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Abstract

This work studies the impact of central bank activity on the optimal portfolio

choice of a long-term investor. The setting proposed incorporates a Taylor rule into

an extended term structure model, accounting for macroeconomic risks and equity

dynamics. Empirical evidence shows that an actively conservative monetary policy

(higher weight on price stability relative to real economic activity) provides a better

hedge of inflation, increases nominal bond volatility and leads to a reduction of the

positions in risky assets, as well as to an overall increase of welfare. Furthermore,

when the investor derives utility over real balances, a hedging demand covering

instantaneous variations in relative risk aversion appears in the optimal strategy,

causing bond positions to be reduced.

JEL classification: E43, E52, G11, G12.
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1 Introduction

Following the seminal contribution of Vasicek (1977) and Cox et al. (1985), Duffie and

Kan (1996) offered a comprehensive analysis of bond pricing within affine dynamic term

structure models. Dai and Singleton (2000) and Duffee (2002) show how to take such

affine models to the data and offer ample evidence that dynamic term structure models
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featuring (predictable) time varying bond risk premia are necessary to fit yield dynamics.

Dai and Singleton (2002) show that a Gaussian three-factor dynamic term structure

model, estimated with maximum likelihood, captures well the dynamics of the nominal

term structure, resolves the Campbell-Shiller expectation puzzle and overperforms other

affine specifications with stochastic volatilities.1

A lively literature studies the implications of the stochastic nature of interest rates

and bond risk premia for long-term investors. Campbell and Viceira (2001) and Brennan

and Xia (2002) focus on the role of inflation risk on dynamic asset allocation and assume

constant bond risk premia. On the other hand, Sangvinatsos and Wachter (2005) and

Koijen et al. (2010) account explicitly for time-varying bond risk premia and show that

this time variation generates a significant intertemporal hedging demand for long-term

bonds, which, if taken into account, leads to a significant welfare gain.

While early work on dynamic term structure models relied mainly on nominal bond

data, the recent decade witnessed a flourishing literature, reviewed in Section 2, concern-

ing monetary policy and the relation between macro variables and the term structure

of bond yields. Accounting for monetary policy and its role in the equilibrium of the

bond market turned out to be a natural setting to bring about a role for macroeconomic

variables into dynamic term structure models. As put forward by Taylor (1993), the

Central Bank adjusts the lending rate according to two main objectives: guaranteeing

the stability of prices and favouring economic growth. This can be modelled through a

Taylor rule, where the short-term rate depends, among other factors, on variables related

to past, current or expected inflation and variables directly linked with real economy, such

as the output gap. The relative importance of these two components determines whether

the priority of the Central Bank is respectively price stability or economic growth.

The aim of this paper is determining the impact of monetary policy on the optimal

portfolio choice of a long-term investor. The short-term rate is adjusted according to a

forward-looking Taylor rule, hence relatively to the levels of expected inflation and expec-

ted output gap. We show that the optimal allocation is particularly sensitive to the weight

given to expected inflation and, only secondarily, to the weight associated to the expec-

ted output gap. A more conservative policy, that is when the weight given to expected

inflation is high, tends to increase bond volatility, reduces total bond and stock positions,

shifts the bond exposure towards longer maturities and increases investor’s wealth. We

support these results by giving an interpretation based on the impulse responses of the

model to macroeconomic shocks, as well as with static comparative analyses. Differently

from most asset allocation works, we establish an affine one-to-one relation between lat-

ent and macroeconomic variables, thus being able to express all our results in terms of

economic quantities rather than of “hidden” states.

In parallel with the study of the effects of monetary policy on asset allocation, our

1See also the reviews in Dai and Singleton (2003) and Duffee (2013).
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work makes several other contributions. First of all, the dynamic term structure literature

incorporating macroeconomic risks focuses in general on the bond market and ignores the

stock market. Our asset universe includes both the bond and the equity markets, which

parameters are estimated simultaneously and, although the presence of the stock does not

significantly affect the goodness of fit of the term structure, in terms of asset allocation we

show that monetary policy shifts have a strong impact on the stock/bond mix. Particular

attention has been put on the estimation of bond and equity risk premia. Sangvinatsos

and Wachter (2005) and Koijen et al. (2010) assume a constant equity premium when

estimating their models. A plethora of papers insisted on the time variation in the equity

premium and its impact on portfolio choice. To make the model realistic, we thus allow

for such time variation in two distinct settings. In a first setting, similarly to the exist-

ing literature, we consider a canonical term structure model driven by three yield-based

factors, where inflation and equity premium also depend on the yield factors. This setting

is widespread in the literature, but has at least two drawbacks: i) since traded bonds per-

fectly hedge the latent factors, the stock market is useless for the intertemporal hedging

of shifts in the opportunity set, tilting the portfolio positions towards bonds and ii) in a

multiple-bond universe (three or more), the positions in the bonds are huge and unreal-

istic, due to the strong correlations amongst observed yields. We thus propose a different

specification, with two yield-based factors and a third filtered state variable that, together

with the information carried by the yield factors, contributes to the determination of the

equity premium and expected inflation. Differently from Wachter (2002), the equity

premium depends on information carried both by fixed-income and equity markets and

its innovation is not forced to have a perfect negative correlation with unexpected equity

returns. Furthermore, the economic variables and the equity premium are not perfectly

spanned by bond yields.2 This allows to better describe the dynamics of macroeconomic

variables and risk premia, as well as their co-movements. In particular, in this setting we

recover a negative correlation between the dynamics of the expected output gap and that

of equity and bond risk premia, which is consistent with the empirical findings on return

predictability in Cooper and Priestley (2009) and Campbell et al. (2013).

In terms of portfolio choice, differently from Brennan and Xia (2002) and Sangvinat-

sos and Wachter (2005), the presence of a state variable carrying information about the

equity premium, and independent from the nominal bond market, allows the intervention

of the stock, with a strong horizon effect, in the intertemporal hedging component of the

portfolio allocation. Another advantage of this setting is also that the optimal strategy

can be computed, in nominal market completeness, when the investor has access to two

bonds only and the equity index. This prevents the need of introducing a third bond in

the investable portfolio, which would cause the bond positions to be huge, because of the

2Joslin et al. (2013) show how imposing the spanning condition of macroeconomic variables by bond
yields can significantly reduce the goodness of fit of the macro variables.
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multicollinearity of nominal bond yields. With respect to the literature considering vari-

able equity premium, since the stock premium is not assumed to be perfectly negatively

correlated with stock returns, as it is the case in Wachter (2002), the stock allocation is

not strongly increasing with the investment horizon, but it is instead decreasing with the

horizon. Although the alternative estimation framework we propose has several advant-

ages over the more standard three-factor term structure model augmented with inflation

and stock dynamics, the specific conclusions we draw on the impact of monetary policy

on the optimal allocation prove to be robust to the choice of the estimation setting. In

both cases, indeed, we obtain the same qualitative pattern for the sensitivity of the key

risk/return parameters of the investable universe with respect to shifts in monetary policy

variables, which is also reflected in the results we obtain in terms of portfolio strategy

and welfare.

A final innovation of our work with respect to the existing asset allocation literat-

ure is that we introduce money in the utility function, which has the consequence that

relative risk aversion is time-varying. The presence of money in the utility function, as

in the model originally developed by Sidrauski (1967) and as considered for example in

Bakshi and Chen (1996), Lioui and Poncet (2004) or Lioui and Maio (2013), is a way

to take into account the utility derived from the flow of services per unit of time de-

rived from holdings of real cash balances. In other words, the presence of money in the

utility function represents an element of friction introduced into preferences in order to

take into account the fact that investors do not allocate their total wealth into financial

assets, but they instead keep part of their wealth uninvested, as they need to satisfy

their short-term spending needs. When the investor benefits from real cash balances,

we show that the optimal portfolio strategy is affected, both in terms of instantaneous

and intertemporal hedging demands, especially for what concerns bond positions. A sub-

stantial instantaneous hedging demand appears due to the time-variation of relative risk

aversion introduced by the presence of money in preferences. This component hedges

the instantaneous change in the cost of holding real balances, represented by the short-

term interest rate. The intertemporal hedging demand is also affected, with a slight

decrease of long-maturity bonds exposure for long horizons, as there is a substitution

effect between consumption and money and a lower fraction of utility derives from future

wealth consumption. As in Aoki et al. (2012), who develop a life-cycle model with shop-

ping costs increasing in consumption and decreasing in real money balances, we conclude

that money positions can be substantial. The amount of uninvested capital decreases

with the interest rate and increases sharply when the short-term rate approaches zero.

The remainder of the paper is organised as follows. Section 2 provides a review of

the literature concerning term structure models accounting for macroeconomic factors

and monetary policy. In Section 3 we describe the financial market specification, the

investor’s preferences and we derive the optimal portfolio strategy. Section 4 presents the
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dataset used for the estimation, the two different settings considered and comments the

estimation results. In Section 7 we discuss the results of the optimal portfolio problem

for different investor’s preferences and market specifications. We present our conclusions

in Section 8. Finally, technical details and mathematical derivations are relegated to an

appendix.

2 Related literature

While early works on dynamic term structure models relied mainly on nominal bond

data, the recent decade witnessed a flourishing literature concerning monetary policy

and the relation between macro variables and the term structure of bond yields. Ang

and Piazzesi (2003) develop a no-arbitrage Gaussian model of the yield curve, including

both macroeconomic and latent variables, finding that macro factors, mostly inflation,

can explain up to 85% of the short- and middle-duration parts of the yield curve. Ang

et al. (2007) estimate different monetary policy rules, such as the original Taylor rule,

as well as backward- and forward-looking Taylor rules, in a no-arbitrage framework ac-

commodating for time-varying bond premia. They find that inflation and output gap

shocks have a large explanatory power of movements of bond excess returns, especially

for what concerns the term spread. Bikbov and Chernov (2010) develop a VAR model

of the nominal yield curve, with macro and latent factors, proposing a decomposition

of the total variation of the yields in a macro component and a residual component of

latent factors, orthogonal to the first. They show that inflation and real activity ex-

plain the 80% of the variation of the short-term nominal rate and the 54%− 68% of the

variation of term premia. Baele et al. (2010) try to explain the co-movements of bond

and stock markets by developing a dynamic factor model in a regime switching frame-

work, distinguishing macroeconomic, risk premium and liquidity factors. Macroeconomic

factors play a key role in explaining bond return volatility, which is a relation captured

by our model, whilst equity volatility is mostly explained by non-macroeconomic factors

(liquidity and option-implied variance premium). Ang et al. (2011) study the effect of

monetary policy shifts, by estimating a quadratic term structure model that embeds a

Taylor-rule with time-varying weights on inflation and output gap. Chun (2011) ana-

lyses the impact of the introduction of survey expectations of macroeconomic variables

in a macro-only no-arbitrage dynamic term structure model, concluding that consider-

ing forward-looking forecasts significantly enhances the predictive power of the Taylor

rule. Joslin et al. (2014) develop an arbitrage-free Gaussian dynamic term structure

model where macroeconomic variables are included into the state vector, but they are

not perfectly spanned by contemporaneous bond yields. They conclude that macro vari-

ables, such as inflation and output, carry additional information related to bond risk

premia with respect to the information included in the current shape of the yield curve,
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allowing to significantly increase predictability of future bond excess returns. Barillas

(2010) implements their model and tests the importance of incorporating information

from unspanned macro variables into the determination of bond premia, by quantifying

its impact on the optimal allocation of a long-term investor. Joslin et al. (2013) show

that no-arbitrage macro term structure models, when they do not allow for observation

errors of spanned macroeconomic variables, behave in a similar fashion whether or not

yield factors are observed with errors. These models have poor bond pricing properties

and have predictive properties similar to unconstrained VAR models. However, when the

term structure model allows for macroeconomic variables to be observed with errors, the

bond pricing properties increase sharply, as the latent factors replicate very accurately

the first principal components of bond yields, but the model loses accuracy with respect

to the replication of macroeconomic variables. Campbell et al. (2013) study the impact of

monetary policy shifts and macroeconomic shocks on nominal bond and stock risk/return

behaviours, identifying three subperiods with different monetary regimes and relating the

increase of nominal bond volatility and correlation with equity to the higher weight over

the inflation component registered in anti-inflationary monetary regimes. Hau and Lai

(2013) analyse the cross-country variation of monetary policy within the eurozone, meas-

ured by country-based Taylor rule residuals and short-term real rates, finding that a

relative decrease in the real interest rate entails an incremental equity fund inflow and an

outflow from money market funds.

3 The Optimal Portfolio choice

We first describe the financial market and the asset universe, then the investor’s prefer-

ences and the budget constraint, and finally we derive the optimal portfolio strategy.

3.1 The financial market

The long-term investor has access to a frictionless and arbitrage-free financial market. We

assume the existence of a nominal Stochastic Discount Factor (SDF) with the following

dynamics:
dΦt

Φt

= −Rtdt−Λ
′

tdzt, (3.1)

where Rt stands for the nominal interest rate, Λt is a nB × 1 vector of market prices of

risk and zt is a nB × 1 dimensional standard Wiener process. For tractability, we follow

the bulk of the dynamic term structure literature3 and consider an affine setting in which

the dynamics of the market prices of risk are affine function of nX state variables. More

3See Dai and Singleton (2003) and Duffee (2013) for references.
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precisely, we assume that the time varying vector of market prices of risk has the form:

Λt = Λ0 +Λ1Xt, (3.2)

where Λ0 is a column vector of constants with nB elements and Λ1 is an nB × nX

matrix where nX is the number of state variables in the economy and thus Xt is a

nX ×1 dimensional vector. The vector of state variables has the following mean reverting

dynamics:

dXt = Θ
(
X̄−Xt

)
dt+Σ

′

Xdzt, (3.3)

where Θ is a nX × nX matrix of the parameters of speed of mean reversion of the state

variables, X̄ is the nX×1 vector of long run means and ΣX the nB×nX volatility matrix.

To complete the description of the nominal bond market, we need to postulate a

process for the dynamics of the nominal short-term rate, R. Following Taylor (1993) and

the strand of theoretical as well as empirical literature it spawned, we assume that:

Rt = R0 + η (πt − π0) + ξ (χt − χ0) + υt (3.4)

where R0, η, ξ, π0 and χ0 are constants. πt stands for the expected inflation and π0 its

long-run target. Similarly, χt is the expected output gap and χ0 the long-run target.

Without loss of generality, we assume that the long run targets are equal to the long-run

means of the processes πt and χt. υt stands for the monetary policy shock.

The specification (3.4) calls for the following precisions. The original Taylor rule

(Taylor, 1993) relates the nominal short term rate to current inflation and current real

activity (output gap). While some authors extended the original version by including

lagged values of the two economic variables (backward looking rules, see Eichenbaum and

Evans (1995) and Clarida et al. (1998) for example), others included expected values of

inflation and output gap (forward looking rules, see Clarida et al. (2000) for example). For

our purposes, having expected inflation instead of realised inflation is of prime importance

since it allows us to guaranty that realised inflation is not perfectly spanned by traded

assets and thus the real market will be incomplete. The same reasoning is true for the

output gap although its innovation do not enter explicitly into investor’s wealth dynamics.

The second term of the Taylor rule is related to price stabilization and the coefficient η

measures the activeness of the Central Bank with respect to this objective. Finally, the

last term of the Taylor rule is related to real activity through the expected output gap.

In order to keep the model affine, thus tractable, we assume that η and ξ are constant4

and specify monetary policy shock, expected inflation and expected output gap as follows:

υt = υ
′
1Xt, πt = π0 + π

′
1Xt, χt = χ0 + χ

′
1Xt, (3.5)

4Ang et al. (2011) advocate time varying monetary policy parameters.
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where υ1, π1 and χ1 are nX × 1 vectors of constants.5

Combining the previous assumptions in (3.5) with the Taylor rule (3.4) one realizes

that the nominal interest rate Rt can be written as an affine function of the state variables,

making it easier both to price bonds and solve for dynamic asset allocation:

Rt = R0 + (υ1 + ηπ1 + ξχ1)
′ Xt (3.6)

≡ R0 +R′
1Xt. (3.7)

In fine, our nominal term structure model is affine and Gaussian, being thus similar

to the one used by Brennan and Xia (2002), Sangvinatsos and Wachter (2005) or Koijen

et al. (2010). Beyond tractability, Dai and Singleton (2002) and Duffee (2002) have

shown that Gaussian dynamic term structure models fit reasonably well the behaviour

of observed nominal bond yields. The incorporation of a Taylor rule allows to relate the

latent factors of the model to economic variables. For example, the 3-dimensional vector

of υt, πt and χt, can be written as an affine function of the state variables:






υt
πt

χt




 =






0

π0

χ0




+






υ
′
1

π
′
1

χ
′
1




Xt. (3.8)

As this 3× 3 system is invertible, given a shift ∆υt, ∆πt or ∆χt, the corresponding shift

∆Xt can be determined by inverting equation (3.8).6

The last component of our description of the nominal sector of the economy is the

general price level, denoted with Pt, which allows one to convert nominal values into real

values. It is assumed to have the following dynamics:

dPt

Pt

= πtdt+ σ
′
Pdzt. (3.9)

Our setting is compatible with the possibility that the innovation in the price index

is only partially spanned by the assets available for trade, which means allowing for an

incompleteness of the real market.

The long-term investor can trade a nominal risk-less asset, a bank account, earning

the instantaneous nominal rate Rt and a set of nY non-redundant risky assets, stocks and

5In Ang et al. (2011), equation (3) page 433, it is shown that the assumption for the monetary policy
shock could be seen as a reduced form for accounting for time varying monetary policy parameters.

6In our setting, the set of economic variables used for switching from latent factors to economic
variables is clearly not observable. This is trivially true for expected inflation and expected output gap,
this is not less true for the short term rate. Although Collin-Dufresne et al. (2008) used the short term
rate and its moments instead of latent factors as observables, this assumption is not reasonable in a
continuous time setting, where the short term is indeed instantaneous and not observable. As advocated
by Duffie and Kan (1996), some imperfections like market (il)liquidity may alter the short term yields
and prevent them from mimicking the nominal instantaneous interest rate. For a lucid discussion, see
Joslin et al. (2011).
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bonds. For a generic nominal zero-coupon bond of maturity τ , which price is denoted

with Bt,τ , the dynamics can be written as follows (see Appendix A):

dBt,τ

Bt,τ

= [Rt +A1 (τ)Σ
′
XΛt] dt+A1 (τ)Σ

′
Xdzt, (3.10)

where A1 (τ) is a 1 × nX vector deterministic function solving a system of ordinary

differential equations, given in Appendix A. The stock price dynamics we retain is:

dSt

St

= (Rt + σ
′
SΛt) dt+ σ

′
Sdzt. (3.11)

The specification (3.11) embeds another important innovation of our setting. Relative to

the dynamic term structure literature, it incorporates information from the stock market

into the estimation process beyond the one in macro variables and the bond yields. This

extension has already been undertaken by Sangvinatsos and Wachter (2005) or Koijen

et al. (2010). Our incremental contribution is by letting the equity premium to be time-

varying, while Sangvinatsos and Wachter (2005)7 or Koijen et al. (2010)8 assume it is

constant.

For the remaining, and to simplify notations, we will denote the nominal price of an

arbitrary risky asset at time t by Y i
t . Its dynamics, that will be helpful to write the

budget constraint, takes the following form:

dY i
t

Y i
t

= (Rt + σ
′
Y iΛt) dt+ σ

′
Y idzt. (3.12)

3.2 The budget constraint

Long-term investors allocate their wealth to consumption and real balances holdings, as

well as positions in nY risky assets and the bank account. The nominal wealth dynamics

can thus be written as:

dWt

Wt

=

nY∑

i=1

ωi
t

dY i
t

Y i
t

+

(

1−

nY∑

i=1

ωi
t −

Mt

Wt

)

Rtdt−
Ct

Wt

dt, (3.13)

where ωi
t stands for the proportion of wealth invested in the risky asset i. Using (3.12),

this dynamics could be written as follows:

dWt

Wt

=

[

ω
′
tΣ

′
YΛt +

(

1−
Mt

Wt

)

Rt −
Ct

Wt

]

dt+ ω
′
tΣ

′
Y dzt, (3.14)

7See equations (46) and (47), page 194.
8See equation (5), page 747.
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where ωt is the nY ×1 vector of weights and ΣY is the volatility matrix of the risky assets

which i-th column is σY i . The dynamics of real wealth obtains by applying Ito’s lemma

to WtP
−1
t ≡ wt:

dwt

wt

=

[

ω
′
tΣ

′
Y (Λt − σP ) +

(

1−
mt

wt

)

Rt − πt −
ct
wt

+ σ
′
PσP

]

dt

+ (ω′
tΣ

′
Y − σ

′
P ) dzt. (3.15)

An alternative way of writing the budget constraint, useful for the application of the

martingale approach to dynamic asset allocation, is to proceed as follows. If markets

were complete, that is if the assets available for trade were spanning all the uncertainty

in the economy, then the SDF in (3.1) could be reverse engineered out of the dynamics

of the traded assets. However, when markets are incomplete, knowing the dynamics of

the traded assets does not allow to completely identify the market prices of risk. Hence,

market prices of risk can be decomposed into two components, the first corresponding

to their projection onto the assets available for trade and the second, orthogonal to the

first, the remaining component, not spanned by the traded assets. Formally speaking,

the market prices of risk can be therefore written as:

Λt = ΣY (Σ′
YΣY )

−1
Σ′

YΛt
︸ ︷︷ ︸

Λ∗

t

+
(

InB
−ΣY (Σ′

YΣY )
−1

Σ′
Y

)

Λt

︸ ︷︷ ︸

νt

, (3.16)

where Λ∗
t belongs to the column space of the volatility matrix of traded assets and νt,

orthogonal to Λ∗
t , belongs to the null space. Each choice of the vector νs, for s ∈ [0, t],

characterizes an admissible SDF at time t, for t ∈ [0, T ]. Since there is an infinite number

of such vectors, the long-term investor faces an infinity of SDFs compatible with the

dynamics of the assets available for trade. This family of SDFs can be denoted as Φν

t

defined as follows:
dΦν

t

Φν

t

= −Rtdt− (Λ∗
t + νt)

′ dzt. (3.17)

Applying Ito’s lemma to Φν

t Wt, using equations (3.14) and (3.17):

d (WtΦ
ν

t )

WtΦν

t

=

[

−
Mt

Wt

Rt −
Ct

Wt

]

dt+
[
ω

′
tΣ

′
Y − (Λ∗

t + νt)
′] dzt. (3.18)

Integrating this stochastic differential equation from time t to time T :

WTΦ
ν

T −WtΦ
ν

t =

ˆ T

t

WsΦ
ν

s

[

−
Ms

Ws

Rs −
Cs

Ws

]

ds

+

ˆ T

t

WsΦ
ν

s

[
ω

′
sΣ

′
Y − (Λ∗

s + νs)
′] dzs. (3.19)
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As there is no utility from bequest, at the optimum it must be verified that WT = 0.

Taking the conditional expectation at time t of (3.19) therefore yields:

Wt = Et

[
ˆ T

t

Φν

s

Φν

t

[MsRs + Cs] ds

]

. (3.20)

This provides us with an alternative expression for the budget constraint. It shows

that current wealth should finance the future consumption plan as well as the wealth

losses associated to real balance holdings, that are equal to the instantaneous opportunity

cost of a unit of uninvested money, Rsds, times the amount of money held, Ms. This

expression can be converted in real terms as follows:

wt = Et

[
ˆ T

t

φν

s

φν

t

[msRs + cs] ds

]

, (3.21)

where φν

t ≡ PtΦ
ν

t is the real SDF.

Following Brennan and Xia (2002), Sangvinatsos and Wachter (2005) and Koijen et al.

(2010), we assume that market incompleteness is mainly brought about by the innovation

to the general price level. In particular, we assume that markets are nominally complete.

This means that the SDF used to price the nominal bonds can be any of the family Φν

t ,

meaning that any choice for ν would provide the same price for nominal bonds.

3.3 Preferences

In the portfolio allocation analysis we consider three different specifications for prefer-

ences: isoelastic utility over terminal wealth, over intermediate consumption and over

intermediate consumption and real balances. As the first two are standard and almost

universally used in asset allocation, in the derivation of the optimal portfolio strategy we

focus on the third case, relegating respectively to Appendix D and C the first two cases.

In a monetary economy, agents allocate their wealth to cash, risky assets and real bal-

ances. The cash is hold in a bank account and yields an interest rate, whilst real balances

(currencies) are not remunerated. Consumers incur the opportunity cost of holding part

of their wealth into real balances for various reasons. Amongst the traditional ones put

forward in the monetary economics literature, one can invoke transaction/search costs

saving or cash-in-advance constraints. A particularly useful shortcut to guarantee that

money will be held at the optimum, although it is dominated by the cash in terms of re-

muneration, is the money-in-the-utility-function (MIUF) paradigm. This is the standing

approach in this area of economics, whereby the preferences of the consumer are defined

over consumption and real balances (Walsh, 2003).

We follow the macroeconomic literature and consider a long-term investor who derives

utility at each time t from real consumption, ct, and from holding real balances, mt. For
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tractability, we choose a specification for preferences which features constant elasticity of

substitution (CES) between consumption and real balances, namely:

u (ct,mt) =

[

αc
1− 1

ρ

t + (1− α)m
1− 1

ρ

t

] 1−γ
1−1/ρ

1− γ
, (3.22)

where α is the share of consumption in the preferences, ρ is the intratemporal elasticity

of substitution between consumption and real balances and γ is the curvature of the

utility function. The latter parameter is the relative risk aversion in the case α = 1,

corresponding to the usual Constant Relative Risk Aversion (CRRA) case, but in a

setting with money and non-separable intratemporal preferences, as it will be shown

in the following, relative risk aversion is stochastically time varying.9

Assuming time additivity, the total utility from time t to time T (the investment

horizon) can be written as:

Ut =

ˆ T

t

e−δ(s−t)u (cs,ms) ds. (3.23)

Amongst the notable features of this setting for preferences, are the facts that: i) the

traditional power utility (CRRA) case is nested (α = 1), ii) intertemporal hedging will

be driven not only by the usual consumption-to-wealth ratio but also the real money-to-

wealth ratio, iii) risk aversion is stochastic and time varying. Indeed, relative risk aversion

is given by:

RRAt ≡ −
ct

∂2u
∂2ct
∂u
∂ct

=
1

ρ
+

(

γ −
1

ρ

)
αc

1− 1

ρ

t

αc
1− 1

ρ

t + (1− α)m
1− 1

ρ

t

(3.24)

= γ −

(

γ −
1

ρ

)
(1− α)m

1− 1

ρ

t

αc
1− 1

ρ

t + (1− α)m
1− 1

ρ

t

. (3.25)

From (3.24), as it could be noticed already in (3.22), it follows that the separability

of preferences in consumption and real balances is obtained whenever γ = 1
ρ
. From

(3.25) it can be noticed that the impact of money on relative risk aversion depends

crucially on the difference between γ and 1
ρ
. Through its impact on consumption and real

balances, monetary policy impacts relative risk aversion and hence the optimal allocation.

Preferences with money-in-the-utility-function are a new ingredient in the portfolio choice

problem and have been introduced in this paper in order to capture the monetary aspect

of the economy, which is particularly important for the study of the impact of monetary

9An important particular case arises when the elasticity of substitution ρ is equal to 1, in which case

the utility function has a Cobb-Douglas functional form: u (ct,mt) =
1

1−γ

[
cαt m

1−α
t

]1−γ
.
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policy on the optimal allocation of a long-term investor.

3.4 Optimal strategy

To solve for the optimal portfolio choice, we use the martingale approach as developed in

Karatzas et al. (1987), Cox and Huang (1989), Cox and Huang (1991), He and Pearson

(1991) and Karatzas et al. (1991). Our method is directly inspired from the latter paper,

since we allow for market incompleteness, meaning that traded assets cannot span all the

uncertainty in the economy. The long-term investor’s problem is to find the solution to:







min
{νt}

t=T
t=0

max
{ct,mt,ωt}

t=T
t=0

E0

[
´ T

0
e−δsu (cs,ms) ds

]

≡ J0(w0)

s.t. E0

[
´ T

0
φν
s

φν

0

(msRs + cs) ds
]

= w0.
(3.26)

In the case where nominal markets are complete, the optimal portfolio strategy is

given in the proposition below.

Proposition 1. The optimal portfolio strategy is given by:

ωt =
1

γ
(Σ′

YΣY )
−1

Σ′
YΛ

∗
t +

(

1−
1

γ

)

(Σ′
YΣY )

−1
Σ′

YσP

−
1− 1

γ

1− ρ

(

RRAt −
1

ρ

)−1

(Σ′
YΣY )

−1
Σ′

YσRRAt

+ (Σ′
YΣY )

−1
Σ′

YΣX
FX (t,Xt;T )

F (t,Xt;T )
, (3.27)

where the time-varying relative risk aversion RRAt, its volatility σRRAt and the definition

of the function F (t,Xt;T ) are respectively given by:

RRAt =
1

ρ
+

(

γ −
1

ρ

)
1

1 +
(
1−α
α

)ρ
R1−ρ

t

, (3.28)

σRRAt =−
1− ρ

γ − 1
ρ

(

RRAt −
1

ρ

)2
[

γ −RRAt

RRAt −
1
ρ

α

1− α

] ρ
ρ−1

ΣXR1, (3.29)

F (t,Xt;T ) ≡Et






ˆ T

t

e−
δ
γ
(s−t)




φν

∗

s

φν∗

t

[

RRAs −
1
ρ

RRAt −
1
ρ

]− 1

1−ρ





1− 1

γ

ds




 , (3.30)

where φν
∗

t is the real state-price density, given by:

dφν
∗

t

φν∗

t

= − (Rt − πt + σ
′
PΛt) dt− (Λ′

t − σ
′
P ) dzt, (3.31)
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and where ν
∗ is constant and given by:

ν
∗ = (1− γ)

(

InB
−ΣY (Σ′

YΣY )
−1

Σ′
Y

)

σP . (3.32)

The optimal consumption- and money-to-wealth ratios are given by:

ct
wt

=
1

γ − 1
ρ

[

RRAt −
1

ρ

]

F (t,Xt;T )
−1 , (3.33)

mt

wt

=

(
α

1−α

) ρ
ρ−1

γ − 1
ρ

[

γ −RRAt

RRAt −
1
ρ

] ρ
ρ−1
[

RRAt −
1

ρ

]

F (t,Xt;T )
−1 . (3.34)

The value function at time t is given by:

Jt (wt) =
w1−γ

0

1− γ
α

1−γ
1−1/ρ

Et

[
´ T

t
e−

δ
γ
(s−t)

(
φν

∗

s

)1− 1

γ

(

RRAs −
1
ρ

)− 1

γρ
1−γ

1−1/ρ
ds

]

E0

[
´ T

0
e−

δ
γ
s (φν∗

s )1−
1

γ

(

RRAs −
1
ρ

)− 1

γρ
1−γ

1−1/ρ
ds

]1−γ . (3.35)

Proof. See Appendix B

The optimal portfolio strategy (3.27) is characterised by four components, where the

first three are instantaneous components, independent from the investment horizon while

the last one is horizon dependent. The first component is the usual myopic component

maximizing the portfolio nominal Sharpe ratio, based on nominal volatilities and market

prices of risk and rescaled by the preference parameter γ. The second component hedges

the exposure of optimal wealth to inflation. This is due to the fact that there exists a

nominal risk-less asset, but not a real risk-less one, hence perfect inflation hedging is not

possible and the hedge ratio is given by a minimum variance ratio. The third term is

directly related to the presence of money in the utility function. It hedges the fluctuations

of relative risk aversion and is due to the fact that the utility function is not separable

in consumption and real balances. It is driven mainly by the short-term interest rate

and strongly depends upon the values of preference parameters, γ, α and ρ. If α = 1

(utility depending on consumption only) or γ = 1 (myopic investor), then this term is

identically equal to zero. The last component is an intertemporal hedging component as

in Merton (1971).10 The balance of the portfolio, that is the remaining fraction of wealth

not allocated to risky assets, nor held as uninvested money, is equal to 1−ωten −mt/wt

and is invested in the nominal risk-less asset at the rate Rt.

10If the columns of the volatility matrix of the state variables ΣX belong to the range of ΣY , as it has
been assumed in this case, then the hedging of this component is perfect. This component vanishes when
the horizon is infinitely short (T → 0+), as we show in equation (E.26) in Appendix E.3. The alternative
decomposition of optimal portfolio choice introduced by Lioui and Poncet (2001) and Detemple and
Rindisbacher (2010) applies here.
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As far as monetary policy is concerned, it has an impact on the dynamics of nominal

interest rates, therefore not only on the drift component of the dynamics of bond and stock

prices, but also on bond volatilities and risk premia. Market prices of risk, instead, do

not depend on monetary policy in our model. Monetary policy parameters will therefore

have an impact on all terms of the optimal portfolio strategy (3.27): on all the four terms

through the volatility matrix of the available assets, ΣY , and, on top of that, on the third

and fourth through its impact on the short-term interest rate dynamics and thus on the

dynamics of relative risk aversion.

4 Estimation technique

In an affine term structure model, the bond yields are linear in the unobserved factors.

Under mild conditions, the unobserved factors can be written in terms of observable yields.

Since the macro factors (expected inflation and expected output gap) are also linear in

the state variables, they could ultimately be written as a linear function of observed

yields. This means that yields span all the macroeconomic risks in the economy, which

has been strongly rejected in the data as forcefully documented in Joslin et al. (2013).

The situation is even worse in our case since this would mean that bond yields span also

the equity premium, which is also unlikely to be true.

The first estimation method that we propose, which we call Spanned Macro (SM),

implies the spanning of the macroeconomic variables by bond yields. We do so as this

model has been and is still extensively used, and we thus use the findings as a bench-

mark. It is important to consider that, as we impose the spanning of expected inflation

and output gap, rather than their realised counterparts as in most of the literature,11 we

already relax the requirement of a perfect spanning of the realised macroeconomic vari-

ables. We then develop a setting, which we call Unspanned Macro (UM), which relaxes

the spanning condition of expected macro variables. The estimation technique for SM

is described in Subsection 4.2, that for UM in Subsection 4.3. The technical details of

the estimation procedures are reported in Appendix F and G, respectively.

Independently of the estimation strategy, the presence of a Taylor rule raises an identi-

fication problem, as monetary policy parameters can not be easily attributed to observable

variables. In the following paragraph we start by discussing this issue.

4.1 Identifying the Taylor rule

The Taylor rule (3.4) has three components: the expected inflation, the expected output

gap and the monetary policy shock. Assuming all the components are affine functions

of some state variables makes the implied short term nominal rate also affine function of

11See for example Ang and Piazzesi (2003), Ang et al. (2007) and Bikbov and Chernov (2010).
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the state variables as shown in (3.7). As a consequence, using no arbitrage restrictions,

one can identify R1 from observing bond yields. We have two additional observables that

allows identifying π1 and χ1, namely realised inflation and realised output gap. Since

monetary policy shocks are not observable, we cannot identify the monetary policy related

parameters η and ξ. This problem is well known in the literature and has been studied

in a comprehensive way by Chernov et al. (2013).

While several routes have been followed in the literature to overcome this difficulty,12

a natural one, as in Ang and Piazzesi (2003) and other works, seemed to impose that

the residual term υt in the Taylor rule (3.4) conveys information not spanned by the

macroeconomic variables driving the nominal interest rate. In other words, the monetary

policy residual should not co-vary with expected inflation and expected output gap. Recall

that the loadings of expected inflation, expected output gap and monetary policy residual

on the Wiener processes are ΣXπ1, ΣXχ1 and ΣXυ1, respectively. We thus require that:

(ΣXπ1)
′ (ΣXυ1) = 0 (4.1)

(ΣXχ1)
′ (ΣXυ1) = 0 (4.2)

Since R1 = υ1+ηπ1+ξχ1, the monetary policy parameters are identified as follows:13

[

η

ξ

]

=

[

π
′
1ΣX

′ΣXπ1 π
′
1ΣX

′ΣXχ1

χ
′
1ΣX

′ΣXπ1 χ
′
1ΣX

′ΣXχ1

]−1 [

π
′
1ΣX

′ΣXR1

χ
′
1ΣX

′ΣXR1

]

(4.3)

The economic intuition behind the identification procedure above is straightforward:

we require the residual not to be correlated with the other variables intervening in the

Taylor rule, in order for it to be a pure monetary policy shock. As shown above, the

unobservable factors can be replaced by a linear combination of the economic variables

(short term interest rate, expected inflation and expected output gap). It seems thus

natural to purge this shock from the information already contained in the macro variables.

It is useful to make a precision at this stage: the identification procedure does not impose

any constraint on the correlations between the factors.

The uniqueness of the identified parameters might be an issue, as it is well known that

invariant transformations of the affine term structure model may lead to observationally

equivalent representations of bond prices. However, applying the definition of invariant

12See section 2.4 in Duffee (2013).
13Since the parameters are retrieved from other estimated parameters, the estimation errors of η and

ξ are determined from the distributions of the estimators of R1, π1 and χ1. In order to do so, we use
a bootstrapping methodology, drawing 106 possible sets of parameters according to their joint distribu-
tion, assumed to be multivariate normal, and determining the standard deviation of the corresponding
distribution of the two monetary policy parameters. Alternatively, we could have used the delta method,
consisting in a linear approximation of the relation between the monetary policy coefficients and the
effectively estimated parameters. These methods are reviewed in Efron and Tibshirani (1986).
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transformation given in Dai and Singleton (2000),14 it can be easily shown that all the

terms appearing on the right hand side of equation (4.3), thus the solution (η, ξ), are

immune to any invariant transformation of the model.

4.2 Identification with spanned macroeconomic factors (SM)

We assume that three latent factors (nX = 3) drive the term structure of interest rates.

Since bond yields are linear functions of these factors,15 the latent variables can always

be written as linear functions of observable bond yields. Since in addition the macro

variables are themselves linear in the unobserved factors, they can ultimately be written

as linear function of observable bond yields. In other words, the macro risks are spanned

by the bond market.

We assume that three yields are observed perfectly and additional bond yields are

observed with errors. In our case, the 6-month, 2-year and 10-year zero coupon yields

are observed without errors, whereas the 3-month, 1-year and 5-year are observed with

errors. The other observables are the log of the stock index level, the log of the consumer

price index and the output gap.

As pointed out in Dai and Singleton (2000), there exist many observationally equival-

ent specifications of an affine term structure model. Without any loss of generality, as far

as the state variables dynamics are concerned, we assume that the long run means are

zeros and that the matrix of speeds of mean reversionΘ is lower triangular. The volatility

matrix ΣX is set equal to the identity.In this setting there are five independent sources

of risk, we assume, again without loss of generality, that the first three components of

the vector of innovations in the economy zt are those of the state variables and therefore

the fourth and fifth rows of ΣX are filled with zeros. The state variable dynamics are

therefore specified by the six parameters different from zero of the lower triangular speed

of mean reversion matrix, Θ.

For what concerns the dynamics of the stock and the consumer price index, we assume

without loss of generality that the vectors σS and σP have respectively the first four

and five components to be non-null. The fourth component in zt is thus a pure stock

market risk and the fifth is pure inflation related idiosyncratic risk. Inflation-linked

security prices (TIPS) have short historical track-record and are plagued with several

imperfections (mainly lack of liquidity). We have therefore decided to avoid using them.

This implies that it is not possible to determine the market price of unexpected inflation

risk and that we have to make an assumption on its value. We assume the market price of

the specific risk associated to the component of risk in the price index innovations which

is not spanned by the other assets (corresponding to the fifth component of the vector

14See Appendix A in Dai and Singleton (2000).
15The affine relation between state variables and bond yields is described in Appendix A.
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σP ), to be equal to zero. We follow in this Sangvinatsos and Wachter (2005), Koijen et al.

(2010) and Campbell et al. (2013) amongst many others. Apart from this restriction, we

keep the most general specification for the market prices of risk 5× 1 column vector Λ0

and 5×3 matrix Λ1, leaving fully unrestricted the first four rows of each of these two and

filling the fifth rows with zeros. This means that we estimate also the equity premium as

a variable quantity, dependent on a linear combination of the three state variables.

The parameters describing the short-term rate, the scalar R0 and the 3 × 1 column

vector R1, can be identified as they appear in the yield pricing formulas and in the stock

dynamics. The parameters describing the expected inflation, the scalar π0 and the 3× 1

column vector π1, can be identified as they appear in the price index dynamics. As the

series for the realised output gap is available only with quarterly frequency, we decide to

perform the estimation of the coefficients χ0 and χ1 after the estimation of all the other

parameters by means of a linear regression, assuming that the realised output gap is given

by the average expected output gap plus an error term, which magnitude is indicated with

σG
ǫ . The expected output gap directly depends on the time series of the state variables,

which can be computed from the yields time series thanks to the parameters that have

been estimated.16 As the observation errors of the 3-month, 1-year and 5-year yields are

assumed to be Gaussian, sequentially and cross-sectionally independent, the imperfection

of their observation can be described with 3 parameters, respectively σ1
ǫ , σ

2
ǫ and σ3

ǫ .

Parameters are estimated using the quasi maximum likelihood technique as in Duffee

(2002) and, in a richer setting considering equity returns and inflation, Sangvinatsos and

Wachter (2005). The technicalities of the maximum likelihood estimation procedure for

this setting can be found in Appendix F.

4.3 Identification with unspanned macroeconomic factors (UM)

While early term structure models incorporating macro variables embedded an implicit

assumption that bond yields span realised inflation and realised output gap, some authors

tried to overcome this strong assumption by letting bond yields to span the expected value

of the macro variables (see for example Kim and Wright (2005)). Even this assumption,

implicit in the first setting described above, turned out to be too restrictive and rejected

by the data systematically.

The question that we were facing is: how can we relax the spanning assumption while

keeping the model parsimonious and tractable? While macro models have to deal with

the spanning issue of macro variables, we have to deal with the spanning issue of the

equity market risk premium in addition. One promising solution to the first spanning

16In Ang and Piazzesi (2003), a two step procedure is also used to estimate a dynamic term structure
model with both yields and macro variables. Since the volatility matrix of the factors is diagonal, the
pure innovation to the output gap do not impact the estimates for the state variables. We are thus is a
similar setting as Ang and Piazzesi (2003) where the latent factors are orthogonal to the macro factors.
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problem has been offered by Joslin et al. (2014). Instead of projecting the economy

wide pricing kernel of the observed bond yields only, the idea is to project it on the

information contained in macro variables as well as in the bond yields. This approach

could be adapted to include the information from the equity market. The problem is that

it is not easy to embed this VAR approach in a continuous time framework. We need the

latter for tractability of the dynamic asset allocation problem which is the focus of this

paper. We thus followed another route.

We assume that bonds are priced by two state variables only, whereas the equity risk

premium is determined by a linear combination of all the three state variables. As in

the previous setting, we choose a number of yields equal to the number of state variables

pricing the bonds to be perfectly observed. In this case only two yields need to be

observed without errors, for this purpose we choose the 6-month and the 5-year. As the

third state variable is unobserved, it needs to be filtered. We decide to use the Kalman

filter technique.17 We also assume that the innovations of the third state variable can be

dynamically hedged with two bonds and the stock, which is equivalent to saying that the

volatility vector of the stock index, σS, has only three non-zero components. We have

therefore reduced to four the total number of independent sources of risk. The volatility

vector associated with the consumer price index, σP , is therefore fully determined by

four components. The column vector Λ0 has therefore now only four components and

the matrix Λ1 has size 4× 3.

In order to impose the bond pricing to be dependent only on the first two state

variables, it is enough to restrict the third component of R1 and the third elements of the

first and second row of Λ1 to be equal to zero. As the number of sources of risk has been

reduced, the market prices of risk column vector Λ0 and matrix Λ1 have now only four

rows, with the fourth row filled with zeros, as the specific risk of unexpected inflation can

not be identified, as for the setting described in Section 4.2. Likewise, all the rest of the

market specification is exactly the same.

The estimates are obtained maximizing the likelihood function, which is a by-product

of the Kalman filtering procedure. The expected output gap parameters are obtained, as

described in the previous section for the SM setting, by linear regression. The technical

details of the estimation procedure can be found in Appendix G.

5 Data

We estimate the model according to monthly U.S. data, starting from 31st January

1952 until 31st December 2013. We use zero coupon bond yields series for the following

maturities: 3-month, 6-month, 1-year, 2-year, 5-year, 10-year. Yields until December

17See for example Duffee and Stanton (2004), Section 2.3.
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1998 were available on the website of Gregory Duffee. The series have been extended

until December 2013 using end-of-month 3M and 6M Treasury Bills daily data, available

on the Federal Reserve Economic Data website (series GS3M and GS6M), and 1Y, 2Y,

5Y and 10Y zero-coupon yields fitted by Gürkaynak et al. (2007), available on the Federal

Reserve website.

As a representative of the U.S. stock market, we consider the CRSP NYSE/Amex/

NASDAQ/ARCA Value-Weighted Market Index, extracting the end-of-month data from

the daily series. As price index, we take the Consumer Price Index for All Urban

Consumers: All Items (CPIAUCSL), available with monthly frequency. As real vari-

able for the Taylor rule, we compute the realised U.S. Output gap from the quarterly

series of U.S. Real GDP and U.S. Real Potential GDP,18 using the standard definition

(GDPactual − GDPpotential)/GDPpotential; this is time series is available at a quarterly fre-

quency only, whilst the others are all available at monthly frequency. Also CPI and GDP

data are available on the Federal Reserve Economic Data website.

6 Estimation results

We first report the estimates of the model parameters under the two estimation settings

and we compare the performance of the models as to the fitting of asset prices and macro

variables. We then compute the impulse response functions to shocks in macroeconomic

variables for some quantities of particular interest for the portfolio strategy. Finally, we

perform a static analysis to assess the sensitivity of relevant economic quantities (risk

premia, asset volatilities, correlations and maximum achievable Sharpe ration) to shifts

in macroeconomic and monetary policy variables.

6.1 Parameter Estimates

The two panels in Table 1 show the parameter estimates and their standard errors for

the two estimation settings proposed.

[Table 1 about here.]

For the SM setting, the estimates of the speeds of mean reversion of the latent factors

are all statistically significant at the 5% level, with one value significantly higher than

one (Θ33 = 1.9938), another one close to 0.5 (Θ11 = 0.5224) and the last one close

to 0.1 (Θ22 = 0.1122). Although we take into account the stock market and realised

inflation when estimating the model, the estimates are close to those obtained by pure

18In particular, Real Potential GDP is the Congressional Budget Office (CBO) estimate of the output
the economy would produce with a high rate of use of its capital and labour resources.
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term structure models based on latent variables,19 as well as to richer models assuming a

constant equity risk premium.20 For the UM setting, the diagonal of the matrix of speed

of mean reversion is again fairly precisely estimated, whilst the off-diagonal terms have

a higher relative standard error. The diagonal terms are lower than in the first setting,

suggesting that the factors are more persistent.21

For both estimation settings, the estimates of the long-run means of the economic

variables, R0, π0 and χ0, are statistically significant at conventional significance levels.

The main difference between the two setting relates to the long run mean of the expected

output gap: it is −0.68% in the first setting (close to the empirical mean −0.57%) while

it is −0.76% in the second setting. The 19bp difference is still reasonable relative to the

standard deviation of the historical distribution of the output gap, equal to 296bp (Table

2). The reason of this difference is that, for a small sample, the factors are not necessarily

centered around zero. The nominal short term interest rate loads on all the factors driving

the nominal term structure in both settings (3 factors for SM and 2 for UM). As to the

market prices of risk, although some loadings are estimated imprecisely, one can reject the

hypothesis that any of the market prices of risk is constant. In SM, each market price of

risk loads statistically significantly on one or two out of the three factors, included that

for the stock. In UM, both market prices of risk of the two idiosyncratic risks driving the

nominal term structure load on the second factor, whilst the market price of risk of the

stock loads on the first factor, which has a lower speed of mean reversion. A particularly

relevant element of the matrix Λ1 in UM is the coefficient on the third row and third

column, that is the coefficient linking the equity premium to the third state variable, that

allows to capture the fraction of equity premium that is not explained by the information

carried by nominal yields. This coefficient is negative, but its value is quite small and

not statistically significant. This shows that the majority of the equity premium that can

be predicted is in fact explained by nominal yields. This is an information that the SM

setting can not provide, as the equity premium is by construction defined as a function

of nominal yields only. In UM, the market price of the stock market specific risk loads

significantly only on the first factor driving the nominal term structure.22,23 The stock

19In Table 3 page 949 of Joslin et al. (2011), a three-factor term structure model is estimated under
ten different specifications and the diagonal of the matrix of the speed of mean reversion of the three
factors has two terms less than one and one greater than one in absolute value across all the models. See
also Duffee (2002) for similar findings.

20See Sangvinatsos and Wachter (2005), page 195, Table I, Panel B.
21When estimating a two factors term structure model, Koijen et al. (2010) report values for the

diagonal elements very close to ours (see Table 1 page 753).
22Baele et al. (2010) study the drivers of the co-movements of bonds and stocks returns while Baker

and Wurgler (2012) report that term structure related variables which predict bond returns also predict
returns on bond-like stocks.

23Note that, as in Koijen et al. (2010), we leave the matrix of loadings of the market prices of risk on
the factors unconstrained and about half of the parameters turn out to be not statistically significant.
Some authors suggest to constrain the loadings of some of the market prices of risk on some factors, by
setting them equal to zero (see Duffee (2002) and Sangvinatsos and Wachter (2005)).
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and unexpected inflation volatility vectors, σS and σP , are mostly dominated by their

idiosyncratic components, that means their fourth and fifth components respectively in

SM and their third and fourth components in UM.24

Monetary policy parameters reveal an unambiguous domination of the expected in-

flation component in the Taylor rule. The expected inflation coefficient is estimated at

0.8376 in SM and 0.6932 in UM, whilst the loadings on the expected output gap are

respectively 0.3713 and 0.3565. All of these estimates are statistically significant at the

5% level. The relative weight of inflation ( η
η+ξ

) is similar for both settings and shows

a higher weight on expected inflation, which is not surprising, also because our sample

period includes the monetary experiment of the 80s, when the Fed was known to priv-

ilege price stability. For a sample period similar to ours, Campbell et al. (2013) find

an estimate for the weight over realised output gap of 0.32 (0.21) and 1.08 (0.43) for the

weight over realised inflation.25 Similar findings have also been reported by Ang et al.

(2011).26 Interestingly thus, using either realised inflation and output gap, or their ex-

pectations, has little impact on the estimates of the weights of these macro variables in

the Taylor rule. The fact that we obtain similar estimates for the two settings confirms

the robustness of the identification of monetary policy parameters.

An important difference between the two settings relates to the fitting of the yields.

Since the term structure in UM is described by only two factors, one may expect a

deterioration in the pricing errors. This is indeed the case when comparing the pricing

errors σi
ǫ of the yields observed imperfectly. In the first setting the errors for 3M, 1Y and

5Y yields all have a standard deviation of the order of one or two tenths of basis points.

In the second setting, the errors for 3M, 1Y, 2Y and 10Y yields are clearly slightly higher,

but are still equal to 30 basis points at most. The parameter σG
ǫ , measuring the standard

deviation of the annualised difference between realised output gap and average expected

output gap, is 2.25% for both settings.

Overall, the estimates in SM are comparable to those reported in the literature for

similar settings, although we took into account equity return predictability, as well as

inflation idiosyncratic risk. The UM offers a picture which differs mainly in terms of

persistence of the latent factors and for a slight increase in bond pricing errors. Using

these parameter estimates, we assess hereafter to what extent the two settings fit the

moments of asset returns and macro variables.

24Similar findings have been reported by in Sangvinatsos and Wachter (2005) and Koijen et al. (2010).
25See Table 4. Since they include the lagged values of the monetary policy instrument, we consider

their implied Taylor rule parameters, which are comparable to our figures.
26See Table 2 page 441 where they treat the case of monetary policy rules with constant parameters.
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6.2 Moment Matching

We report in Table 2 the first and the second moments of the estimated quantities. Even

though SM proves to be slightly more accurate, both settings fit fairly well the means

and the standard deviations of bond yields from 3M to 10Y maturity, confirming that

two factors are able to effectively explain the nominal term structure. In Appendix H,

following Dai and Singleton (2002), we also perform a Monte Carlo analysis assessing

the behavior of the two models specification in terms of average yield spreads, standard

deviations of yield spreads and Campbell-Shiller long-rate predictive regression coefficient,

verifying that there are no significant differences in terms of nominal bond yields dynamics

between the two models. We also report the annualised volatilities of the returns on the

price index (realised inflation) and of the stock index. The historical volatility of the

stock market, estimated from monthly data, is 15.07%. The model-implied conditional

equity volatility, discretised on a monthly basis and expressed in annual terms, is instead

15.01% for SM and 15.00% for UM, which thus perform equally well on this dimension

too. The conditional model-implied volatility is slightly lower than the unconditional

historical measure, thanks to the contribution of market predictability. The value is

lower for UM probably because this setting (very slightly) improves the predictability of

equity returns. The conditional volatility of realised inflation is lower in UM (0.86% vs

0.90%), showing that the factor not driven by bond yields helps capturing information on

expected inflation too. We also show the estimated long-run means of risk premia: in SM

(UM), for bonds, they range from 0.25% (0.19%) for the 3M zero-coupon bond to 2.50%

(2.34%) for the 10Y zero-coupon bond, whilst the stock index average expected excess

return is equal to 6.70% (6.63%). Finally, we notice that the model-implied volatilities

of expected inflation and output gap, as well as the volatilities of bond and stock risk

premia, are lower in the second setting, probably because in UM there is fewer overfitting

of macroeconomic data.

[Table 2 about here.]

For what concerns the macroeconomic variables, Figure 1 shows the expected and

realised output gap series. For both estimation settings, the two series clearly have a

common pattern, even though the expected series does not predict the peaks in the

effectively realised series. The coefficient of determination of the regression relating the

realised output gap to the time-average of the expected output gap, for which we provide

the details in Appendix F, is about 43% for both settings. The expected inflation time

series seem in both cases to accurately follow the medium-frequency variations of realised

inflation.

[Figure 1 about here.]
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The three top graphs in Figure 2 respectively show the time series of model-implied

2Y/10Y bond and stock risk premia for both settings. Bond risk premia are very correl-

ated and increase their variability with the maturity. Implied equity risk premium is on

average higher than bond risk premia. Its time series is visibly correlated with bond risk

premia (especially for the 10Y maturity) for SM, whilst it seems to be less correlated

in UM. The bottom graph of Figure 2 shows the maximum instantaneous annualised

Sharpe ratio achievable when the investable assets are the six zero-coupon bonds con-

sidered and the stock index. For SM (UM), its value is typically around 1 (0.6), but it

can attain higher peaks, reaching almost 4 (2.5), especially between the end of the 70s

and the beginning of the 80s.

[Figure 2 about here.]

Tables 3a and 3b show model-implied conditional pairwise correlations between re-

turns in bonds, stock index and CPI. Bond returns show strong pairwise correlations

among bonds with different maturities. The stock index is also weakly positively correl-

ated with bond returns. The price index is instead slightly negatively correlated with

bond returns and very weakly positively correlated with the equity index. All of these

results are consistent with the pairwise correlations calculated from historical data, as

shown in Table 3c.

[Table 3 about here.]

Table 4 shows instantaneous correlations between asset risk premia and innovations

in the economic state variables (rows), and asset returns, as well as CPI returns and

innovations in the economic state variables (columns). Bond risk premia are, for longer

maturities and for both estimation settings, negatively correlated with bond returns.

This is somehow intuitive, as poor performance usually implies higher future expected

excess returns. However, for the first setting, this is not the case for the stock index,

as the parameter estimates imply a positive correlation between stock returns and stock

premium. Also, there is a positive correlation between the expected output gap and asset

returns, which is not consistent with the findings by Cooper and Priestley (2009), who

find a negative relation between output gap and both bond and equity expected excess

returns. For UM, instead, the parameter estimates imply a more reasonable negative

correlation between stock returns and stock premium. This is again due to the fact that

the presence of a state variable that is not derived from bond yields allows to better

capture the dynamics of stock risk premium. Furthermore, equity premium is positively

correlated with returns of bond of all maturities and, again differently from SM, there

is in this case a negative correlation between the expected output gap and asset returns,

which is consistent with the results in Cooper and Priestley (2009), who find a negative

relation between output gap and both bond and equity expected excess returns.
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The short-term nominal rate R is, for both settings and as intuition suggests, strongly

negatively correlated with bond returns, especially for shorter maturity bonds. It is also

slightly negatively correlated with stock returns and positively correlated with innova-

tions in the CPI. The expected inflation π is also, in both estimation settings, strongly

correlated with the short-term nominal rate R and shows qualitatively similar pairwise

correlations with asset returns, though slightly smaller. Differences between the two set-

tings can be noticed in pairwise correlations involving expected output gap χ. In SM,

is negatively correlated with bond returns and expected inflation, but, as Taylor rule’s

interpretation of short-term rate would suggest, χ is positively correlated with the short-

term interest rate R. In UM, instead, the output gap is negatively correlated only with

short-duration bonds, but it becomes positively correlated for the riskier 10Y bonds and

strongly positively correlated with the stock index. This seems reasonable, as a positive

change in the economic output usually implies contemporaneous positive returns for risky

assets. Furthermore, the expected output gap is in this case strongly positively correlated

with expected inflation and more positively correlated with the short-term nominal rate.

[Table 4 about here.]

In conclusion, in this section we have compared the more traditional estimation setting

SM, where the three state variables are derived from bond yields, with the innovative

setting UM, which describes the yield curve with two state variables only and uses a third

one to instead price, together with the other two state variables, the equity premium.

This third state variable is estimated by means of the Kalman filter. We have shown

that this setting still describes very well the dynamics of the yield curve and allows to

enrich the information set carried by the state variables. As a consequence, we are able

to better capture the dynamics of the equity premium, which is now less correlated with

bond premia and, coherently with common knowledge, negatively correlated with equity

returns. Furthermore, in this case the expected output gap is also positively correlated

with stock returns, as intuition suggests, and is negatively correlated with the risk premia

of the risky assets, coherently with the literature (Cooper and Priestley, 2009, Campbell

et al., 2013).

6.3 Impulse Responses

In this section we study the impulse responses of the two models with respect to shocks on

expected inflation and output gap. These responses, which are de-meaned with respect

to the long-run stationary values, are computed starting from the steady state X̄ by

applying a shock to one of the macroeconomic variables and observing the reaction of the

model in the absence of the stochastic component in the dynamics of the state variables.

[Figure 3 about here.]

25



Figure 3 shows the impulse responses to a 1% positive shock on expected inflation over

the short-term nominal rate, the expected inflation, the output gap and the real rate. For

what concerns the interest rates, we show the impulse responses also in the cases where

the monetary policy parameters are shifted in relative terms by −30% and +30%. It

is worth noting that, as these quantities are affine functions of the state variables, the

response to a 1% negative shock would be exactly the opposite as shown in the graphs.

Positive shocks in expected inflation imply an instantaneous shock of the same sign in

the nominal rate Rt. This is intuitive because of the relation explained by the Taylor

rule (3.4), which also implies that the responses have the same shape, but are more

pronounced when the value of the coefficient η is higher. There is no significant difference

in terms of immediate response between the two models, even though the decay in UM

seems to be slower than in SM. Shifts in the coefficient over the expected output gap, ξ,

have very little effects in terms of dynamic response of the model to shocks on expected

inflation. A difference between the two models is in the response shown by the expected

output gap: whereas in UM there is a delayed negative response, which slowly decays to

zero, in SM we initially notice a positive delayed inverse response and then a negative

response. The response over the real rate, given by the difference between the responses

over R and π, is dampened when the coefficient η is increased so that it is close to 1. For

UM, the response is also dampened when ξ is reduced.

[Figure 4 about here.]

The responses to shifts in χ (Figure 4) over the short-term rate are similar to those

in π, but the amplitude of the response is smaller because the coefficient ξ is lower than

η. The response of the real rate is not greatly affected by shifts in η, except for the speed

of decay. Negative shifts to ξ, instead, seem to dampen the response of the real rate.

In general, the responses of the short-term rate to ∆π and ∆χ are similar to those

obtained by Ang et al. (2011),27 even though we observe an initial overshoot only in SM

for shocks on the expected output gap.

[Figure 5 about here.]

[Figure 6 about here.]

Figures 5 and 6 show the impulse responses of the risk premia and of the maximum

obtainable Sharpe ratio. All risk premia respond negatively to positive shifts in π and χ

(apart from a little inverse response to ∆χ in SM), as it is observed also in Ang et al.

(2011).28 The responses to ∆π seem to be smaller in UM, whilst the responses to ∆χ

27See page 448, Figure 4, first two panels in the first row. In their analysis the amplitude of the shocks
applied are equal to one standard deviation of the distribution of the relevant variables.

28See page 450, Figure 6, first two panels in the first row, showing the response of the 1Y and 5Y risk
premia.
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are smaller in SM than in UM. It seems that the impact of monetary policy shifts over

the impulse response of risk premia is not particularly important and, as η and ξ do not

affect the market prices of risk, the impulse response of the maximum Sharpe ratio is

not affected either. As the maximum Sharpe ratio is a quadratic function of the state

variables and not an affine function as for the other quantities observed, differently from

all the other quantities observed, the impulse response is not linear in the amplitude of

the shock. That is why we show the responses for both 1% positive and negative shifts.

For both settings, the response of the maximum Sharpe ratio has the opposite sign of

the impulse ∆π and is greater for negative shifts. The same applies when the impulses

are applied to χ, even though there is a slight initial positive inverse response in SM for

∆χ = +1%.

6.4 Static Sensitivity Analysis

In this section, using the estimates obtained for the models SM and UM, we perform

static analyses assessing the effect of shifts of monetary policy and economic variables over

the parameters that mostly affect the portfolio strategy and the welfare of the investor.

[Figure 7 about here.]

[Figure 8 about here.]

For SM, Figure 7a shows the impact of relative shifts of η and ξ on asset volatilities,

risk premia, correlation between bond and stock returns and bond betas with respect to

stock returns. Whilst for the stock index volatility and risk premium are constant, bond

volatilities and risk premia are increasing functions of η. The dependence is particularly

strong, especially for longer-maturity bonds. The dependence of volatilities and risk

premia over variations in ξ is instead decreasing, but much weaker than for variations of

η. The correlations of bond returns with stock returns are increasing functions of η and

decreasing functions of ξ, determining the same pattern for bond betas with respect to

the stock. The directions of variation of the betas are consistent with those observed by

Campbell et al. (2013),29 and the directions of variation of bond volatilities are consistent

with those observed in two out of three subperiods they consider, that is from 1960 to

1996. The sensitivities for the UM setting (Figure 8a) show similar patterns, even though

the scale of variation of correlations and betas seem in this case to be much wider.

In Figures 7b and 8b we instead analyse the static effect of shifts in π and χ over the

risk premia of the risky assets and over the maximum obtainable static Sharpe ratio of

the portfolio. For both settings, the relation between risk premia and shifts in expected

inflation is monotonically decreasing for all assets and the maximum Sharpe ratio curve

29See Table 8 in Campbell et al. (2013).
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is locally decreasing around the base case value. Shifts in the initial expected output gap

have a qualitatively similar effect on risk premia and maximum Sharpe ratio as shifts in

expected inflation, but on a smaller scale. An exception is the behaviour of the 2Y bond

premium in SM, which is increasing in ∆χ, differently from what happens for the other

assets and from the increasing behaviour shown in UM.

7 Portfolio strategy

In this section we analyse the impact of monetary policy shifts on the optimal portfolio

strategy and the welfare of a long-term investor. In the SM setting, the investor can trade

in three linearly independent bonds (2Y, 5Y and 10Y) and the equity index in addition

to the riskless (cash) asset. In the UM setting, the investor can trade two bonds (2Y

and 10Y), the equity index and the riskless asset. In both settings, the nominal market

is complete, whilst the real market is incomplete due to unspanned inflation risk.

We show the bonds and stock positions for the base case, where the parameter values

are the estimates reported in Table 1 and the state variables are set at their long-run

mean values. We then report the new asset positions and the welfare change relative to

the base case after a ±1% shock to expected inflation or expected output gap, as well as

when η and ξ are subject to a relative change of ±30%.

We then treat three different portfolio choice problems: i) the terminal wealth case

(pure asset allocation problem), ii) the intermediate consumption case and, finally, iii)

the intermediate consumption and real balances case. We consider investment horizons

up to 20 years and report the results for γ = 4.30

7.1 Utility over terminal wealth

In the case where utility depends on terminal wealth, the solution of the portfolio choice

problem can be derived in closed form and is reported in Appendix D. We first discuss

the findings for the SM setting, then those for the UM setting.

7.1.1 Findings for the SM setting

[Table 5 about here.]

The top panel of Table 5 reports the optimal portfolio strategy for the base case. As

it can be immediately noticed, the positions in the three nominal bonds are huge for all

maturities: the 2Y bond has optimal myopic positions of 1849%, the 5Y bond around

−1193% and the 10Y bond around 305%. There are very strong horizon effects, since

the 10Y bond position becomes 647% for an investment horizon of 20 years, more than

30Results for γ = 8 are in Appendix M.
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twice as much as for a 2-year horizon. The stock position is equal to 69% and flat, as in

the SM setting all the factors are spanned by bonds and the stock does not intervene in

intertemporal hedging. Interestingly, the stock-bond mix is slightly impacted by horizon

effects and seems to decrease with the horizon going from 8.8% for a 2-year investment

horizon to 6.8% for 20 years investment horizon. The total bond position features smaller

horizon effects than individual bond positions.

The results for the base case are close to those already reported in the earlier liter-

ature.31 The huge positions are a consequence of the serious multicollinearity of bond

yields when parameters are estimated from 3 perfectly observed yields and 3 bonds are

then included in the optimal portfolio strategy. An important consequence is the huge

importance of the myopic component of the strategy, which reduces substantially the

relevance of the intertemporal hedging component.

In the second panel of Table 5, we report the new portfolio strategy when expected

inflation increases or decreases by 1%. In first place we focus on the welfare change. In

order to provide an intuitively understandable measure of differences in welfare relative

to the base case, we report the change in initial wealth w0 that would provide the same

welfare in the base case as in the scenario with shifted parameter values.32 A positive

shock to expected inflation tends to increase the welfare when the horizon is 10 years or

longer. The increase is about 0.25% for a 10-year horizon and 0.79% for 20 years. For

short horizons, the impact is negative (−0.48% for 2 years and −0.20% for 5 years).

To understand the impact on welfare of a positive shock to expected inflation, it is

helpful to consider the impulse response functions reported in Figure 3a. A positive shock

to expected inflation tends to increase the nominal rate by less than the shock, which

means that the real rate decreases in the short term. The same is true for the maximum

Sharpe ratio, as shown in Figure 5a. Since the welfare is positively related to these two

quantities, this explains the negative impact on the investor’s welfare for short investment

horizons. For the longer investment horizons (greater than 2 years), the real rate recovers

and becomes even higher than before the shock. The maximum Sharpe ratio also follows

a similar pattern. As a consequence, greater investment horizons allow the investor to

capture this medium/long-term positive impact on the real rate and the maximum Sharpe

ratio of a positive expected inflation shock. Hence the positive impact on the investor’s

welfare for investment horizons beyond 5 years.

A negative shock to expected inflation increases also the investor’s welfare, but less

so when the investment horizon is high. The increase in the investor’s welfare is close to

31See Table VI, Panel B, page 211 in Sangvinatsos and Wachter (2005). See also Barillas (2010),
Figure 5 page 45.

32The details of the calculation of this quantity are given in Appendix I. It is worth noting that, given
the nature of the term structure model employed and the fact that nominal markets are complete, the
welfare does not depend on the particular choice of the maturities of the bonds available for trade. This
would not be the case if the model were based on a VAR of yields.
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2.54% for a 2-year investment horizon while it is only close to 1.28% for a 20-year horizon.

The intuition for this is similar to the one put forward for the positive expected inflation

shock. A negative shock tends to decrease the nominal rate but less than the size of the

expected inflation shock. As a consequence, the real rate is positively impacted. The

maximum Sharpe ratio is also positively impacted in the short term. Both effects lead to

an increased welfare for a short-term investor. The maximum Sharpe ratio recovers its

initial value in a smooth way without experiencing any negative impact (see Figure 5a).

After two years the effect of the shock disappears. The real rate also recovers, but not

monotonically, as after a sharp increase in the short term, it shows a negative overshoot

after one year and then slowly approaches its initial value. Longer investment horizons

spread over a long time period the positive impact in the short term and capture the

negative impact on the real rate. All this reduces the welfare gains from a negative shock

to inflation for long investment horizons. The welfare impact is not negative for long

investment horizons because the maximum Sharpe ratio is never significantly negative.

As to the portfolio strategy, a positive shock to expected inflation increases substan-

tially the bond exposure while reducing significantly the stock position. The stock-to-

bond ratio is reduced to about 3% from 7% in the base case and intertemporal hedging

effects are larger. Symmetrically, a significant decrease in bond positions and an increase

in the stock’s after a negative shock to expected inflation are observed. The stock-to-bond

ratio becomes in this case twice as large than in the base case.

The intuition behind these changes in the portfolio positions is as follows. A positive

shock to expected inflation impacts negatively the risk premia of the bonds as well as

the risk premium of the stock. The latter is even more impacted than the bonds since

its risk premium decreases by 4% for a 1% shock to expected inflation, while the 2Y

bond risk premium experiences a decrease of only 1%. This is why the position in the

2Y bond increases substantially relative to the other assets positions. Symmetrically, a

negative shock to expected inflation tends to increase bond risk premia, but the stock risk

premium is much more impacted than the 2Y bond risk premium. Hence, bond positions

are reduced relative to the stock position, which becomes now twice as large as in the

base case. It is worth noting that in our interpretation we focus on the risk premia of

traded assets since, in our constant volatility setting, shocks to expected inflation have

no effect on volatilities.

In the third panel of Table 5 we report the portfolio strategy when expected output

gap increases or decreases by 1%. A positive shock reduces welfare by 0.90% for a 20-year

horizon, while a negative shock increases welfare by 3.64%. A positive shock increases the

nominal rate and the real rate. The maximum Sharpe ratio, on the other hand, increases

and then decreases after 4 years. Hence the slight positive effects of a positive shock

for short investment horizons (2 years) and then a negative effect, suggesting that the

impact on the maximum Sharpe ratio dominates. A negative shock to expected output

30



instead increases substantially the maximum Sharpe ratio and this leads to sizable welfare

improvement for any horizon.

As to the portfolios strategy, it turns out that the stock risk premium is impacted

about the same way as the bond risk premia (5Y and 10Y). Its position is thus not that

affected and the bond positions are mostly adjusted to reflect the deterioration (increase)

in the risk premia for positive (negative) shocks.

We can now turn to scrutinize the impact of monetary policy shifts on the investor’s

behavior. Recall that, by construction, shifts in monetary policy have no impact on

market prices of risk. Therefore, any potential impact of monetary policy shifts on welfare

are driven by the impact on the dynamics of the real interest rate.33

In the fourth panel of Table 5 we report the optimal positions and welfare variations

for a positive and a negative changes to the expected inflation weight. A positive change

is welfare improving and the welfare gain is as high as 4.46% for a 20-year investment

horizon, whilst the welfare loss from a negative change is equal to −4.52%. A higher

weight on expected inflation allows the nominal rate to better absorb shocks to expected

inflation, thus reducing the shock on the real rate. Since the maximum Sharpe ratio is,

by construction, not affected by monetary policy shifts, a positive shift to η is valuable

and, symmetrically, a negative shift harmful. The effects of such shifts on the volatility

of the real rate are negative, which reinforces the positive impact of the positive shifts in

expected inflation weight. The position in the stock index is unchanged, as the invest-

ment opportunity subset that changes with η is only the nominal bond market, which

constitutes in this case a complete market by itself.34 Monetary policy shifts have no im-

33Recall that the real rate is given by:

rt = Rt − πt = R0 + (υ1 + ηπ1 + ξχ1)
′
Xt − π0 − π

′
1Xt

= R0 − π0 + (υ1 + (η − 1)π1 + ξχ1)
′
Xt

The instantaneous variance of changes in the real rate will thus be:

V [drt] = (υ1 + (η − 1)π1 + ξχ1)
′
Σ

′
XΣX (υ1 + (η − 1)π1 + ξχ1)

Since by assumption Σ
′
XΣX = I was assumed to be the identity and υ

′
1π1 = υ

′
1χ1 = 0, then:

V [drt] = υ
′
1υ1 + (η − 1)

2
π

′
1π1 + 2ξ (η − 1)π′

1χ1 + ξ2χ′
1χ1

This yields:

∂V [drt]

∂η
= 2 (η − 1)π′

1π1 + 2ξπ′
1χ1

∂V [drt]

∂ξ
= 2 (η − 1)π′

1χ1 + 2ξχ′
1χ1

For both settings, assuming the parameter values as in the base case, the first derivative is negative and
the second is positive. The variance function is convex and the minimum volatility is obtained for η = 1
and ξ = 0.

34For the SM setting, ΣY is upper block-triangular, with a 3× 3 block in the upper-left corner, and
has full rank. It can be shown that the fourth row of the projection matrix (Σ′

Y ΣY )
−1

Σ
′
Y , appearing
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pact on the market prices of risk, and thus on the maximum Sharpe ratio, but do impact

bond volatilities. As shown in Figure 7a, a positive shift in expected inflation weight

increases bond volatilities and decreases their corresponding positions, hence increasing

the stock/bond mix.

In the last panel of Table 5 we report the impact of shifts in the expected output gap

weight. A positive shift is slightly welfare improving (0.42% for a 20-year horizon), while

a negative shock is harmful (−0.46%). These effects are limited to few basis points for

horizons up to 5 years and are still small for long horizons. Whilst the maximum Sharpe

ratio is not affected by changes in ξ, the real rate is affected. The volatility of the real

rate is (very slightly) decreasing in ξ, which would suggest a welfare variation going in

the other direction. An interpretation of the welfare increase for a higher value of ξ and

long horizons can be given looking at the impulse responses of the real rate in Figures

3a and 4a. Corresponding to a higher value for ξ, the long-term response of the real rate

to expected inflation and output gap shocks is dampened, allowing a stabilisation of the

real rate over long investment horizons. The portfolio positions are almost unaffected by

shifts in ξ. Overall, shifts in monetary policy matter for long-term investors, and those

related to expected inflation matter more than those related to expected output gap.

7.1.2 Findings for the UM setting

[Table 6 about here.]

Comparing the base case strategy in Table 6 to that in Table 5, one notices the

following. The bond positions are substantially lower under the UM setting;35 the 2Y

bond myopic position has been divided by close to 4 (4.641 vs. 18.491), the total bond

position by close to 2 (4.221 vs. 9.604) and the stock-bond mix has been multiplied by

more than 2. Horizon effects are now substantial both in the bond positions and the stock

position. For a 20-year investment horizon, the intertemporal hedging component in the

total bond position relative to the myopic component is −61% (1.805/4.641 − 1), while

it was only around +7% (10.241/9.604 − 1) in the SM setting. Intertemporal hedging

in the stock position, which is 0 by construction in the SM setting, is in this case close

to −13% (0.635/0.729− 1).

in the portfolio strategy (3.27) and determining the optimal weight of the stock index, does not depend
on the upper-left block of ΣY and has zeros as first three elements. This means that the stock does
not contribute in the strategy relatively to risks exclusively controlled by the state variables, such as the
interest-rate risk.

35Other studies allowing for an asset universe containing only two bonds deliver findings qualitatively
similar to ours in different setting. For example, Table VI, Panel A page 211 in Sangvinatsos and Wachter
(2005) reports reasonable positions for bonds whenever investors can trade two bonds and the stock. For
this purpose, they assume that the nominal market is incomplete, whilst ours is always complete; they
also assume constant equity premium whilst ours is time varying. Koijen et al. (2010) report reasonable
positions thanks to the portfolio constraints faced by the investor.
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Negative shocks to expected inflation or expected output gap tend to increase welfare.

For a 2-year horizon, the increase in welfare after an expected inflation shock is 2.751%,

and it is 2.122% in case of an expected output gap shock. The figures are 3.629% and

2.436%, respectively, for a 20-year horizon. Negative shocks to expected inflation in-

crease the real rate and the maximum Sharpe ratio, hence the positive impact on welfare.

Negative shocks to expected output gap reduce the real rate, but increase the maximum

Sharpe ratio. The latter effect more than offsets the negative impact on the real rate,

hence the positive welfare effect. The impact on the portfolio strategy are substantial: the

stock position increases substantially, reflecting the increase in the stock risk premium,

while the total bond position is relatively stable. Intertemporal hedging effects increase

dramatically in individual bond positions, although the effect is attenuated when looking

at the total bond position. The stock-bond mix doubles at a 20-year investment horizon.

This again reflects the strong desirability of the stock after the increase in its premium

following a negative shock.

A positive shock to expected inflation or expected output gap harms the investor’s

welfare. The effect is stronger for a positive shock to expected inflation: the welfare

loss for a 20-year horizon is −2.260% (expected inflation) and −1.193% (expected output

gap). In the case of expected inflation, the initial negative impact on the real rate is

reinforced by the negative impact on the maximum Sharpe ratio, while in the case of the

output gap, the positive impact on the real rate attenuates the impact of the negative

shock on the maximum Sharpe ratio. Furthermore, positive shocks to expected inflation

or expected output gap reduce the risk premium of the stock and hence its desirability.

Hence the reduced position in the stock and the decline of the stock/bond mix. Horizon

effects also diminish in the optimal portfolio strategy.

As shown in the fourth and fifth panels of Table 6, the impact of monetary policy

shifts on welfare are substantial. For a 20-year investment horizon, positive (negative)

shifts in expected inflation weight increase (decrease) the welfare by 10.496% (−9.703%).

Positive (negative) shifts in expected output gap weight decrease (increase) the welfare by

−2.507% (2.532%). Thus, the impact of relative shifts on the expected inflation weight are

again stronger than shifts on the expected output gap weight. The risky asset positions

are reduced for positive shifts of η, reflecting the increase of the asset volatilities.

The impact of shifts in the expected inflation weight follows the same logic as in the

SM setting: when η is increased towards 1, the nominal rate reflects better expected

inflation shocks, hence the impact of expected inflation shocks over the real rate are

attenuated (both in terms of level and volatility), which is a valuable feature for a long-

term investor. As to the impact of shifts on the weight of the expected output gap, in the

UM setting a reduction of ξ corresponds to a decrease in the volatility of the real rate

and, as it can be seen by the impulse responses of the real rate in Figures 3b and 4b, also

dampens the response of the real rate to shocks in expected inflation and output gap.
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7.1.3 Comparision between SM and UM settings

The analyses for both the SM and the UM settings show that shifts of the monetary

policy weight on expected inflation are of prime importance for the long-term investor. An

increase of η reduces the volatility of the real rate, which is welfare improving. The UM

setting shows welfare impacts of monetary policy shifts twice as large as those observed

under the SM setting for a 20-year investment horizon. In both settings the impact of

shifts of the weight on the expected output gap is less important than the impact of shifts

on the weight on expected inflation. Although in both cases a small reduction of ξ entails

a reduction of the real rate volatility, the effects on welfare are different and the expected

welfare improvement corresponding to a reduction of ξ is captured only in UM.

7.2 Utility over intermediate consumption

For the sake of brevity, we report the impact of monetary policy shifts only for the UM

setting. We consider an annualised time-preference parameter δ = 2.5%. The solution

to the portfolio choice problem can be expressed in quasi-closed form only when nominal

markets are complete, as described in Appendix C. This is the case when the investor

has access to two bonds (for example, 2Y and 10Y) and the equity index.

[Table 7 about here.]

The first thing that can be noticed comparing Table 7 to Table 6 is that, in the presence

of intermediate consumption, the intertemporal hedging components are smaller than in

the case where utility derives from terminal wealth only. This effect is documented in

Wachter (2002) and is due the fact that the whole path of the stream of consumption

matters for investor’s utility. There is a duration effect for the investment horizon, as

utility depends on a weighted-average of the contributions given by consumption at each

point in time, rather than a single contribution coming at maturity. The “equivalent”

horizon is therefore much shorter than T , hence the intertemporal hedging component is

less pronounced. Even in this case, but on a smaller scale than in the case of utility over

terminal wealth, the intertemporal hedging component is such that there is an increase

in the allocation of the 10Y bond and a diminution of the allocation in the 2Y bond

with the investment horizon, so that the investor can benefit progressively more from the

term-premium.

The consumption-to-wealth ratio varies very little upon shocks to expected inflation

or expected output gap, as well as upon shifts in monetary policy. The effect of shifts in

monetary policy parameters are similar to those obtained for the case where utility de-

pends on terminal wealth, but with a slightly lower impact of the intertemporal hedging

component on the portfolio allocation and, consequently, on the investor’s welfare. Nev-

ertheless, the presence of the intertemporal hedging component still significantly reduces
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the shifts in portfolio allocation corresponding to shifts in η, especially for longer hori-

zons, with respect to the strong effects that η has over the myopic allocation. Again,

we see that welfare increases with the coefficient η and is very slightly decreasing with

ξ, but the effects are smaller than in the previous section. For example, for an investor

with an investment horizon of 20 years, the positive (negative) impact on welfare of a

positive (negative) shift in the expected inflation weight is 2.620% (−2.649) with utility

over intermediate consumption, while it was 10.496% (−9.703) with utility over terminal

wealth.

7.3 Utility over intermediate consumption and real balances

A direct observable consequence of the presence of money in the utility function is

the third term appearing in the optimal portfolios strategy (3.27), related to the time-

variation of relative risk aversion, but there is an impact also on the fourth term, repres-

enting the intertemporal hedging component. A complication of the presence of money is

that the function F cannot be computed explicitly. Usually, when utility derives only from

consumption, an exponential affine solution for F is obtained, as for example in Sangvin-

atsos and Wachter (2005). In our case, relative risk aversion is driven by the short-term

nominal interest rate, which distribution is Gaussian, while the SDF is conditionally log-

normally distributed. The only viable solution for an empirical implementation of the

strategy is therefore the implementation of a simulation-based approach, along the lines

of Detemple et al. (2003) and Cvitanic et al. (2003).

We use the Monte Carlo Malliavin Derivatives (MCMD) simulation method, described

in Appendix E, using the simulation equations summarised in Appendix E.3. In order to

assess the reliability of the method, in Appendix L we perform the calculation through

MCMD of the portfolio strategy in the case of utility over consumption only (α = 1),

which can be compared to the results of the previous section, confirming that the two

methods provide solutions that are very close to each other. In terms of preference para-

meters, for the coefficient measuring the relative weight of consumption and money, we

consider as base case α = 0.96,36 whereas for the elasticity of intratemporal substitution

between consumption and money, we take ρ = 0.8.

[Table 8 about here.]

First of all, we can compare the results in Table 8, obtained in the presence of money-

in-the-utility-function, with those in Table 7, obtained when utility is from intermediate

consumption only. The first noticeable difference between the strategies in the two cases

is that, when money is taken into account, the presence of money affects bond and

36The range of values considered is in line with the literature on the topic (Finn et al., 1990, Holman,
1998, Lioui and Maio, 2013).
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cash positions while the stock position is left unchanged. Since real balances expose to

inflation risk like nominal cash positions, the latter is strongly affected by the presence

of real balances and more so when the share of real balances is high.

This is because of the presence of a third instantaneous hedging term in the optimal

strategy (3.27) that appears when relative risk aversion is time-varying. The volatility of

relative risk aversion, σRRAt , is proportional to the volatility of the short-term nominal

interest rate, ΣXR1, as relative risk aversion varies because of the variable cost of money

holdings, proportional to the nominal interest rate. This additional term is therefore

given by bond positions that hedge the exposure to instantaneous changes in the interest

rate. In particular, in the base case scenario, we notice that the total bond position is

reduced with respect to the position in Table 7. This is because real balances carry a cost

proportional to the interest rate: if the interest rate rises, the investor will be exposed to a

higher cost for holding money, thus this position must be hedged with a position such that

wealth increases in correspondence of a rising interest rate and vice versa. A reduction

of the total bond position corresponds indeed to a contribution of positive exposure to

nominal short-term rate changes. Furthermore, individual bond exposures (in absolute

value) are slightly reduced, in order to compensate for the additional contribution of

interest-rate risk carried by real balances.

The instantaneous hedging component arising from the presence of time-varying risk

aversion, which is pretty sharp for short horizons, is partially offset by the intertemporal

hedging component, making the strategies for α < 1 and for α = 1 more alike for longer

maturities. In general, we can notice a lower tendency to speculatively allocate wealth into

riskier bonds, which is reasonable considering that a smaller fraction of utility comes from

wealth consumption. There is instead very little difference in terms of stock allocation.

For what concerns the consumption plan, there is a reduction in the consumption-to-

wealth ratio, due to the fact that there is a substitution effect between consumption

and real balances. The last row of each panel indicates the money-to-wealth ratio, that is

proportional to consumption, as from equation (3.34). m0/w0 is therefore decreasing with

the maturity and the proportionality factor with respect to consumption depends on the

interest rate, thus on instantaneous relative risk aversion. For the base case parameter

values, the quantities c0/w0 and m0/w0 are of the same order. The amount of uninvested

money, m0, with respect to the case without money-in-the-utility-function, is partially

financed by reducing the total position in bonds and partially with cash, which position

is even more negative in this case.

The second panel of Table 8 shows the allocation when the relative weight of con-

sumption (α) is increased or decreased with respect to its base case value. We notice

that variations in the optimal solution are quite sharp. It comes with no surprise that for

decreasing α, that is when money is given more relative importance, there is a decrease in

consumption, an increase in real balances and an increase in the hedging demand specific
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to the presence of money in the utility function. In particular, there is an important

variation of the instantaneous hedging contribution that makes the strategy deviate from

the myopic solution obtained in the case of utility over consumption only. The case of

utility over consumption is instead approached when α is increased and gets closer to 1.

The third panel of Table 8 shows instead a static comparative analysis with respect

to the elasticity of substitution ρ. The sensitivity is lower than in the previous case,

with an increasing importance of real balances with respect to consumption, thus of the

corresponding hedging term, when ρ is decreased.

The effects of shifts in π and χ are qualitatively similar to those obtained in the case

of utility over consumption for what concerns portfolio positions and welfare, but with

some important differences, due to the fact that the strategy in this case strongly depends

on the short-term rate. In fact, initial shifts in π and χ imply shifts in the short-term rate

R in the same direction, according to the coefficients η and ξ. If the initial short-rate is

lowered (negative ∆π or ∆χ), the total bond position is significantly decreased, as well as

individual absolute bond exposures. If the short-term rate is instead increased (positive

∆π or ∆χ), the total bond position increases and the allocation gets closer to (but still

lower than) that obtained in the case of utility over consumption only. This comes in

parallel with the fact that, when the short-term rate is low, the money-to-wealth ratio is

higher and the consumption-to-wealth ratio is lower than in the base case and vice versa.

What happens is that, when R is low, the cost of holding real balances is low, the investor

keeps more money uninvested and reduces the total position in bonds, as she holds an

additional risk negatively correlated with the nominal rate. When instead the interest

rate is high, she holds fewer real balances and the total bond position can increase.

In terms of sensitiveness with respect to monetary policy parameters, comparing Table

8 with Table 7, we can see that shifts in η have very similar effects on the portfolio strategy.

The effects on welfare are also similar, even though slightly less pronounced, because of

the smaller speculative positions into risky assets. The same conclusions can be drawn

for shifts in ξ, where differences in wealth are in general smaller.37

8 Conclusions

In the present paper we have studied the portfolio choice problem for an individual long-

term investor, deriving utility over real consumption and real balances, and analysed the

effect of monetary policy shifts on her allocation.

We have expressed the nominal short-term rate in terms of a Taylor rule, allowing

to study the impact of monetary policy parameters on portfolio strategy and welfare. It

37For short horizons the relative welfare changes are too little to be significant if compared to the
noise of the Monte Carlo simulation. This might explain the figures with an opposite sign with respect
to the expected trend.
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appears that monetary policy has a significant impact on the optimal portfolio choice,

particularly through the reactions to changes in expected inflation, and only secondarily

through the reactions to changes in the expected output gap. A more actively conservative

policy, that is a policy sharply reacting to inflationary or deflationary trends in the

attempt of stabilizing prices, causes a significant increase in nominal bond volatilities

and betas, implying an overall reduction of positions in risky assets, a shift towards

longer-maturity bonds and an increase of welfare.

With respect to the existing asset allocation literature, we modify the specification

of a traditional Gaussian dynamic term structure model by using a factor that helps

pricing the time-varying equity premium. This factor complements the information car-

ried by the yield-based factors and is filtered from equity returns and realised inflation.

The consequence of this choice is that, differently from the market specification used

by Sangvinatsos and Wachter (2005), there is an intertemporal hedging demand for the

equity in the portfolio strategy, as time-variation of equity premium can not be hedged

with bonds. This hedging demand is decreasing with the investment horizon, whilst we

see an increase in the position of the longest maturity bond. This result is very differ-

ent from other cases in the literature, such as in Wachter (2002), where it is assumed

that the equity premium is perfectly anti-correlated with equity returns. In this case

indeed it happens that the stock demand is sharply increasing with the horizon, whilst,

in the context of our richer investment opportunity set, the investor prefers to increase

the allocation in risky long-term bonds and slightly reduce the stock allocation.

Finally, the introduction of real balances in preferences entails a substitution effect

between consumption and money holding, in the sense that the optimal investor decides

to give up part of her consumption in order to finance the opportunity cost of holding

a certain amount of cash. The amount of money kept uninvested is proportional to the

instantaneous consumption rate, where the coefficient of proportionality is decreasing in

the short-term nominal rate, representing the cost of holding real balances. In terms of

optimal portfolio strategy, the introduction of money in the utility function, implying a

time-variation of relative risk aversion, causes the appearance of an additional instant-

aneous hedging demand. This component reduces risky bond positions and corresponds

to a positive exposure to the short-term nominal rate, aimed at hedging instantaneous

changes in the cost of money. The absolute value of the intertemporal hedging demand

is also reduced when the importance of real balances in preferences increases.
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Table 1: Parameter estimates for the two estimation settings.

(a) SM setting

Θ11 Θ22 Θ33 Θ21 Θ31 Θ32 η ξ

0.5224 0.1122 1.9938 0.3634 −0.8670 −0.4560 0.8376 0.3713
(0.1597) (0.0582) (0.2907) (0.1484) (0.2869) (0.2085) (0.1151) (0.0773)

R0 π0 χ0 σ1
ǫ σ2

ǫ σ3
ǫ σG

ǫ

0.0443 0.0341 −0.0068 0.0020 0.0010 0.0011 0.0225
(0.0152) (0.0093) (0.0014) (0.0001) (0.0000) (0.0000)

R1 π1 χ1 Λ0 Λ1 σS σP

−0.0077 0.0012 −0.0225 0.2302 −0.5132 −0.0876 0.5541 0.0037 −0.0007
(0.0027) (0.0039) (0.0019) (0.1029) (0.1494) (0.0544) (0.2368) (0.0059) (0.0004)
0.0126 0.0106 −0.0048 −0.4131 −0.1873 0.0083 −0.6749 −0.0168 0.0012
(0.0012) (0.0018) (0.0008) (0.0688) (0.1780) (0.0499) (0.1074) (0.0055) (0.0003)
−0.0124 −0.0213 0.0072 0.3447 0.1686 0.2406 −0.6295 0.0052 0.0000
0.0014 (0.0024) (0.0028) (0.1763) (0.1751) (0.0935) (0.2765) (0.0058) (0.0001)

0.4109 −0.0126 −0.1978 0.4357 0.1488 0.0007
(0.2077) (0.0887) (0.0738) (0.2262) (0.0039) (0.0003)

0 0 0 0 0 0.0087
(0.0002)

(b) UM setting

Θ11 Θ22 Θ33 Θ21 Θ31 Θ32 η ξ

0.1030 0.7876 0.1611 −0.3169 0.2355 −0.3441 0.6932 0.3565
(0.0537) (0.1676) (0.0764) (0.1708) (0.1746) (0.2695) (0.0992) (0.1679)

R0 π0 χ0 σ1
ǫ σ2

ǫ σ3
ǫ σ4

ǫ σG
ǫ

0.0446 0.0350 −0.0076 0.0024 0.0017 0.0019 0.0032 0.0225
(0.0173) (0.0146) (0.0014) (0.0001) (0.0000) (0.0001) (0.0001)

R1 π1 χ1 Λ0 Λ1 σS σP

0.0166 0.0117 0.0053 −0.3971 0.1091 −0.5009 0 −0.0146 0.0015
(0.0018) (0.0035) (0.0009) (0.0888) (0.1284) (0.0402) (0.0056) (0.0003)
−0.0082 −0.0140 −0.0094 0.1403 0.2182 −0.4206 0 0.0049 0.0003
(0.0037) (0.0030) (0.0018) (0.1223) (0.1420) (0.1649) (0.0062) (0.0004)

0 −0.0063 0.0085 0.4333 −0.2356 0.2291 −0.0465 0.1494 0.0008
(0.0011) (0.0008) (0.1780) (0.0946) (0.1662) (0.0687) (0.0039) (0.0003)

0 0 0 0 0 0.0083
(0.0002)

Θij are the elements of the lower-triangular mean reversion matrix for the state variables dynamics in
equation (3.3). R0 and the vectorR1 are the parameters determining the affine relation between the state
variables and the short-term rate that are described in the Taylor rule equation (3.7). π0 and the vector π1

are the parameters determining the affine relation between the state variables and the expected inflation
described in the second equation in (3.5). χ0 and the vector χ1 are the regression coefficients determining
the affine relation between the state variables and the output gap described in the third equation in (3.5).
The vector Λ0 and the matrix Λ1 are the parameters specifying the affine relation between the state
variables and the vector of market prices of risk, described in equation (3.2). σP is the volatility vector
of the price index dynamics appearing in equation (3.9). σS is the volatility vector of the stock index
appearing in equation (3.11). The terms η and ξ are the weights of expected inflation and output gap,
appearing in the Taylor rule of equation (3.6), derived on the basis of the equations (4.3). The terms σi

ǫ

are the standard deviations of the observation errors associated to the imperfectly observed yields. All
parameters are estimated by maximum-likelihood, except for the regression coefficients relating expected
output-gap to state variables and the monetary policy parameters, computed as in equation (4.3). The
values in brackets are the standard errors of the estimates.



Table 2: Mean values and standard deviations of relevant historical and estimated data.

(a) SM setting

Time series
Mean value Standard deviation

Estimation Data Estimation Data

3M ZC yield 4.74% 4.66% 3.13% 3.08%
6M ZC yield 4.85% 4.85% 3.14% 3.14%
1Y ZC yield 5.03% 5.06% 3.13% 3.14%
2Y ZC yield 5.29% 5.29% 3.09% 3.09%
5Y ZC yield 5.69% 5.70% 2.90% 2.90%
10Y ZC yield 6.08% 6.08% 2.70% 2.70%
Equity returns 15.01% 15.07%

Realized inflation 0.90% 1.09%
Realized output gap −0.57% 2.96%
3M ZC risk premium 0.25% 0.21%
6M ZC risk premium 0.46% 0.41%
1Y ZC risk premium 0.77% 0.83%
2Y ZC risk premium 1.16% 1.68%
5Y ZC risk premium 1.78% 3.83%
10Y ZC risk premium 2.50% 6.61%
Equity risk premium 6.70% 6.17%
Nominal risk-free rate 4.61% 3.13%
Expected inflation 3.53% 2.16%

Expected output gap −0.57% 1.99%

(b) UM setting

Time series
Mean value Standard deviation

Estimation Data Estimation Data

3M ZC yield 4.77% 4.66% 3.16% 3.08%
6M ZC yield 4.85% 4.85% 3.14% 3.14%
1Y ZC yield 5.00% 5.06% 3.10% 3.14%
2Y ZC yield 5.25% 5.29% 3.04% 3.09%
5Y ZC yield 5.70% 5.70% 2.90% 2.90%
10Y ZC yield 6.02% 6.08% 2.64% 2.70%

Equity index returns 15.00% 15.07%
Realized inflation 0.86% 1.09%

Realized output gap −0.57% 2.96%
3M ZC risk premium 0.19% 0.15%
6M ZC risk premium 0.36% 0.29%
1Y ZC risk premium 0.65% 0.59%
2Y ZC risk premium 1.08% 1.22%
5Y ZC risk premium 1.78% 3.23%
10Y ZC risk premium 2.34% 6.25%

Equity index risk premium 6.63% 5.95%
Nominal risk-free rate 4.68% 3.19%
Expected inflation 3.51% 2.36%

Expected output gap −0.57% 1.96%

The tables show first and second moments of the distributions of relevant historical time series and their
parameter-implied counterparts. Means and standard deviations of bond yields are computed from the
historical data time series and the corresponding values implied by the filtered time series of the state
variables, Xt, and the estimated parameters, through equation (A.5). For stock returns and realised
inflation, the historical quantities are obtained annualising the standard deviation of monthly returns,
whilst the estimated ones are computed as the total model-implied conditional volatility. The average
risk premia depend on the estimated parameters and are equal to A1 (τ)σ

′
XE (Λ∗

t ), where E (Λ∗
t ) is the

average value of the market prices of risk vector, implied by equation (3.2). Average nominal risk-free
rate, expected inflation and expected output gap are computed equivalently. Their standard deviations,
as well as those for risk premia are computed from the time series implied by the filtered time series of
the state variables and the estimated parameters.



Table 3: Conditional correlation matrix of asset returns, as implied by estimated para-
meters and calculated from data.

(a) SM setting

3M ZCB 6M ZCB 1Y ZCB 2Y ZCB 5Y ZCB 10Y ZCB Stock CPI

3M ZCB 1.000
6M ZCB 0.987 1.000
1Y ZCB 0.921 0.971 1.000
2Y ZCB 0.782 0.869 0.962 1.000
5Y ZCB 0.615 0.718 0.847 0.948 1.000
10Y ZCB 0.510 0.589 0.692 0.790 0.928 1.000
Stock 0.116 0.115 0.107 0.092 0.086 0.091 1.000
CPI −0.203 −0.205 −0.195 −0.171 −0.148 −0.141 0.050 1.000

(b) UM setting

3M ZCB 6M ZCB 1Y ZCB 2Y ZCB 5Y ZCB 10Y ZCB Stock CPI

3M ZCB 1.000
6M ZCB 0.996 1.000
1Y ZCB 0.982 0.993 1.000
2Y ZCB 0.922 0.946 0.977 1.000
5Y ZCB 0.680 0.724 0.798 0.908 1.000
10Y ZCB 0.467 0.520 0.613 0.767 0.966 1.000
Stock 0.109 0.110 0.109 0.103 0.078 0.055 1.000
CPI −0.215 −0.222 −0.227 −0.227 −0.195 −0.157 0.037 1.000

(c) Sample correlations from data time-series

3M ZCB 6M ZCB 1Y ZCB 2Y ZCB 5Y ZCB 10Y ZCB Stock CPI

3M ZCB 1.000
6M ZCB 0.950 1.000
1Y ZCB 0.856 0.950 1.000
2Y ZCB 0.759 0.867 0.954 1.000
5Y ZCB 0.596 0.713 0.828 0.923 1.000
10Y ZCB 0.472 0.582 0.687 0.789 0.924 1.000
Stock 0.046 0.105 0.113 0.092 0.079 0.097 1.000
CPI −0.105 −0.110 −0.110 −0.121 −0.141 −0.135 0.010 1.000

Panels (a) and (b) report one-month conditional correlations between the innovations of nominal risky
assets and the economic state variables, as implied by the estimated parameter values in table 1. Panel
(c) shows unconditional correlations of bond, stock and CPI realised returns, calculated from the monthly
data time series.



Table 4: Instantaneous correlations of risk premia and economic variables with asset
returns, as implied by estimated parameters

(a) SM setting

3M ZCB 6M ZCB 1Y ZCB 2Y ZCB 5Y ZCB 10Y ZCB Stock CPI R π χ

3M ZCB RP 0.338 0.199 −0.039 −0.320 −0.557 −0.562 0.012 0.033 −0.477 −0.803 0.349
6M ZCB RP 0.375 0.231 −0.014 −0.300 −0.512 −0.473 0.023 0.025 −0.519 −0.858 0.448
1Y ZCB RP 0.407 0.262 0.015 −0.271 −0.460 −0.387 0.032 0.017 −0.553 −0.895 0.520
2Y ZCB RP 0.440 0.296 0.050 −0.234 −0.414 −0.327 0.038 0.010 −0.584 −0.918 0.545
5Y ZCB RP 0.517 0.379 0.137 −0.150 −0.349 −0.291 0.045 −0.002 −0.651 −0.941 0.471
10Y ZCB RP 0.615 0.491 0.265 −0.023 −0.265 −0.280 0.049 −0.017 −0.731 −0.939 0.290
Stock RP 0.733 0.618 0.404 0.129 −0.075 −0.048 0.072 −0.045 −0.836 −0.994 0.348

R −0.986 −0.948 −0.840 −0.652 −0.464 −0.393 −0.105 0.118 1.000 0.846 0.046
π −0.746 −0.634 −0.424 −0.159 0.018 −0.041 −0.080 0.052 0.846 1.000 −0.405
χ −0.176 −0.288 −0.443 −0.551 −0.422 −0.067 0.010 0.052 0.046 −0.405 1.000

(b) UM setting

3M ZCB 6M ZCB 1Y ZCB 2Y ZCB 5Y ZCB 10Y ZCB Stock CPI R π χ

3M ZCB RP 0.438 0.386 0.278 0.064 −0.369 −0.601 0.037 0.026 −0.488 −0.756 −0.702
6M ZCB RP 0.471 0.420 0.314 0.101 −0.334 −0.571 0.041 0.019 −0.520 −0.776 −0.715
1Y ZCB RP 0.519 0.470 0.366 0.156 −0.281 −0.524 0.046 0.009 −0.567 −0.805 −0.732
2Y ZCB RP 0.577 0.530 0.429 0.224 −0.214 −0.464 0.052 −0.003 −0.622 −0.838 −0.749
5Y ZCB RP 0.642 0.597 0.501 0.303 −0.134 −0.390 0.059 −0.017 −0.684 −0.871 −0.766
10Y ZCB RP 0.669 0.626 0.533 0.337 −0.097 −0.356 0.062 −0.023 −0.710 −0.883 −0.772
Stock RP 0.901 0.876 0.817 0.677 0.302 0.042 −0.040 −0.102 −0.923 −0.894 −0.839

R −0.998 −0.994 −0.974 −0.902 −0.632 −0.405 −0.101 0.139 1.000 0.864 0.648
π −0.842 −0.816 −0.756 −0.615 −0.249 0.000 −0.406 0.049 0.864 1.000 0.527
χ −0.622 −0.593 −0.531 −0.394 −0.066 0.143 0.558 0.101 0.648 0.527 1.000

The table reports parameter-implied instantaneous correlations between asset risk premia and returns
in the tradable assets and the CPI, as well as innovations in the economic variables. The estimated
parameter values are as in table 1a. The correlation between two generic quantities A and B is calculated
as σ

′
AσB/ (‖σA‖ ‖σB‖). Risk premia volatilities for zero-coupon bonds are given by ΣXΛ

′
1ΣXA

′
1 (τ),

whereas the equity risk premium volatility can be expressed as ΣXΛ
′
1σS . Zero-coupon return volatility

vectors are equal to ΣXA
′
1 (τ). The volatilities in innovation in short-term rate, expected inflation and

expected output gap are respectively given by ΣXR1, ΣXπ1 and ΣXχ1.



Table 5: Optimal portfolio for SM setting and utility over terminal wealth.

Base case

T = 0 T = 2 T = 5 T = 10 T = 20

2Y bond 18.491 14.747 15.391 16.330 17.515
5Y bond −11.932 −9.875 −10.813 −12.099 −13.739
10Y bond 3.045 3.030 3.834 5.005 6.465
Stock 0.694 0.694 0.694 0.694 0.694
Cash −9.297 −7.596 −8.105 −8.930 −9.935
Total bond 9.604 7.902 8.412 9.236 10.241
Stock/bond 0.072 0.088 0.082 0.075 0.068

∆π = −0.01 ∆π = +0.01

T = 0 T = 2 T = 5 T = 10 T = 20 T = 0 T = 2 T = 5 T = 10 T = 20

2Y bond 13.424 4.384 5.038 5.967 7.144 23.559 25.110 25.744 26.693 27.886
5Y bond −7.109 −1.430 −2.427 −3.700 −5.329 −16.756 −18.319 −19.199 −20.498 −22.148
10Y bond 2.404 1.597 2.419 3.576 5.027 3.685 4.462 5.249 6.433 7.904
Stock 1.035 1.035 1.035 1.035 1.035 0.353 0.353 0.353 0.353 0.353
Cash −8.754 −4.586 −5.065 −5.879 −6.877 −9.840 −10.606 −11.146 −11.982 −12.993
Total bond 8.719 4.551 5.030 5.844 6.842 10.488 11.254 11.794 12.629 13.641
Stock/bond 0.119 0.227 0.206 0.177 0.151 0.034 0.031 0.030 0.028 0.026
∆w̃0/w0 (%) − 2.542 2.278 1.828 1.283 − −0.477 −0.200 0.247 0.791

∆χ = −0.01 ∆χ = +0.01

T = 0 T = 2 T = 5 T = 10 T = 20 T = 0 T = 2 T = 5 T = 10 T = 20

2Y bond 21.474 17.548 18.469 19.440 20.632 15.509 11.946 12.313 13.221 14.397
5Y bond −16.627 −15.879 −17.480 −18.821 −20.472 −7.238 −3.871 −4.146 −5.376 −7.005
10Y bond 5.078 5.797 6.887 8.087 9.557 1.011 0.263 0.780 1.923 3.373
Stock 0.703 0.703 0.703 0.703 0.703 0.684 0.684 0.684 0.684 0.684
Cash −9.629 −7.170 −7.580 −8.409 −9.420 −8.966 −8.022 −8.631 −9.451 −10.450
Total bond 9.925 7.466 7.876 8.706 9.717 9.282 8.338 8.947 9.767 10.766
Stock/bond 0.071 0.094 0.089 0.081 0.072 0.074 0.082 0.076 0.070 0.064
∆w̃0/w0 (%) − 1.987 2.675 3.093 3.640 − 0.033 −0.014 −0.379 −0.902

∆η/η = −30% ∆η/η = +30%

T = 0 T = 2 T = 5 T = 10 T = 20 T = 0 T = 2 T = 5 T = 10 T = 20

2Y bond 27.911 21.774 22.804 24.340 26.268 13.604 11.092 11.518 12.160 12.983
5Y bond −19.418 −15.618 −17.024 −18.897 −21.259 −8.252 −7.006 −7.665 −8.644 −9.916
10Y bond 5.086 4.699 5.717 7.164 8.978 2.060 2.189 2.855 3.861 5.111
Stock 0.694 0.694 0.694 0.694 0.694 0.694 0.694 0.694 0.694 0.694
Cash −13.273 −10.548 −11.191 −12.301 −13.680 −7.106 −5.968 −6.403 −7.071 −7.872
Total bond 13.580 10.854 11.497 12.607 13.986 7.412 6.274 6.709 7.377 8.178
Stock/bond 0.051 0.064 0.060 0.055 0.050 0.094 0.111 0.103 0.094 0.085
∆w̃0/w0 (%) − −0.264 −1.024 −2.430 −4.520 − 0.263 1.021 2.425 4.462

∆ξ/ξ = −30% ∆ξ/ξ = +30%

T = 0 T = 2 T = 5 T = 10 T = 20 T = 0 T = 2 T = 5 T = 10 T = 20

2Y bond 17.602 14.010 14.546 15.242 16.119 19.233 15.372 16.111 17.263 18.715
5Y bond −10.435 −8.642 −9.399 −10.272 −11.390 −13.221 −10.950 −12.055 −13.711 −15.821
10Y bond 2.430 2.515 3.238 4.228 5.457 3.585 3.489 4.370 5.709 7.384
Stock 0.694 0.694 0.694 0.694 0.694 0.694 0.694 0.694 0.694 0.694
Cash −9.291 −7.577 −8.079 −8.891 −9.880 −9.290 −7.604 −8.121 −8.954 −9.972
Total bond 9.597 7.883 8.385 9.198 10.186 9.597 7.910 8.427 9.261 10.278
Stock/bond 0.072 0.088 0.083 0.075 0.068 0.072 0.088 0.082 0.075 0.068
∆w̃0/w0 (%) − −0.010 −0.046 −0.126 −0.455 − 0.009 0.040 0.109 0.415

The first columns report the myopic component of the optimal allocation, whereas the following columns
correspond to investment horizons respectively equal to 2Y, 5Y, 10Y and 20Y. The portfolio strategy
is computed considering the case where utility derives from terminal wealth only and the investor can
trade in 3 bonds and the stock index. Parameters are those estimated in Table 1a and γ = 4.



Table 6: Optimal portfolio for UM setting and utility over terminal wealth.

Base case

T = 0 T = 2 T = 5 T = 10 T = 20

2Y bond 4.641 2.316 1.943 1.854 1.805
10Y bond −0.420 0.165 0.353 0.544 0.787
Stock 0.729 0.712 0.685 0.656 0.635
Cash −3.950 −2.193 −1.981 −2.053 −2.226
Total bond 4.221 2.481 2.296 2.397 2.592
Stock/bond 0.173 0.287 0.298 0.274 0.245

∆π = −0.01 ∆π = +0.01

T = 0 T = 2 T = 5 T = 10 T = 20 T = 0 T = 2 T = 5 T = 10 T = 20

2Y bond 4.086 0.309 −0.157 −0.248 −0.297 5.196 4.322 4.043 3.955 3.906
10Y bond 0.199 1.103 1.310 1.502 1.744 −1.040 −0.773 −0.603 −0.415 −0.170
Stock 0.907 0.895 0.869 0.839 0.818 0.551 0.528 0.501 0.472 0.452
Cash −4.192 −1.308 −1.022 −1.093 −1.265 −3.707 −3.078 −2.941 −3.013 −3.187
Total bond 4.285 1.413 1.153 1.254 1.447 4.156 3.550 3.440 3.541 3.736
Stock/bond 0.212 0.634 0.754 0.669 0.565 0.133 0.149 0.146 0.133 0.121
∆w̃0/w0 (%) − 2.751 3.311 3.557 3.629 − −1.507 −1.965 −2.193 −2.260

∆χ = −0.01 ∆χ = +0.01

T = 0 T = 2 T = 5 T = 10 T = 20 T = 0 T = 2 T = 5 T = 10 T = 20

2Y bond 4.381 0.672 0.202 0.111 0.062 4.902 3.960 3.684 3.596 3.548
10Y bond 0.090 0.976 1.182 1.379 1.629 −0.931 −0.645 −0.476 −0.292 −0.055
Stock 0.933 0.923 0.898 0.868 0.847 0.525 0.501 0.473 0.443 0.423
Cash −4.403 −1.570 −1.282 −1.358 −1.538 −3.496 −2.816 −2.681 −2.748 −2.915
Total bond 4.471 1.647 1.385 1.490 1.691 3.971 3.315 3.208 3.305 3.492
Stock/bond 0.209 0.560 0.648 0.583 0.501 0.132 0.151 0.147 0.134 0.121
∆w̃0/w0 (%) − 2.122 2.246 2.224 2.436 − −1.003 −1.034 −1.000 −1.193

∆η/η = −30% ∆η/η = +30%

T = 0 T = 2 T = 5 T = 10 T = 20 T = 0 T = 2 T = 5 T = 10 T = 20

2Y bond 5.932 2.862 2.348 2.252 2.239 3.781 1.961 1.680 1.591 1.515
10Y bond −0.654 0.090 0.298 0.479 0.708 −0.275 0.205 0.382 0.582 0.836
Stock 0.788 0.750 0.713 0.678 0.657 0.684 0.682 0.664 0.639 0.617
Cash −5.065 −2.702 −2.359 −2.409 −2.604 −3.190 −1.848 −1.726 −1.812 −1.969
Total bond 5.278 2.952 2.646 2.731 2.947 3.506 2.166 2.062 2.173 2.351
Stock/bond 0.149 0.254 0.269 0.248 0.223 0.195 0.315 0.322 0.294 0.263
∆w̃0/w0 (%) − −0.251 −1.233 −3.676 −9.703 − 0.250 1.235 3.756 10.496

∆ξ/ξ = −30% ∆ξ/ξ = +30%

T = 0 T = 2 T = 5 T = 10 T = 20 T = 0 T = 2 T = 5 T = 10 T = 20

2Y bond 5.009 2.468 2.073 2.003 1.980 4.320 2.184 1.830 1.724 1.653
10Y bond −0.495 0.144 0.337 0.523 0.764 −0.357 0.182 0.366 0.560 0.805
Stock 0.692 0.688 0.667 0.641 0.618 0.763 0.734 0.702 0.669 0.649
Cash −4.206 −2.300 −2.077 −2.167 −2.362 −3.726 −2.101 −1.898 −1.953 −2.107
Total bond 4.514 2.612 2.410 2.526 2.744 3.962 2.366 2.197 2.284 2.458
Stock/bond 0.153 0.263 0.277 0.254 0.225 0.193 0.310 0.319 0.293 0.264
∆w̃0/w0 (%) − 0.014 0.155 0.715 2.532 − −0.015 −0.157 −0.719 −2.507

The first columns report the myopic component of the optimal allocation, whereas the following columns
correspond to investment horizons respectively equal to 2Y, 5Y, 10Y and 20Y. The portfolio strategy
is computed considering the case where utility derives from terminal wealth only and the investor can
trade in 2 bonds and the stock index. Parameters are those estimated in Table 1b and γ = 4.



Table 7: Optimal portfolio for UM setting and utility over intermediate consumption.

Base case

T = 0 T = 2 T = 5 T = 10 T = 20

2Y bond 4.641 3.118 2.540 2.284 2.153
10Y bond −0.420 −0.047 0.128 0.253 0.370
Stock 0.729 0.721 0.709 0.694 0.679
Cash −3.950 −2.793 −2.376 −2.231 −2.202
Total bond 4.221 3.071 2.668 2.537 2.523
Stock/bond 0.173 0.235 0.266 0.273 0.269
c0/w0 − 0.533 0.239 0.145 0.103

∆π = −0.01 ∆π = +0.01

T = 0 T = 2 T = 5 T = 10 T = 20 T = 0 T = 2 T = 5 T = 10 T = 20

2Y bond 4.086 1.567 0.701 0.343 0.167 5.196 4.675 4.384 4.229 4.143
10Y bond 0.199 0.793 1.028 1.176 1.302 −1.040 −0.888 −0.774 −0.670 −0.563
Stock 0.907 0.903 0.892 0.877 0.863 0.551 0.540 0.526 0.510 0.496
Cash −4.192 −2.262 −1.622 −1.396 −1.332 −3.707 −3.327 −3.135 −3.069 −3.075
Total bond 4.285 2.359 1.730 1.519 1.469 4.156 3.787 3.609 3.558 3.579
Stock/bond 0.212 0.383 0.515 0.577 0.587 0.133 0.142 0.146 0.143 0.139
c0/w0 − 0.540 0.243 0.148 0.106 − 0.529 0.236 0.143 0.102
∆w̃0/w0 (%) − 1.787 2.505 2.875 3.085 − −0.943 −1.405 −1.677 −1.840

∆χ = −0.01 ∆χ = +0.01

T = 0 T = 2 T = 5 T = 10 T = 20 T = 0 T = 2 T = 5 T = 10 T = 20

2Y bond 4.381 1.912 1.054 0.697 0.522 4.902 4.329 4.030 3.873 3.786
10Y bond 0.090 0.670 0.903 1.051 1.179 −0.931 −0.765 −0.649 −0.545 −0.440
Stock 0.933 0.929 0.919 0.905 0.891 0.525 0.513 0.498 0.482 0.468
Cash −4.403 −2.512 −1.876 −1.653 −1.592 −3.496 −3.077 −2.879 −2.810 −2.814
Total bond 4.471 2.582 1.957 1.748 1.701 3.971 3.564 3.381 3.328 3.346
Stock/bond 0.209 0.360 0.470 0.517 0.524 0.132 0.144 0.147 0.145 0.140
c0/w0 − 0.539 0.242 0.147 0.105 − 0.530 0.237 0.144 0.103
∆w̃0/w0 (%) − 1.431 1.872 2.011 2.094 − −0.674 −0.879 −0.930 −0.969

∆η/η = −30% ∆η/η = +30%

T = 0 T = 2 T = 5 T = 10 T = 20 T = 0 T = 2 T = 5 T = 10 T = 20

2Y bond 5.932 3.933 3.153 2.809 2.641 3.781 2.582 2.139 1.941 1.833
10Y bond −0.654 −0.178 0.036 0.176 0.297 −0.275 0.030 0.179 0.296 0.409
Stock 0.788 0.768 0.747 0.726 0.708 0.684 0.685 0.679 0.668 0.657
Cash −5.065 −3.523 −2.936 −2.711 −2.647 −3.190 −2.297 −1.996 −1.905 −1.899
Total bond 5.278 3.755 3.189 2.984 2.939 3.506 2.612 2.318 2.237 2.242
Stock/bond 0.149 0.204 0.234 0.243 0.241 0.195 0.262 0.293 0.299 0.293
c0/w0 − 0.533 0.238 0.143 0.101 − 0.533 0.240 0.146 0.105
∆w̃0/w0 (%) − −0.084 −0.413 −1.168 −2.649 − 0.084 0.410 1.159 2.620

∆ξ/ξ = −30% ∆ξ/ξ = +30%

T = 0 T = 2 T = 5 T = 10 T = 20 T = 0 T = 2 T = 5 T = 10 T = 20

2Y bond 5.009 3.346 2.716 2.446 2.316 4.320 2.920 2.387 2.144 2.012
10Y bond −0.495 −0.087 0.100 0.229 0.345 −0.357 −0.014 0.150 0.273 0.389
Stock 0.692 0.692 0.684 0.672 0.660 0.763 0.748 0.731 0.713 0.697
Cash −4.206 −2.951 −2.500 −2.347 −2.321 −3.726 −2.655 −2.268 −2.129 −2.098
Total bond 4.514 3.259 2.816 2.675 2.661 3.962 2.906 2.537 2.416 2.401
Stock/bond 0.153 0.212 0.243 0.251 0.248 0.193 0.258 0.288 0.295 0.290
c0/w0 − 0.533 0.239 0.145 0.104 − 0.533 0.239 0.144 0.103
∆w̃0/w0 (%) − 0.004 0.039 0.175 0.530 − −0.004 −0.040 −0.178 −0.538

The first columns report the myopic component of the optimal allocation, whereas the following columns
correspond to investment horizons respectively equal to 2Y, 5Y, 10Y and 20Y. The portfolio strategy is
computed considering the case where utility derives from intermediate consumption only and the investor
can trade in 2 bonds and the stock index. Parameters are those estimated in Table 1b and γ = 4.



Table 8: Optimal portfolio for UM setting and utility over intermediate consumption
and real balances.

Base case (α = 0.96, ρ = 0.8)

T = 0 T = 2 T = 5 T = 10 T = 20

2Y bond 3.976 2.696 2.175 1.930 1.764
10Y bond −0.345 −0.035 0.106 0.218 0.356
Stock 0.729 0.721 0.708 0.693 0.679
Cash − −2.866 −2.205 −1.972 −1.892
Total bond 3.631 2.662 2.281 2.148 2.120
Stock/bond 0.201 0.271 0.311 0.323 0.320
c0/w0 − 0.511 0.229 0.138 0.098
m0/w0 − 0.483 0.216 0.131 0.093

α = 0.94 α = 0.98

T = 0 T = 2 T = 5 T = 10 T = 20 T = 0 T = 2 T = 5 T = 10 T = 20

2Y bond 3.721 2.535 2.039 1.798 1.647 4.259 2.877 2.330 2.083 1.901
10Y bond −0.317 −0.030 0.098 0.205 0.344 −0.377 −0.040 0.114 0.232 0.369
Stock 0.729 0.721 0.708 0.693 0.679 0.729 0.721 0.709 0.693 0.679
Cash − −2.895 −2.145 −1.877 −1.797 − −2.836 −2.277 −2.084 −2.003
Total bond 3.404 2.505 2.137 2.003 1.990 3.882 2.836 2.444 2.315 2.270
Stock/bond 0.214 0.288 0.331 0.346 0.341 0.188 0.254 0.290 0.299 0.299
c0/w0 − 0.502 0.225 0.136 0.097 − 0.520 0.233 0.141 0.100
m0/w0 − 0.668 0.299 0.181 0.129 − 0.278 0.125 0.075 0.054

ρ = 0.6 ρ = 0.99

T = 0 T = 2 T = 5 T = 10 T = 20 T = 0 T = 2 T = 5 T = 10 T = 20

2Y bond 3.968 2.728 2.285 2.096 1.928 3.985 2.606 1.875 1.478 1.319
10Y bond −0.344 −0.036 0.105 0.219 0.357 −0.346 −0.030 0.109 0.216 0.352
Stock 0.729 0.721 0.708 0.693 0.679 0.729 0.721 0.708 0.693 0.679
Cash − −2.902 −2.317 −2.141 −2.058 − −2.775 −1.906 −1.517 −1.442
Total bond 3.623 2.692 2.390 2.315 2.285 3.638 2.576 1.984 1.694 1.671
Stock/bond 0.201 0.268 0.296 0.299 0.297 0.200 0.280 0.357 0.409 0.406
c0/w0 − 0.510 0.228 0.138 0.098 − 0.511 0.229 0.139 0.099
m0/w0 − 0.489 0.219 0.132 0.094 − 0.477 0.214 0.129 0.092

The first columns report the myopic component of the optimal allocation, whereas the following columns
correspond to investment horizons respectively equal to 2Y, 5Y, 10Y and 20Y. The portfolio strategy
is computed considering the case where utility derives both from intermediate consumption and real
balances, and the investor can trade in 2 bonds and the stock index. Parameters are those estimated in
Table 1b and γ = 4.



Table 8 (continued)

∆π = −0.01 ∆π = +0.01

T = 0 T = 2 T = 5 T = 10 T = 20 T = 0 T = 2 T = 5 T = 10 T = 20

2Y bond 3.324 1.061 0.270 −0.056 −0.292 4.605 4.310 4.070 3.915 3.799
10Y bond 0.285 0.810 1.010 1.142 1.298 −0.973 −0.879 −0.799 −0.708 −0.582
Stock 0.907 0.903 0.891 0.876 0.862 0.551 0.539 0.526 0.510 0.495
Cash − −2.335 −1.423 −1.115 −0.978 − −3.398 −2.988 −2.833 −2.795
Total bond 3.609 1.872 1.280 1.086 1.007 3.632 3.431 3.272 3.207 3.217
Stock/bond 0.251 0.482 0.696 0.807 0.857 0.152 0.157 0.161 0.159 0.154
c0/w0 − 0.517 0.232 0.141 0.101 − 0.507 0.227 0.137 0.097
m0/w0 − 0.560 0.252 0.153 0.109 − 0.428 0.191 0.115 0.082
∆w̃0/w0 (%) − 2.211 2.793 3.099 3.395 − −1.291 −1.596 −1.756 −1.902

∆χ = −0.01 ∆χ = +0.01

T = 0 T = 2 T = 5 T = 10 T = 20 T = 0 T = 2 T = 5 T = 10 T = 20

2Y bond 3.670 1.468 0.692 0.364 0.112 4.277 3.925 3.660 3.500 3.399
10Y bond 0.170 0.685 0.884 1.017 1.176 −0.860 −0.755 −0.674 −0.583 −0.460
Stock 0.933 0.929 0.919 0.904 0.891 0.525 0.513 0.498 0.482 0.467
Cash − −2.604 −1.728 −1.427 −1.279 − −3.136 −2.687 −2.522 −2.494
Total bond 3.840 2.153 1.576 1.381 1.288 3.416 3.171 2.986 2.917 2.939
Stock/bond 0.243 0.431 0.583 0.655 0.692 0.154 0.162 0.167 0.165 0.159
c0/w0 − 0.516 0.231 0.140 0.100 − 0.509 0.227 0.138 0.098
m0/w0 − 0.522 0.234 0.142 0.101 − 0.453 0.202 0.123 0.087
∆w̃0/w0 (%) − 1.561 1.900 2.016 2.218 − −0.769 −0.837 −0.811 −0.857

∆η/η = −30% ∆η/η = +30%

T = 0 T = 2 T = 5 T = 10 T = 20 T = 0 T = 2 T = 5 T = 10 T = 20

2Y bond 5.268 3.544 2.847 2.508 2.250 3.116 2.076 1.670 1.501 1.388
10Y bond −0.580 −0.167 0.015 0.144 0.298 −0.199 0.046 0.156 0.257 0.389
Stock 0.787 0.767 0.747 0.725 0.707 0.685 0.685 0.679 0.668 0.657
Cash − −3.628 −2.825 −2.507 −2.346 − −2.290 −1.721 −1.558 −1.529
Total bond 4.688 3.377 2.862 2.651 2.548 2.916 2.121 1.826 1.758 1.777
Stock/bond 0.168 0.227 0.261 0.274 0.277 0.235 0.323 0.372 0.380 0.370
c0/w0 − 0.510 0.228 0.137 0.097 − 0.511 0.229 0.139 0.100
m0/w0 − 0.483 0.216 0.130 0.091 − 0.484 0.217 0.132 0.095
∆w̃0/w0 (%) − −0.024 −0.272 −0.931 −2.339 − 0.069 0.358 1.074 2.548

∆ξ/ξ = −30% ∆ξ/ξ = +30%

T = 0 T = 2 T = 5 T = 10 T = 20 T = 0 T = 2 T = 5 T = 10 T = 20

2Y bond 4.344 2.934 2.367 2.110 1.929 3.655 2.482 2.000 1.769 1.599
10Y bond −0.420 −0.074 0.082 0.199 0.341 −0.283 −0.002 0.124 0.230 0.370
Stock 0.693 0.692 0.684 0.672 0.660 0.763 0.748 0.731 0.712 0.696
Cash − −3.035 −2.349 −2.113 −2.024 − −2.712 −2.072 −1.842 −1.758
Total bond 3.924 2.860 2.449 2.310 2.270 3.373 2.480 2.124 1.999 1.969
Stock/bond 0.176 0.242 0.279 0.291 0.291 0.226 0.302 0.344 0.356 0.353
c0/w0 − 0.511 0.229 0.138 0.099 − 0.511 0.229 0.138 0.098
m0/w0 − 0.483 0.216 0.131 0.093 − 0.483 0.216 0.131 0.093
∆w̃0/w0 (%) − −0.007 0.020 0.153 0.530 − 0.034 0.046 −0.026 −0.323



Figure 1: Output gap and expected inflation
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(b) UM setting
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The upper graphs represent the output gap time series and the series implied by implied by the filtered
time series of the state variables Xt through the third equation in (3.5). The lower graphs represent
the realised inflation (logarithmic returns of the consumer price index) and the filtered time series of
expected inflation, πt, reconstructed using the second equation in (3.5).



Figure 2: Risk premia of bonds and equity index, as well as maximum implied Sharpe
ratio
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The first three graphs represent the risk premia of the 2Y and 10Y nominal zero-coupon bonds, as well as
of the stock index, estimated with the two different settings proposed. “SM setting” denotes the setting
where three factors are derived from nominal bond yields. “UM setting” denotes instead the setting
where two factors are derived from nominal bond yields and one factor is filtered from equity returns.
The lower graph represents the maximum achievable Sharpe Ratio at each point in time. Denoting with
Σ the volatility matrix associated to the set of available assets, the maximum Sharpe ratio achievable at
each moment in time depends on the instantaneous Sharpe ratio of the assets and can be expressed as
[(Σ′

Λ (Xt))
′
(Σ′

Σ)
−1

(Σ′
Λ (Xt))]

1/2.



Figure 3: Impulse response of economic variables to expected inflation shock.
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(b) UM setting
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The graphs show the impulse responses of the system to a 1% positive shock on the expected inflation,
∆π, over the short-term nominal rate R, the expected inflation π, the output gap χ and the real rate
R − π. The graphs regarding the short-term nominal rate and the real rate show the responses for the
base case values of monetary policy parameters η and ξ, as well as to the case where these values are
subject to relative shifts equal to ±30%. Panel (a) is referred to the SM setting, Panel (b) to the UM
setting.



Figure 4: Impulse response of economic variables to expected output gap shock.
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(b) UM setting
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The graphs show the impulse responses of the system to a 1% positive shock on the expected output
gap, ∆χ, over the short-term nominal rate R, the expected inflation π, the output gap χ and the real
rate R − π. The graphs regarding the short-term nominal rate and the real rate show the responses for
the base case values of monetary policy parameters η and ξ, as well as to the case where these values are
subject to relative shifts equal to ±30%. Panel (a) is referred to the SM setting, Panel (b) to the UM
setting.



Figure 5: Impulse response of risk premia and maximum Sharpe ratio to expected inflation
shock.

(a) SM setting
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(b) UM setting
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The first five rows of graphs show the impulse responses of the system to a 1% positive shock on the
expected inflation, ∆π, over the risk premia of the risky assets (2Y and 10Y nominal bonds, equity
index). The last row of graphs show the impulse responses of the system to 1% positive and negative
shocks on the expected inflation over the maximum Sharpe ratio obtainable when the nominal market
is complete. The graphs regarding the bond risk premia show the responses for the base case values of
monetary policy parameters η and ξ, as well as to the case where these values are subject to relative
shifts equal to ±30%. Panel (a) is referred to the SM setting, Panel (b) to the UM setting.



Figure 6: Impulse response of risk premia and maximum Sharpe ratio to expected output
gap shock.

(a) SM setting
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(b) UM setting
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The first five rows of graphs show the impulse responses of the system to a 1% positive shock on the
expected output gap, ∆χ, over the risk premia of the risky assets (2Y and 10Y nominal bonds, equity
index). The last row of graphs show the impulse responses of the system to 1% positive and negative
shocks on the expected output gap over the maximum Sharpe ratio obtainable when the nominal market
is complete. The graphs regarding the bond risk premia show the responses for the base case values of
monetary policy parameters η and ξ, as well as to the case where these values are subject to relative
shifts equal to ±30%. Panel (a) is referred to the SM setting, Panel (b) to the UM setting.



Figure 7: Static sensitivity analysis for the SM setting.

(a) Sensitivity of risk premia, volatilities, correlations and betas
to monetary policy shifts
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(b) Sensitivity of risk premia and
maximum Sharpe ratio to shifts of
the economic state variables
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For the SM specification, the graphs in the first panel report the sensitivity of risk premia, volatilities,
correlations and betas (with respect to the equity), of the nominal bonds (2Y and 10Y) and the stock
index, to shifts in the parameters describing the monetary policy (weight of expected inflation η and
weight of expected output gap ξ) with respect to their estimated values. The graphs in the second panel
show the sensitivity of the risk premia and of the maximum Sharpe ratio achievable to shifts in the
economic state variables (expected inflation π and output gap χ) with respect to their long-run means.
In each of the three graphs only one economic state variable is shifted, whereas the other is kept equal
to its long-run mean. The maximum Sharpe ratio is calculated considering as investable universe three
bonds (2Y, 5Y and 10Y) and the stock index.



Figure 8: Static sensitivity analysis for the UM setting.

(a) Sensitivity of risk premia, volatilities, correlations and betas
to monetary policy shifts
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(b) Sensitivity of risk premia and
maximum Sharpe ratio to shifts of
the economic state variables
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For the UM specification, the graphs in the first panel report the sensitivity of risk premia, volatilities,
correlations and betas (with respect to the equity), of the nominal bonds (2Y and 10Y) and the stock
index, to shifts in the parameters describing the monetary policy (weight of expected inflation η and
weight of expected output gap ξ) with respect to their estimated values. The graphs in the second panel
show the sensitivity of the risk premia and of the maximum Sharpe ratio achievable to shifts in the
economic state variables (expected inflation π and output gap χ) with respect to their long-run means.
In each of the three graphs only one economic state variable is shifted, whereas the other is kept equal
to its long-run mean. The maximum Sharpe ratio is calculated considering as investable universe two
bonds (2Y and 10Y) and the stock index.


