 -0.48 -0.37 -1.84 -4.04 -4.00 -1.70 -3.13 -2.46
OA -0.46 -0.45 -0.49 -0.37 -0.48 -0.46 -3.44 -3.80 -4.23 -2.73 -3.82 -3.52
POA -0.19 -0.56 -0.56 -0.21 -0.48 -0.25 -1.42 -4.03 -4.03 -1.50 -3.59 -1.64
PTA -0.13 -0.50 -0.49 -0.27 -0.36 -0.29 -0.85 -3.27 -3.16 -1.60 -2.51 -1.60
ROE 0.00 0.12 0.12 0.00 0.19 0.05 -0.03 1.10 0.95 -0.02 1.40 0.43
ROA 0.05 0.04 0.06 0.03 0.13 0.09 0.53 0.44 0.57 0.26 1.15 0.87
GPA 0.04 -0.04 -0.01 0.15 -0.01 0.05 0.32 -0.29 -0.10 1.12 -0.05 0.38
NEI 0.10 0.00 0.04 0.11 0.04 0.13 0.99 0.02 0.44 1.04 0.42 1.21
FP6 -0.11 -0.01 -0.06 -0.08 -0.10 -0.21 -0.80 -0.04 -0.41 -0.52 -0.73 -1.49
OCA 0.08 0.30 0.26 0.14 0.21 0.16 0.66 2.74 2.42 1.27 1.97 1.32
AdM -0.04 0.59 0.48 0.14 0.44 0.20 -0.14 2.06 1.88 0.50 1.52 0.67
RDM 0.63 0.69 0.68 0.74 0.58 0.75 2.79 3.37 3.20 3.33 2.80 3.38
OL -0.04 0.06 0.04 0.15 0.00 0.13 -0.25 0.38 0.20 0.84 0.00 0.68
Svol -0.14 -0.16 -0.20 -0.12 -0.22 -0.14 -0.67 -0.84 -1.03 -0.58 -1.10 -0.70

Mean |α|: spread 0.19 0.39 0.37 0.23 0.33 0.28
Mean |α|: all 0.10 0.12 0.12 0.10 0.11 0.10
N(|t| > 2) 5 21 20 8 18 10
N(p < 5%) 18 23 22 16 21 16
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Table X
Replacing Asset Growth With Its Subcomponents (continued)

Panel A2: Decomposition of liabilities & shareholders’ equity. Alphas obtained using HXZ-like models

Alphas of spread portfolios T-statistics of spread portfolios

Anomaly AG None OLIAB DBT EQ RE AG None OLIAB DBT EQ RE

SUE 0.13 0.19 0.14 0.16 0.22 0.06 1.02 1.64 1.14 1.36 1.81 0.51
SUE6 0.00 0.00 0.01 -0.07 0.05 -0.12 -0.01 -0.04 0.08 -0.66 0.43 -1.00
Abr 0.74 0.70 0.71 0.66 0.80 0.57 4.90 5.12 5.03 4.65 5.57 4.08
Abr6 0.31 0.27 0.29 0.22 0.34 0.20 2.84 2.74 2.83 2.25 3.35 1.95
RE -0.13 -0.01 -0.02 -0.21 0.03 -0.25 -0.62 -0.03 -0.09 -1.10 0.15 -1.15
RE6 -0.17 -0.12 -0.07 -0.31 -0.07 -0.33 -0.79 -0.63 -0.34 -1.65 -0.38 -1.56
R6 6 0.22 0.32 0.34 0.06 0.41 -0.01 0.71 1.10 1.12 0.22 1.36 -0.04
R11 1 0.24 0.41 0.40 0.13 0.49 -0.06 0.62 1.18 1.08 0.38 1.35 -0.16
Imom 0.12 0.24 0.24 0.03 0.28 -0.02 0.42 0.92 0.89 0.10 0.96 -0.07
BM 0.21 0.88 0.55 0.87 0.46 0.57 1.26 4.20 2.92 4.20 2.82 3.15
EP 0.15 0.61 0.39 0.69 0.16 0.52 0.69 2.86 1.79 3.14 0.87 2.46
CFP 0.20 0.67 0.46 0.69 0.26 0.57 1.02 3.24 2.24 3.26 1.46 2.85
NOP 0.20 0.69 0.41 0.77 0.35 0.61 1.30 3.68 2.52 3.94 2.71 3.27
Dur -0.21 -0.61 -0.43 -0.67 -0.22 -0.56 -1.10 -2.95 -2.11 -3.19 -1.33 -2.91
AG 0.06 -0.57 -0.24 -0.49 -0.26 -0.25 0.47 -3.49 -1.69 -2.91 -1.62 -1.74
NOA -0.43 -0.43 -0.47 -0.31 -0.55 -0.41 -2.25 -2.70 -2.70 -1.97 -3.14 -2.61
dPIA -0.23 -0.64 -0.43 -0.51 -0.47 -0.39 -1.71 -4.35 -3.10 -3.51 -3.22 -2.98
IG -0.07 -0.44 -0.24 -0.40 -0.26 -0.24 -0.57 -3.56 -2.19 -3.27 -2.25 -1.94
NSI -0.27 -0.60 -0.46 -0.63 -0.29 -0.60 -1.98 -4.17 -3.30 -4.18 -2.29 -4.06
CEI -0.26 -0.76 -0.55 -0.75 -0.41 -0.58 -1.92 -4.83 -3.73 -4.74 -3.14 -3.82
IvG 0.00 -0.45 -0.25 -0.39 -0.25 -0.20 -0.02 -3.19 -1.87 -2.67 -1.76 -1.53
IvC -0.27 -0.61 -0.45 -0.52 -0.50 -0.35 -1.84 -4.04 -3.12 -3.43 -3.22 -2.52
OA -0.46 -0.45 -0.51 -0.43 -0.56 -0.38 -3.44 -3.80 -4.13 -3.60 -4.68 -2.92
POA -0.19 -0.56 -0.40 -0.54 -0.40 -0.34 -1.42 -4.03 -2.97 -3.81 -2.83 -2.29
PTA -0.13 -0.50 -0.30 -0.62 -0.21 -0.36 -0.85 -3.27 -2.03 -4.16 -1.44 -2.43
ROE 0.00 0.12 0.03 0.18 -0.06 0.11 -0.03 1.10 0.27 1.43 -0.52 0.78
ROA 0.05 0.04 0.04 0.09 -0.02 0.10 0.53 0.44 0.35 0.81 -0.21 0.79
GPA 0.04 -0.04 -0.01 -0.04 -0.05 0.19 0.32 -0.29 -0.06 -0.29 -0.37 1.45
NEI 0.10 0.00 0.06 0.00 0.09 0.06 0.99 0.02 0.58 0.03 1.02 0.51
FP6 -0.11 -0.01 -0.09 0.01 -0.07 -0.01 -0.80 -0.04 -0.60 0.05 -0.51 -0.06
OCA 0.08 0.30 0.18 0.25 0.15 0.23 0.66 2.74 1.56 2.38 1.27 2.04
AdM -0.04 0.59 0.25 0.69 0.17 0.55 -0.14 2.06 0.91 2.40 0.74 1.72
RDM 0.63 0.69 0.65 0.69 0.73 0.69 2.79 3.37 2.88 3.36 3.32 3.19
OL -0.04 0.06 -0.02 0.13 -0.08 0.12 -0.25 0.38 -0.14 0.70 -0.46 0.73
Svol -0.14 -0.16 -0.18 -0.33 -0.12 -0.19 -0.67 -0.84 -0.88 -1.59 -0.60 -0.96

Mean |α|: spread 0.19 0.39 0.29 0.39 0.28 0.31
Mean |α|: all 0.10 0.12 0.10 0.13 0.10 0.11
N(|t| > 2) 5 21 16 20 13 16
N(p < 5%) 18 23 18 22 20 20
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Table X
Replacing Asset Growth With Its Subcomponents (continued)

Panel B1: Decomposition of total assets. Alphas obtained using FF5F-like models

Alphas of spread portfolios T-statistics of spread portfolios

Anomaly AG None CASH NCCA PPE Other AG None CASH NCCA PPE Other

SUE 0.48 0.49 0.49 0.47 0.48 0.49 4.15 4.14 4.12 4.00 3.98 3.93
SUE6 0.31 0.33 0.33 0.30 0.31 0.29 2.79 3.02 2.93 2.62 2.59 2.60
Abr 0.98 0.97 0.96 0.95 1.01 0.96 7.09 6.83 6.62 6.89 7.01 6.84
Abr6 0.49 0.47 0.45 0.49 0.49 0.49 5.13 5.00 4.69 4.98 5.02 4.74
RE 0.66 0.66 0.60 0.62 0.67 0.49 2.77 2.90 2.67 2.72 2.84 1.97
RE6 0.52 0.51 0.47 0.49 0.51 0.37 2.40 2.53 2.29 2.31 2.40 1.57
R6 6 1.04 1.06 0.97 0.96 1.05 0.96 3.55 3.65 3.23 3.34 3.46 3.17
R11 1 1.31 1.37 1.27 1.22 1.33 1.22 3.68 3.99 3.51 3.48 3.68 3.18
Imom 0.75 0.77 0.72 0.65 0.78 0.68 2.63 2.72 2.42 2.34 2.65 2.33
BM 0.02 0.03 0.06 0.02 0.03 0.03 0.15 0.30 0.54 0.19 0.29 0.26
EP -0.04 -0.11 -0.10 -0.02 -0.06 -0.06 -0.33 -0.85 -0.75 -0.20 -0.46 -0.47
CFP -0.05 -0.11 -0.09 -0.06 -0.04 -0.08 -0.40 -0.88 -0.74 -0.50 -0.33 -0.57
NOP 0.13 0.25 0.28 0.14 0.19 0.25 1.09 2.07 2.31 1.20 1.55 2.06
Dur -0.01 0.06 0.05 -0.01 0.03 -0.05 -0.05 0.47 0.41 -0.04 0.22 -0.38
AG 0.02 -0.21 -0.30 -0.03 -0.11 0.00 0.17 -1.46 -2.07 -0.18 -0.78 0.03
NOA -0.53 -0.62 -0.63 -0.58 -0.54 -0.55 -3.11 -3.71 -3.77 -3.30 -3.08 -3.05
dPIA -0.34 -0.52 -0.54 -0.39 -0.36 -0.45 -2.88 -3.68 -3.85 -2.89 -3.09 -3.15
IG -0.17 -0.31 -0.34 -0.16 -0.19 -0.20 -1.50 -2.64 -2.84 -1.40 -1.71 -1.62
NSI -0.31 -0.41 -0.46 -0.34 -0.35 -0.36 -2.47 -3.17 -3.54 -2.64 -2.73 -2.63
CEI -0.29 -0.40 -0.42 -0.29 -0.35 -0.36 -2.67 -3.40 -3.41 -2.61 -3.01 -3.06
IvG -0.09 -0.23 -0.22 -0.04 -0.16 -0.06 -0.74 -1.68 -1.59 -0.32 -1.22 -0.46
IvC -0.34 -0.46 -0.44 -0.27 -0.39 -0.35 -2.62 -3.39 -3.33 -2.06 -2.90 -2.51
OA -0.41 -0.38 -0.30 -0.32 -0.41 -0.43 -3.41 -3.30 -2.55 -2.61 -3.47 -3.47
POA -0.17 -0.27 -0.25 -0.13 -0.24 -0.14 -1.36 -2.10 -1.92 -1.04 -1.90 -1.09
PTA -0.05 -0.17 -0.18 -0.07 -0.10 -0.12 -0.32 -1.15 -1.18 -0.50 -0.68 -0.77
ROE 0.57 0.58 0.52 0.51 0.57 0.49 4.23 4.36 4.02 3.94 4.15 3.78
ROA 0.58 0.55 0.48 0.52 0.55 0.53 4.59 4.49 3.76 4.29 4.22 4.30
GPA 0.15 0.21 0.21 0.18 0.18 0.19 1.22 1.65 1.64 1.45 1.37 1.49
NEI 0.40 0.39 0.32 0.38 0.37 0.41 4.25 4.21 3.66 4.10 3.85 4.23
FP6 -0.60 -0.63 -0.59 -0.57 -0.57 -0.60 -3.74 -3.89 -3.61 -3.46 -3.37 -3.64
OCA 0.28 0.37 0.39 0.27 0.31 0.27 2.52 3.21 3.25 2.44 2.76 2.28
AdM -0.27 -0.15 -0.12 -0.22 -0.18 -0.13 -1.51 -0.86 -0.66 -1.19 -0.99 -0.72
RDM 0.50 0.56 0.60 0.60 0.53 0.64 2.33 2.62 2.88 2.70 2.42 2.88
OL 0.08 0.12 0.15 0.17 0.08 0.17 0.50 0.76 0.95 1.03 0.52 1.00
Svol -0.20 -0.23 -0.22 -0.18 -0.23 -0.17 -1.00 -1.15 -1.13 -0.91 -1.12 -0.84

Mean |α|: spread 0.38 0.43 0.41 0.36 0.39 0.37
Mean |α|: all 0.12 0.12 0.12 0.12 0.12 0.12
N(|t| > 2) 21 24 24 21 21 20
N(p < 5%) 23 24 26 23 24 24
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Table X
Replacing Asset Growth With Its Subcomponents (continued)

Panel B2: Decomposition of liabilities & shareholders’ equity. Alphas obtained using FF5F-like models

Alphas of spread portfolios T-statistics of spread portfolios

Anomaly AG None OLIAB DBT EQ RE AG None OLIAB DBT EQ RE

SUE 0.48 0.49 0.49 0.50 0.49 0.49 4.15 4.14 4.11 3.82 4.15 4.18
SUE6 0.31 0.33 0.33 0.26 0.33 0.33 2.79 3.02 3.01 2.34 2.90 2.98
Abr 0.98 0.97 0.97 0.94 0.98 0.98 7.09 6.83 6.79 6.43 6.90 7.05
Abr6 0.49 0.47 0.47 0.45 0.48 0.49 5.13 5.00 4.99 4.47 5.09 5.34
RE 0.66 0.66 0.66 0.40 0.66 0.69 2.77 2.90 2.90 1.81 2.95 3.19
RE6 0.52 0.51 0.51 0.31 0.52 0.54 2.40 2.53 2.51 1.47 2.55 2.67
R6 6 1.04 1.06 1.05 0.85 1.07 1.09 3.55 3.65 3.66 2.94 3.64 3.83
R11 1 1.31 1.37 1.37 1.18 1.37 1.39 3.68 3.99 4.03 3.48 3.90 4.07
Imom 0.75 0.77 0.77 0.62 0.78 0.80 2.63 2.72 2.71 2.22 2.69 2.87
BM 0.02 0.03 0.04 -0.02 0.03 0.04 0.15 0.30 0.31 -0.20 0.24 0.32
EP -0.04 -0.11 -0.12 -0.09 -0.11 -0.09 -0.33 -0.85 -0.96 -0.72 -0.85 -0.72
CFP -0.05 -0.11 -0.13 -0.15 -0.10 -0.10 -0.40 -0.88 -1.03 -1.18 -0.81 -0.78
NOP 0.13 0.25 0.26 0.28 0.22 0.20 1.09 2.07 2.23 2.15 1.92 1.66
Dur -0.01 0.06 0.07 0.07 0.07 0.03 -0.05 0.47 0.61 0.57 0.53 0.25
AG 0.02 -0.21 -0.25 -0.08 -0.15 -0.16 0.17 -1.46 -1.92 -0.53 -1.14 -1.23
NOA -0.53 -0.62 -0.63 -0.50 -0.63 -0.60 -3.11 -3.71 -3.82 -2.99 -3.76 -3.55
dPIA -0.34 -0.52 -0.54 -0.35 -0.46 -0.48 -2.88 -3.68 -4.08 -2.49 -3.71 -3.75
IG -0.17 -0.31 -0.33 -0.26 -0.26 -0.28 -1.50 -2.64 -3.04 -2.17 -2.37 -2.54
NSI -0.31 -0.41 -0.42 -0.40 -0.37 -0.39 -2.47 -3.17 -3.34 -3.04 -2.96 -3.06
CEI -0.29 -0.40 -0.41 -0.33 -0.36 -0.36 -2.67 -3.40 -3.52 -2.85 -3.22 -3.24
IvG -0.09 -0.23 -0.24 -0.12 -0.19 -0.19 -0.74 -1.68 -1.86 -0.89 -1.46 -1.52
IvC -0.34 -0.46 -0.47 -0.35 -0.43 -0.43 -2.62 -3.39 -3.56 -2.38 -3.17 -3.26
OA -0.41 -0.38 -0.37 -0.38 -0.42 -0.36 -3.41 -3.30 -3.22 -3.19 -3.70 -3.12
POA -0.17 -0.27 -0.28 -0.19 -0.25 -0.23 -1.36 -2.10 -2.21 -1.43 -1.97 -1.89
PTA -0.05 -0.17 -0.19 -0.28 -0.12 -0.13 -0.32 -1.15 -1.39 -1.79 -0.82 -0.96
ROE 0.57 0.58 0.58 0.56 0.56 0.60 4.23 4.36 4.33 4.16 4.25 4.60
ROA 0.58 0.55 0.55 0.52 0.56 0.58 4.59 4.49 4.42 4.07 4.58 4.83
GPA 0.15 0.21 0.22 0.16 0.21 0.22 1.22 1.65 1.78 1.27 1.67 1.75
NEI 0.40 0.39 0.38 0.38 0.40 0.40 4.25 4.21 4.16 3.74 4.39 4.40
FP6 -0.60 -0.63 -0.62 -0.51 -0.62 -0.63 -3.74 -3.89 -3.82 -3.14 -3.86 -3.91
OCA 0.28 0.37 0.38 0.31 0.34 0.37 2.52 3.21 3.50 2.98 2.88 3.28
AdM -0.27 -0.15 -0.15 -0.07 -0.17 -0.18 -1.51 -0.86 -0.84 -0.37 -0.95 -1.01
RDM 0.50 0.56 0.57 0.69 0.58 0.55 2.33 2.62 2.70 3.24 2.67 2.57
OL 0.08 0.12 0.14 0.19 0.12 0.13 0.50 0.76 0.85 1.11 0.71 0.79
Svol -0.20 -0.23 -0.23 -0.35 -0.22 -0.20 -1.00 -1.15 -1.14 -1.72 -1.08 -1.02

Mean |α|: spread 0.38 0.43 0.43 0.37 0.42 0.42
Mean |α|: all 0.12 0.12 0.12 0.11 0.12 0.12
N(|t| > 2) 21 24 24 21 22 22
N(p < 5%) 23 24 25 20 25 24
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Table XI
Replacing Asset Growth With Its Subcomponents: Performance Using Various Test

Assets

This table summarizes the ability of various factor models to explain monthly excess returns on several sets of test assets (the
same ones used in Table IV). The sample period is 1972-2016. In Panel A and B, we use factor models which are variations of
the Hou, Xue, and Zhang (2015) four factor model (HXZ), where the asset growth factor has been replaced with an analogous
factor based on a subcomponent of asset growth. In Panels C and D, we make the same adjustment to the Fama and French
(2015) five factor model (FF5F). Panels A and C use subcomponents of asset growth from the left hand side of the balance
sheet: cash, noncash current assets (NCCA), PPE and other. In panels B and D we use subcomponents of asset growth from the
right hand side of the balance sheet: operating liabilities (OLIAB), long-term debt (DBT), common equity (EQ) and retained
earnings (RE). For comparison purposes, the table also reports results using the original HXZ and FF5F models (columns titled
“AG”) and versions of these models without an investment factor (columns titled “none”). “Mean |α|” is the average of the
absolute alphas corresponding to each set of portfolios. “N(|t| > 2) ” is the number of alpha t-statistics with absolute value
greater than 2. “GRS test statistic” is the Gibbons, Ross, and Shanken (1989) statistic that tests whether the alpha estimates
corresponding to each set of portfolios are jointly 0.

Panel A: Decomposing total assets. Performance of HXZ-like models

AG None CASH NCCA PPE Other

Panel A1: All 171 portfolios
Mean |α| 0.098 0.221 0.193 0.12 0.165 0.128
N(|t| > 2) 21 88 75 31 54 32
GRS test statistic 1.887 2.18 2.182 1.956 2.063 1.929

Panel A2: 25 Size-BM portoflios
Mean |α| 0.104 0.25 0.218 0.134 0.187 0.141
N(|t| > 2) 4 14 12 5 10 5
GRS test statistic 3.191 4.28 4.121 3.588 3.531 3.622

Panel A3: 25 Size-AG Portfolios
Mean |α| 0.087 0.232 0.202 0.11 0.159 0.112
N(|t| > 2) 5 20 16 7 9 7
GRS test statistic 3.256 4.846 4.818 3.493 4.181 3.495

Panel A4: 25 Size-Profitability portfolios
Mean |α| 0.051 0.085 0.067 0.057 0.067 0.063
N(|t| > 2) 0 4 2 1 2 1
GRS test statistic 1.497 2.129 1.962 1.592 1.723 1.757

Panel A5: 32 Size-BM-AG portfolios
Mean |α| 0.097 0.229 0.197 0.12 0.166 0.136
N(|t| > 2) 4 16 14 6 10 5
GRS test statistic 2.185 3.261 3.368 2.442 2.829 2.583

Panel A6: 32 Size-BM-Profitability portfolios
Mean |α| 0.13 0.269 0.239 0.154 0.212 0.156
N(|t| > 2) 3 16 14 4 11 5
GRS test statistic 1.968 2.568 2.597 2.088 2.3 2.032

Panel A7: 32 Size-AG-Profitability portfolios
Mean |α| 0.108 0.239 0.215 0.133 0.18 0.147
N(|t| > 2) 5 18 17 8 12 9
GRS test statistic 2.411 3.825 4.144 2.794 3.329 2.889
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Table XI
Replacing Asset Growth With Its Subcomponents: Performance Using Various Test

Assets (continued)

Panel B: Decomposing liabilities and shareholders’ equity. Performance of HXZ-like models

AG None OLIAB DBT EQ RE

Panel B1: All 171 portfolios
Mean |α| 0.098 0.221 0.135 0.224 0.128 0.175
N(|t| > 2) 21 88 38 86 41 62
GRS test statistic 1.887 2.18 2.025 2.018 2.016 2.002

Panel B2: 25 Size-BM portoflios
Mean |α| 0.104 0.25 0.146 0.271 0.131 0.192
N(|t| > 2) 4 14 7 15 6 11
GRS test statistic 3.191 4.28 3.594 3.811 3.532 3.838

Panel B3: 25 Size-AG Portfolios
Mean |α| 0.087 0.232 0.129 0.212 0.133 0.158
N(|t| > 2) 5 20 7 16 9 12
GRS test statistic 3.256 4.846 4.171 4.025 4.026 3.786

Panel B4: 25 Size-Profitability portfolios
Mean |α| 0.051 0.085 0.048 0.099 0.065 0.095
N(|t| > 2) 0 4 1 5 3 4
GRS test statistic 1.497 2.129 1.596 1.895 1.751 1.851

Panel B5: 32 Size-BM-AG portfolios
Mean |α| 0.097 0.229 0.135 0.229 0.131 0.173
N(|t| > 2) 4 16 6 17 8 12
GRS test statistic 2.185 3.261 2.765 2.876 2.891 2.911

Panel B6: 32 Size-BM-Profitability portfolios
Mean |α| 0.13 0.269 0.174 0.294 0.143 0.235
N(|t| > 2) 3 16 7 17 6 9
GRS test statistic 1.968 2.568 2.13 2.371 2.114 2.69

Panel B7: 32 Size-AG-Profitability portfolios
Mean |α| 0.108 0.239 0.158 0.218 0.154 0.179
N(|t| > 2) 5 18 10 16 9 14
GRS test statistic 2.411 3.825 3.367 3.315 3.249 3.117
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Table XI
Replacing Asset Growth With Its Subcomponents: Performance Using Various Test

Assets (continued)

Panel C: Decomposing total assets. Performance of FF5F-like models

AG None CASH NCCA PPE Other

Panel C1: All 171 portfolios
Mean |α| 0.099 0.107 0.116 0.102 0.101 0.111
N(|t| > 2) 36 37 39 37 35 37
GRS test statistic 1.901 1.969 2.088 1.898 1.98 1.885

Panel C2: 25 Size-BM portoflios
Mean |α| 0.105 0.102 0.107 0.109 0.101 0.12
N(|t| > 2) 6 5 5 6 6 7
GRS test statistic 3.369 3.323 3.429 3.49 3.175 3.736

Panel C3: 25 Size-AG Portfolios
Mean |α| 0.095 0.111 0.129 0.102 0.101 0.1
N(|t| > 2) 5 7 8 6 6 5
GRS test statistic 3.674 4.04 4.521 3.73 3.794 3.754

Panel C4: 25 Size-Profitability portfolios
Mean |α| 0.051 0.047 0.048 0.054 0.048 0.058
N(|t| > 2) 1 2 3 1 1 2
GRS test statistic 1.669 1.713 1.684 1.735 1.568 1.755

Panel C5: 32 Size-BM-AG portfolios
Mean |α| 0.108 0.129 0.139 0.112 0.115 0.127
N(|t| > 2) 9 10 9 10 10 10
GRS test statistic 2.597 2.812 3.027 2.685 2.665 2.811

Panel C6: 32 Size-BM-Profitability portfolios
Mean |α| 0.11 0.103 0.104 0.107 0.108 0.121
N(|t| > 2) 5 3 3 5 4 4
GRS test statistic 2.138 1.943 1.952 2.03 2.06 2.15

Panel C7: 32 Size-AG-Profitability portfolios
Mean |α| 0.113 0.137 0.153 0.119 0.12 0.127
N(|t| > 2) 10 10 11 9 8 9
GRS test statistic 3.357 3.678 4.142 3.36 3.451 3.345
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Table XI
Replacing Asset Growth With Its Subcomponents: Performance Using Various Test

Assets (continued)

Panel D: Decomposing liabilities and shareholders’ equity. Performance of FF5F-like models

AG None OLIAB DBT EQ RE

Panel D1: All 171 portfolios
Mean |α| 0.099 0.107 0.111 0.093 0.107 0.108
N(|t| > 2) 36 37 38 32 37 38
GRS test statistic 1.901 1.969 2.041 1.795 1.962 1.961

Panel D2: 25 Size-BM portoflios
Mean |α| 0.105 0.102 0.103 0.097 0.107 0.108
N(|t| > 2) 6 5 5 5 5 5
GRS test statistic 3.369 3.323 3.313 2.849 3.381 3.355

Panel D3: 25 Size-AG Portfolios
Mean |α| 0.095 0.111 0.117 0.093 0.109 0.112
N(|t| > 2) 5 7 8 6 7 8
GRS test statistic 3.674 4.04 4.496 3.119 4.026 4.053

Panel D4: 25 Size-Profitability portfolios
Mean |α| 0.051 0.047 0.048 0.045 0.047 0.05
N(|t| > 2) 1 2 2 0 2 2
GRS test statistic 1.669 1.713 1.708 1.317 1.667 1.711

Panel D5: 32 Size-BM-AG portfolios
Mean |α| 0.108 0.129 0.135 0.104 0.128 0.129
N(|t| > 2) 9 10 9 9 10 10
GRS test statistic 2.597 2.812 3.097 2.363 2.848 2.853

Panel D6: 32 Size-BM-Profitability portfolios
Mean |α| 0.11 0.103 0.103 0.098 0.107 0.106
N(|t| > 2) 5 3 3 4 4 4
GRS test statistic 2.138 1.943 1.931 1.705 1.969 2.005

Panel D7: 32 Size-AG-Profitability portfolios
Mean |α| 0.113 0.137 0.143 0.114 0.133 0.132
N(|t| > 2) 10 10 11 8 9 9
GRS test statistic 3.357 3.678 4.105 2.962 3.641 3.672

54



Internet Appendix

Appendix A: List of Anomalies

We have utilized NYSE breakpoints for the purposes of portfolio formation for the vast majority

of the below listed anomalies. In instances where NYSE breakpoints have not be utilized, we have

marked these anomalies with a star (*).

B1 SUE, SUE6 – Standardized unexpected earnings (SUE) is calculated based on Foster,

Olsen, and Shevlin (1984). SUE is the difference between the most recent announced quarterly

earnings per share (Compustat quarterly item EPSPXQ) and the quarterly earnings per share

from 4 quarters ago divided by the standard deviation of the change in quarterly earnings over the

prior 8 quarters. A minimum of 6 quarterly earnings observations are required to be available to

complete the calculation.

For portfolio formation, the most recently announced earnings must be associated with a fiscal

quarter end within the 6 months preceding the portfolio formation date. In addition, the report

date (Compustat quarterly item RDQ) must be after the fiscal quarter end. These restrictions help

ensure that incorrect or dated information is excluded from the portfolios.

At the start of each month t, all NYSE, Amex, and NASDAQ stocks are separated into deciles

based on the most recent SUE value. Value-weighted portfolio returns are calculated for each month

over the current month, t, for SUE and over months, t to t+5, for SUE6. Deciles are rebalanced

each month. For SUE6, there are six separate deciles associated with each month. Each of these

separate deciles is from the start of one of the prior six months. The SUE6 decile return is the

average return of these six separate deciles in a given month.

B2 Abr, Abr6 – Our calculation of cumulative abnormal stock return (Abr) follows Chan,

Jegadeesh, and Lakonishok (1996). Specifically, this anomaly focuses on returns around earnings

announcement dates and is calculated as:

Abri =

+1∑
d=−2

rid − rmd (B1)
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where rid is firm i ’s return on day d, and rmd is the value weighted return on the market index.

Earnings announcements coincide with day 0 in the above equation. One day after the earnings

announcement is included to help ensure any delayed reaction is a part of the cumulative abnor-

mal return calculation. For portfolio formation, the most recently announced earnings must be

associated with a fiscal quarter end within the 6 months preceding portfolio formation.

Deciles are formed each month t based on the most recent Abr. Value-weighted portfolio returns

are calculated for each month over the current month, t, for Abr and over months, t to t+5, for

Abr6. Deciles are rebalanced each month. For Abr6, there are six separate deciles associated with

each month. Each of these separate deciles is from the start of one of the prior six months. The

Abr6 decile return is the average return of these six separate deciles in a given month.

B3 RE, RE6 – Chan, Jegadeesh, and Lakonishok (1996) also outline a measure of earnings

surprise represented by the changes in analysts’ forecasts of earnings. Institutional Brokers’ Es-

timate System (IBES) is our source for the earnings forecast data. The formula to calculate the

6-month moving average of the past changes in analyst forecasts is below:

REit =
6∑
j=1

fi,t−j − fi,t−j−1

pi,t−j−1
(B2)

fi,t−j is the consensus mean forecast (IBES item MEANEST) issued in month t-j for firm i ’s current

fiscal year earnings where fiscal period indicator is equal to 1, and pi,t−j−1 is the share price one

month prior (IBES item PRICE). Prices are adjusted for stock splits with a minimum of 4 monthly

forecast changes required.

B4 R6 6 – Each month t stocks are placed into deciles based on the returns over months t-7

to t-2. For the purposes of the value weighted return calculation and portfolio formation, we skip

month t-1. Value weighted returns are calculated starting in month t. These returns are calculated

from month t to t+5 for this anomaly. Portfolios are rebalanced each month. For R6 6, there are

six separate deciles associated with each month. Each of these separate deciles is from the start

of one of the prior six months. The R6 6 decile return is the average return of these six separate

deciles in a given month.

B4a R11 1 – Adopting the methodology outlined in Fama and French (1996), R11 1 portfolios
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are formed each month based on returns over the 11 month period from t-12 to t-2. We skip month

t-1 and form portfolios in month t. Each month, value weighted returns are calculated for each

portfolio. These portfolios are rebalanced each month.

B5 Imom* – Industry momentum, originally identified by Moskowitz and Grinblatt (1999), is

a strategy based on purchasing stocks in “winner” industries and selling stocks in ‘loser’ industries.

Each month t we sort industries into winners and losers based on their previous value-weighted

returns from t-6 to t-1. We utilize Fama-French’s 49-industry classification and omit financial

firms from our testing. The omission of financial firms leaves 45 industries, which are divided into

9 separate portfolios. Each portfolio containing five distinct industries. Returns for these portfolios

are obtained by taking the average of the equal-weighted return for each of the five industries in

the portfolio. These portfolios are held for 6 months from t to t+5, and are rebalanced at the

start of t+1. For Imom, there are six separate deciles associated with each month. Each of these

separate deciles is from the start of one of the prior six months. The Imom decile return is the

average return of these six separate deciles for a given month.

B6 BM – Each year t, we sort stocks into deciles based on their book-to-market ratio or BM.

BM is the ratio of the book equity for the fiscal year ending in calendar year t-1 divided by the

market equity at the end of December of t-1. Value-weighted returns are calculated for the period

from July of year t to June of year t+1. These deciles are rebalanced annually at the end of June

of year t+1.

B7 EP – Following Basu (1983), we form deciles based on the earnings-to-price (EP) ratio at

the end of June of year t. EP is the ratio of earnings as measured by Compustat item IB for the

fiscal year ending in calendar year t-1 divided by the market equity (from CRSP or Compustat) as

of December t-1. We exclude firms with negative earnings. Value-weighted returns are calculated

each month based on portfolios formed in July of year t and held until June of year t+1. The

deciles are rebalanced at the end of June of year t+1.

B8 CFP – Cash flow to market equity (CFP) is measured as the ratio of cash flow at the end

of the fiscal year ended in calendar year t-1 divided by market equity measured as of December of

year t-1. Cash flows are defined as income before extraordinary items (Compustat item IB) plus

57



depreciation (Compustat item DP) attributable to equity, plus deferred taxes (Compustat item

TXDI). To obtain the component of deprecation attributable to equity, we multiply depreciation

by market equity divided by total assets (Compustat item AT) less book equity plus market equity.

We form portfolios at the end of June of year t based on the CFP value. Negative cash flow

firms are not included in portfolios. Each month, value weighted returns are calculated for portfolios

formed in July of year t and held until June of year t+1. Portfolios are rebalanced at the end of

June of year t+1.

B9 NOP – NOP stands for net payouts over market equity at the end of calendar year t-

1. Total payouts less equity issuances represents net payouts. To obtain total payouts, we add

dividends (Compustat item DVC) plus repurchases. We calculate repurchases as the total spent on

purchases of common and preferred stock (Compustat item PRSTKC) plus any negative change

from the prior year in the value of preferred stock outstanding (Compustat item PSTKRV). We

calculate equity issuances as the sale of common and preferred stock (Compustat item SSTK) less

any positive change from the prior year in the value of preferred stock.

We form decile portfolios at the end of June of year t based on the NOP for the fiscal year ending

in calendar year t-1. We exclude firms with zero net payouts. Each month, value weighted returns

are calculated for portfolios formed in July of year t and held until June of year t+1. Portfolios

are rebalanced at the end of June of year t+1. Data related to the sale of common and preferred

stock is first available in 1971. Accordingly, our NOP deciles start in July of 1972.

B10 Dur – Our equity duration calculation follows that of Dechow, Sloan, and Soliman (2004).

We adopt the following equation for our calculation of equity duration:

Dur =

∑T
t=1 t× CDt/(1 + r)t

ME
+

(
T +

1 + r

r

)
P −

∑T
t=1CDt/(1 + r)t

ME
(B3a)

where Dt is net cash distributions in year t, ME is market equity, T represents the length of the

forecast period, and r is the cost of equity. Market equity, ME, is the price per share at the

fiscal year-end (Compustat item PRCC F) multiplied by the shares outstanding (Compustat item
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CSHO). Net cash distribution equals:

CDt = BEt−1(ROEt − gt) (B3b)

where BEt−1 represents book equity at the end of year t-1, ROEt represents return on equity

in year tand gt is the growth in book equity in year t. ROEt follows a first-order autoregressive

process with an autocorrelation of 0.57 and mean of 0.12. Growth in book equity, on the other

hand, follows a similar process with autocorrelation of 0.24 and a mean of 0.06. To obtain a ROEt

for year 0, we calculate ROE as income before extraordinary items (Compustat item IB) over the

lagged book equity from one year prior as measured by (Compustat item CEQ). The book equity

growth rate is the annual change sales (Compustat item SALE). We allow for a forecasting period

of 10 years (T=10) and cost of equity is assumed to equal 0.12 (r=0.12).

We form decile portfolios at the end of June of year t based on the Dur for the fiscal year ending

in calendar year t-1. Each month, value weighted returns are calculated for portfolios formed in

July of year t and held until June of year t+1. Portfolios are rebalanced at the end of June of year

t+1.

B11 AG – We follow Cooper, Gulen, and Schill (2008) for our calculation of asset growth

(AG). AG is defined as:

AGi,t =
ATi,t −ATi,t−1

ATi,t−1
(B4)

where AT is total assets and corresponds to the same Compustat data item. We form decile

portfolios at the end of June of year t based on the AG for the fiscal year ending in calendar year

t-1. Each month, value weighted returns are calculated for portfolios formed in July of year t and

held until June of year t+1. Portfolios are rebalanced at the end of June of year t+1.

B12 NOA – Net Operating Assets, or NOA, is operating assets less operating liabilities divided

by total assets at fiscal year ending in t-2 as defined by Hirshleifer, Hou, Teoh, and Zhang (2004). We

calculate operating assets as total assets (Compustat item AT) less cash and short-term investments

(Compustat item CHE). Operating liabilities are total assets (Compstat item AT) less the current

portion of debt (Compustat item DLC), long-term debt (Compustat item DLTT), minority interest
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(Compustat item MIB), preferred stock (Compustat item PSTK), and common equity (Compustat

item CEQ). Missing values of the current portion of debt, long-term debt, minority interest, and

preferred stock are set equal to zero.

We form decile portfolios at the end of June of year t based on the NOA for the fiscal year

ending in calendar year t-1. Each month, value weighted returns are calculated for portfolios formed

in July of year t and held until June of year t+1. Portfolios are rebalanced at the end of June of

year t+1.

B13 dPIA – dPIA is the sum of the change in gross property plant and equipment (Compustat

item PPEGT) and change in inventory (Compustat item INVT) divided by lagged total assets. This

calculation follows Lyandres, Sun, and Zhang (2008). We form decile portfolios at the end of June

of year t based on the dPIA for the fiscal year ending in calendar year t-1. Each month value

weighted returns are calculated for portfolios formed in July of year t and held until June of year

t+1. Portfolios are rebalanced at the end of June of year t+1.

B14 IG – Investment growth (IG), as in Xing (2008), is the growth in capital expenditure

(Compustat item CAPX) from fiscal year t-2 to year t-1. We form decile portfolios at the end of

June of year t based on the IG for the fiscal year ending in calendar year t-1. Each month value

weighted returns are calculated for portfolios formed in July of year t and held until June of year

t+1. Portfolios are rebalanced at the end of June of year t+1.

B15 NSI – Net stock Issuance (NSI), as defined by Fama and French (2008), is the natural log

of the ratio of split-adjusted shares outstanding at the fiscal year ending in calendar year t-1 to

split-adjusted shares outstanding at the fiscal year ending t-2. Split-adjusted shares outstanding

are common shares outstanding (Compustat item CSHO) multiplied by the adjustment factor

(Compustat item AJEX). We form decile portfolios at the end of June of year t based on the NSI

for the fiscal year ending in calendar year t-1. Each month, value weighted returns are calculated

for portfolios formed in July of year t and held until June of year t+1. Portfolios are rebalanced

at the end of June of year t+1. We require firms to have a non-zero value of NSI.

B16 CEI – The growth in market equity that is not attributable to returns is our measure of
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composite equity issuance (CEI). We adopt the following method for the purposes of this paper:

CEI = log

(
MEt
MEt−1

)
− r(t− 5, t) (B5)

For the purposes of portfolio formation, which occurs at the end of June of year t, we use the

cumulative log return on the stock from the last trading day of June of year t-5 to the last day of

trading in June of year t for the variable r(t-5,t). MEt is the market equity from the last trading

day of June in year t. ME is based on the price and shares outstanding, both of which are obtained

from CRSP.

We form decile portfolios at the end of June of year t based on the CEI for the fiscal year ending

in calendar year t-1. Each month, value weighted returns are calculated for portfolios formed in

July of year t and held until June of year t+1. Portfolios are rebalanced at the end of June of year

t+1.

B17 IvG – Inventory growth (IvG) is the growth rate in inventory (Compustat item INVT)

from fiscal year ending in calendar year t-2 to fiscal year ending in calendar year t-1 divided by the

average of total assets (Compustat item AT) for the fiscal years ending in calendar year t-2 and t-1.

We form decile portfolios at the end of June of year t based on the IvG for the fiscal year ending

in calendar year t-1. We require firms to have a non-zero value of IvC for inclusion in portfolio

formation. Each month value weighted returns are calculated for portfolios formed in July of year

t and held until June of year t+1. Portfolios are rebalanced at the end of June of year t+1.

B18 IvC – Inventory change (IvG) is the change in inventory (Compustat item INVT) from

fiscal year ending in calendar year t-2 to fiscal year ending in calendar year t-1 divided by the

average of total assets (Compustat item AT) for the fiscal years ending in calendar year t-2 and

t-1. This is calculation is based on Thomas and Zhang (2002). We form decile portfolios at the end

of June of year t based on the IvC for the fiscal year ending in calendar year t-1. We require firms

to have a non-zero value of IvC for inclusion in portfolio formation. Each month value weighted

returns are calculated for portfolios formed in July of year t and held until June of year t+1.

Portfolios are rebalanced at the end of June of year t+1.

B19 OA – Operating accruals (OA) fall into two distinct periods: pre-1988 and post-1988.
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Prior to 1988, we utilize the balance sheet approach proposed by Sloan (1996) to calculate OA. In

line with this approach, we define OA as:

OA = (∆ACT −∆CHE)− (∆LCT −∆DLC −∆TXP )−DP (B6)

where each of the above variables corresponds to the annual change in the same Compustat

data item. DLC, TXP, and DP are replaced with zero if missing.

For the post-1988 period, we adopt the Hribar and Collins (2002) methodology to calculate

OA. Using this approach, OA is equal to net income (Compustat item NI) less the cash flow from

operations (Compustat item OANCF). Data from the statement of cash flows become available

from Compustat in 1988. We form decile portfolios at the end of June of year t based on the OA

divided by total assets (Compustat item AT) for the fiscal year ending in calendar year t-1. Each

month value weighted returns are calculated for portfolios formed in July of year t and held until

June of year t+1. Portfolios are rebalanced at the end of June of year t+1.

B20 POA – As an alternative to the traditional measures of accruals scaled by assets, Hafzalla,

Lundholm, and VanWinkle (2011) suggest that scaling by sales may be more appropriate for dif-

ferentiating between the firms with more extreme differences among highly sophisticated forecasts

and näıve forecasts of earnings. Percent Operating Assets (POA) is OA as defined in B19 divided

by net income (Compustat item NI) for the fiscal year ending in calendar year t-1. We form decile

portfolios at the end of June of year t based on the POA for the fiscal year ending in calendar year

t-1. Each month value weighted returns are calculated for portfolios formed in July of year t and

held until June of year t+1. Portfolios are rebalanced at the end of June of year t+1.

B21 PTA – Percent total accruals (PTA) is total accruals divided by the absolute value of

net income (Compustat item NI) from the fiscal year ending in calendar year t-1. Our measure of

total accruals is from Richardson, Sloan, Soliman, and Tuna (2005) for period prior to 1988. Total

accruals is the sum of the change in net non-cash working capital, the change in net non-current

operating assets, and the change in net financial assets. We define net non-cash working capital as
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current operating assets less current operating liabilities obtained from the following equation:

WC = (ACT − CHE)− (LCT −DLC) (B7a)

The variables on the left hand side of the above equation correspond to the related Compustat

data item. We replace DLC with zero if the variable is missing. We define net non-current operat-

ing assets as non-current operating assets less non-current operating liabilities obtained from the

following equation:

NCOA = (AT −ACT − IV AO)− (LT − LCT −DLTT ) (B7b)

The variables on the left hand side of the above equation correspond to the related Compustat

data item. IVAO and DLTT are assumed zero if missing. We define net financial assets as financial

assets less financial liabilities obtained from the following equation:

FINA = (IV ST + IV AO)− (DLTT +DLC + PSTK) (B7c)

The variables on the left hand side of the above equation correspond to the related Compustat data

item. All items above are assumed zero if missing.

Post 1988, we utilize the statement of cash flow to estimate total accruals. We use the following

equation to estimate total accruals:

TotalAccruals = NI −OANCF − IV NCF − FINCF + SSTK − PRSTKC −DV (B7d)

The variables on the left hand side of the above equation correspond to the related Compustat

data item. Items SSTK, PRSTKC and DV are assumed zero if missing. We form decile portfolios

at the end of June of year t based on the PTA for the fiscal year ending in calendar year t-1. Each

month, value weighted returns are calculated for portfolios formed in July of year t and held until

June of year t+1. Portfolios are rebalanced at the end of June of year t+1.

B22 ROE – We calculate return on equity (ROE) as income before extraordinary items (Com-
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pustat item IBQ) scaled by book equity from 1 quarter prior. Book equity is shareholders’ equity

plus balance sheet deferred taxes and investment tax credit (Compustat item TXDITCQ) less the

book value of preferred stock. TXDITCQ is assumed zero if missing. There are three alternative

ways of obtaining shareholder equity. We obtain shareholders’ equity using the following methods

in the order presented i) as stockholders’ equity (Compustat item SEQQ), or ii) common equity

(Compustat item CEQQ) plus preferred stock at redemption value (Compustat item PSTKRQ),

or iii) total assets (Compustat item ATQ) less total liabilities (Compustat item LTQ). If preferred

stock at redemption value is unavailable, we use preferred stock at carrying value (Compustat item

PSTKQ).

We form decile portfolios each month based on the ROE from the most recent quarterly filing.

Each month, value weighted returns are calculated for each portfolio. Portfolios are rebalanced at

the end of each month. For portfolio formation, the most recently announced earnings must be

associated with a fiscal quarter end within the 6 months preceding the portfolio formation date. In

addition, the report date (Compustat quarterly item RDQ) must be after the fiscal quarter end.

These restrictions ensure that incorrect or dated information is excluded from the portfolios.

B23 ROA – Return on Assets (ROA) is income before extraordinary items (Compustat item

IBQ) divided by total assets (Compustat item ATQ) from the preceding quarter. We form decile

portfolios each month based on the ROA from the most recent quarterly filing. Each month, value

weighted returns are calculated for each portfolio. Portfolios are rebalanced at the end of each

month. For portfolio formation, the most recently announced earnings must be associated with a

fiscal quarter end within the 6 months preceding the portfolio formation date. These restrictions

help ensure that dated information is excluded from the portfolios.

B24 GPA – Gross profits to assets (GPA) is total revenue (Compustat item REVT) less cost

of goods sold (Compustat item COGS) over concurrent total assets. We form decile portfolios at

the end of June of year t based on the GPA for the fiscal year ending in calendar year t-1. Each

month, value weighted returns are calculated for portfolios formed in July of year t and held until

June of year t+1. Portfolios are rebalanced at the end of June of year t+1.

B25 NEI* – We define NEI as the number of consecutive quarters with an increase in quarterly
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earnings over the same period in the preceding year as measured by Compustat item IBQ. Our

measure of NEI uses up to 8 quarters; thus the measure ranges from 0 to 8. We form 9 portfolios

based on NEI based on the most recently reported quarter announcement date (Compustat item

RDQ). For portfolio formation, the most recently announced earnings must be associated with a

fiscal quarter end within the 6 months preceding the portfolio formation date. These restrictions

help ensure that dated information is excluded from the portfolios. Value-weighted portfolio returns

are calculated each month t. We rebalance portfolios each month.

B26 FP6 – We follow Campbell, Hilscher, and Szilagyi (2008) in the construction of our failure

probability (FP) measure. Specifically, we use the parameter estimates obtained using a lag of 6

as reported in Campbell, Hilscher, and Szilagyi (2008) Table IV column 3. FP has the following

formula:

FPt = −9.146− 20.264NIMTAAV Gt + 1.416TLMTAt − 7.129EXRETAV Gt

+ 1.411SIGMAt − 0.045RSIZEt − 2.132CASHMTAt + 0.075MBt − 0.058PRICEt (B8a)

where NIMTAAVGt and EXRETAVGt are defined as:

NIMTAAV Gt−1,t−12 =
1− φ3

1− φ12
(NIMTAt−1,t−3 + ...+ φ9NIMTAt−10,t−12) (B8b)

EXRETAV Gt−1,t−12 =
1− φ

1− φ12
(EXRETt−1 + ...+ φ11NIMTAt−12) (B8c)

NIMTA is quarterly net income (Compustat item NIQ) over the sum of market equity (CRSP

shares outstanding multiplied by market price) and total liabilities (Compustat item LTQ). EXRET

is calculated using the following equation:

EXRET = log(1 +Ri,t)− log(1 +RSP500,t) (B8d)

or the log excess return on firm equity relative to the SP 500 index. φ is equal to 2-1/3.
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SIGMA is the annualized rolling 3-month sample standard deviation calculated as follows:

SIGMA =

√
252

N − 1

∑
k∈{t−1,t−2,t−3}r

2
k (B8e)

where k represents the number of trading days in the associated month 1, 2 or 3 months prior,

N is the total number of trading days over the 3 months, and rk is the daily return for a given

firm. We consider SIGMA to be missing if there are fewer than five non-zero observations over

the three-month period. TLMTA is the ratio of total liabilities (Compustat item LTQ) over the

sum of market equity (CRSP shares outstanding multiplied by market price) and total liabilities

(Compustat item LTQ). RSIZE is the relative size of each firm to that of the SP 500 index. Size is

the log of market equity for both the firm and index.

CASHMTA is the ratio of cash and short-term investments (Compustat item CHEQ) over the

sum of market equity (CRSP shares outstanding multiplied by market price) and total liabilities

(Compustat item LTQ). MB is the market-to-book equity. We use the definition of book equity

from B22 ROE. To modulate the effect of measurement errors for small firms, we add 10% of the

difference between market equity and book equity to our calculation of book equity. Negative values

of book equity that persist in the presence of these adjustments are set equal to $1. Finally, we

define PRICE as the log of price truncated above at $15. We require prices to be above $1 at the

date of portfolio formation. All variables in our calculation of FP are winsorized at the 5th and

95th percentile across all observations.

Each month, we form decile portfolios based on our FP calculation. This value of FP is from

accounting data from the fiscal quarter ending at least 4 months ago. This 4-month gap is to ensure

that all variables used in the estimation of FP are publicly available at the time of inclusion into

a portfolio. Decile returns are from the 6 months following portfolio formation (month t to t+5 ).

Portfolios are rebalanced each month. There are six separate deciles associated with each month.

Each of these separate deciles is from the start of one of the prior six months. The FP decile return

is the average return of these six separate deciles in a given month.

B27 OCA – This is a measure of organizational capital (OC) scaled by total assets from the

same fiscal year. Organizational capital is a function of selling, general, and administrative expense
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(Compustat item XSGA) as in the following equation:

OCit = (1− δ)OCi,t−1 +
XSGAt
CPIt

(B9a)

where CPIt is the consumer price index from year t and δ is the annual depreciation rate for

OC. To obtain a starting point for OC, we use the calculation:

OCi,0 =
XSGAi,0
(g + δ)

(B9b)

where XSGAi,0 is the first observation of XSGA that is positive or zero. g is the long-term growth

rate of XSGA and assumed to be 10% as in Eisfeldt and Papanikolaou (2013). We use a depreciation

rate of 15% also following Eisfeldt and Papanikolaou (2013). After the initial observation of XSGA

is obtained, XSGA is assumed zero if missing. To be included in portfolio formation, a firm must

have a non-missing value of XSGA for the fiscal year ending in calendar year t-1. We also omit

firms with zero OC.

We standardize our measure of OCA by demeaning using the industry mean and scaling this

demeaned value by the industry standard deviation. We use the Fama and French (1997) 17

industry classification. To obtain the industry mean and standard deviation, we winsorize at the

1st and 99th percentile of each year. We form decile portfolios at the end of June of year t based

on the OCA for the fiscal year ending in calendar year t-1. Each month, value weighted returns

are calculated for portfolios formed in July of year t and held until June of year t+1. Portfolios

are rebalanced at the end of June of year t+1.

B28 AdM – We measure advertising expense to market equity (AdM) as the ratio of advertising

expense (Compustat item XAD) for fiscal year ending in calendar year t-1 to market equity (from

CRSP or Compustat) as of December of year t-1. We require firms to have a positive value of

advertising expense. Otherwise, we exclude the firm from portfolio formation. We form decile

portfolios at the end of June of year t based on the AdM for the fiscal year ending in calendar

year t-1. Each month, value weighted returns are calculated for portfolios formed in July of year t

and held until June of year t+1. Portfolios are rebalanced at the end of June of year t+1. Given

limitations on the availability of XAD, we begin portfolio formation in July 1973.
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B29 RDM – We measure R&D to market equity (RDM) as the ratio of R&D expense (Com-

pustat item XRD) for fiscal year ending in calendar year t-1 to market equity (from CRSP or

Compustat) as of December of year t-1. We require firms to have a positive value of R&D expense.

Otherwise, we exclude the firm from portfolio formation. We form decile portfolios at the end of

June of year t based on the RDM for the fiscal year ending in calendar year t-1. Each month, value

weighted returns are calculated for portfolios formed in July of year t and held until June of year

t+1. Portfolios are rebalanced at the end of June of year t+1. RDM portfolios start in July of

1976. This is to account for the 1975 codification of rules related to the recognition of R&D on a

firm’s financial statements.

B30 OL – For operating leverage (OL), we adopt the Novy-Marx (2011) approach where

operating costs are scaled by current total assets (Compustat item AT). We define operating costs

as cost of goods sold (Compustat item COGS) plus selling, general, and administrative expense

(Compustat item XSGA). We form decile portfolios at the end of June of year t based on the OL

for the fiscal year ending in calendar year t-1. Each month, value weighted returns are calculated

for portfolios formed in July of year t and held until June of year t+1. Portfolios are rebalanced

at the end of June of year t+1.

B31 Svol – Systematic volatility (Svol) is from the following equation:

rid = βi0 + βiMKTMKTd + βidV XOdV XOd + εid (B10)

where βidV XO represents our measure of Svol. rdi is the daily return to stock i in excess of the

one-month Treasury bill rate. MKTd is the market factor, and dV XOd is the aggregate volatility

shock measured as the daily change in the SP100 volatility index from the Chicago Board Options

Exchange. We form decile portfolios at the end of each month t based on the βidV XO obtained

using the daily returns for firm i in month t-1. Value-weighted returns are calculated each month.

Rebalancing takes place each month. January 1986 is the first date when volatility index is available;

thus our Svol portfolios start in February of 1986.
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Appendix B: Sample of papers using CAPX and PPE to measure

investment

No. Authors Year Journal

1 Fazzari, Hubbard, Petersen 1988 Brookings Papers on Economic Activity

2 Mork, Shleifer, Vishny 1990 Brookings Papers on Economic Activity

3 Whited 1992 Journal of Finance

4 Bond, Meghir 1994 Review of Economic Studies

5 Kaplan, Zingales 1997 Quarterly Journal of Economics

6 Hadlock 1998 RAND Journal of Economics

7 Cleary 1999 Journal of Finance

8 Rajan, Servaes, Zingales 2000 Journal of Finance

9 Whited 2001 Journal of Finance

10 Malmendier, Tate 2005 Journal of Finance

11 Rauh 2006 Journal of Finance

12 Almeida, Campello 2007 Review of Financial Studies

13 Hennessy, Levy, Whited 2007 Journal of Financial Economics

14 Chava, Roberts 2008 Journal of Finance

15 Lyandres, Sun, Zhang 2008 Review of Financial Studies

16 Polk, Sapienza 2009 Review of Financial Studies

17 Liu, Whited, Zhang 2009 Journal of Political Economy

18 Almeida, Campello, Galvao 2010 Review of Financial Studies

19 Denis, Sibilkov 2010 Review of Financial Studies

20 Cooper, Priestley 2011 Journal of Financial Economics

21 Erickson, Whited 2012 Review of Financial Studies

22 Chen, Chen 2012 Journal of Financial Economics

23 Bolton, Chen, Wang 2013 Journal of Financial Economics

24 Kahle, Stulz 2013 Journal of Financial Economics

25 Kogan, Papanikolaou 2013 Review of Financial Studies

26 Foucault, Fresard 2014 Journal of Financial Economics

27 Bustamante 2015 Review of Financial Studies

28 Kruger, Landier, Thesmar 2015 Journal of Finance

29 Asker, Farre-Mensa, Ljungqvist 2015 Review of Financial Studies

30 Warusawitharana, Whited 2016 Review of Financial Studies

31 Almeida, Cunha, Ferreira, Restrepo 2017 Journal of Finance
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